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Abstract: Gastrin-releasing peptide receptors (GRPR) are overexpressed in prostate cancer (PCa).
Since bombesin analogue aminobenzoic-acid (AMBA) binds to GRPR with high affinity, scandium-44
conjugated AMBA is a promising radiotracer in the PET diagnostics of GRPR positive tumors. Herein,
the GRPR specificity of the newly synthetized [44Sc]Sc-NODAGA-AMBA was investigated in vitro
and in vivo applying PCa PC-3 xenograft. After the in-vitro assessment of receptor binding, PC-3
tumor-bearing mice were injected with [44Sc]Sc/[68Ga]Ga-NODAGA-AMBA (in blocking studies
with bombesin) and in-vivo PET examinations were performed to determine the radiotracer uptake
in standardized uptake values (SUV). 44Sc/68Ga-labelled NODAGA-AMBA was produced with high
molar activity (approx. 20 GBq/µmoL) and excellent radiochemical purity. The in-vitro accumulation
of [44Sc]Sc-NODAGA-AMBA in PC-3 cells was approximately 25-fold higher than that of the control
HaCaT cells. Relatively higher uptake was found in vitro, ex vivo, and in vivo in the same tumor
with the 44Sc-labelled probe compared to [68Ga]Ga-NODAGA-AMBA. The GRPR specificity of
[44Sc]Sc-NODAGA-AMBA was confirmed by significantly (p ≤ 0.01) decreased %ID and SUV values
in PC-3 tumors after bombesin pretreatment. The outstanding binding properties of the novel
[44Sc]Sc-NODAGA-AMBA to GRPR outlines its potential to be a valuable radiotracer in the imaging
of GRPR-positive PCa.

Keywords: [44Sc]Sc-NODAGA-AMBA; [68Ga]Ga-NODAGA-AMBA; gastrin-releasing peptide recep-
tor (GRPR); bombesin (BBN); prostate cancer (PCa); PC-3; positron emission tomography (PET)

1. Introduction

Given the immense burden entailed by the rising prevalence of prostate cancer (PCa),
the necessity of the introduction of such imaging modalities that excel in timely diagnostic
assessment of primary tumors, as well as recurrent diseases, is highlighted. Novel PET
imaging modalities seem to be promising in the evaluation of localized primary PCa,
follow-up, and the re-emergence of the neoplasm [1,2].

Since gastrin-releasing peptide receptors (GRPR)—overexpressed in malignant ep-
ithelial prostate cells—are assumed to be valuable biomarkers, GRPR-targeted molecular
PET imaging may widen the diagnostic armamentarium of PCa [3–6]. Fourteen amino-
acid based bombesin (BBN) is a gastrin-releasing peptide (GRP) analogue exerting high
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affinity and specificity to GRPR [7]. Accumulating research studies report about radio-
labeled GRPR-ligands, including bombesin (BBN) and its analogues in GRPR-associated
PCa imaging [8,9]. Prior literature data state that aminobenzoic-acid (Gly-4-Abz-Gln-Trp-
Ala-Val-Gly-His-Leu-Met-NH2; AMBA) could be a potentially successful synthetic BBN
analogue in the isotope diagnostics of PCa [10].

Several radiometals are available for the labelling of peptide-based radiopharmaceuti-
cals. The following appropriate physical features of 18F led to its widespread clinical appli-
cation in cancer diagnosis: 100% positron efficiency, 0.64 MeV energy, and t 1

2
109.7 min [2].

Besides 18F, 64Cu also represents an area of growing investigation in terms of peptide-
labelling, however, its lower obtainability, prolonged half-life, and enhanced radiation
danger are those shortcomings that need to be addressed [2,11]. Despite its disadvantages,
[64Cu]Cu-labelled GRPR antagonist D-Phe-Gln-Trp-Ala-VaI-Gly-His-Sta-Leu-NH2 conju-
gated either to NOTA or NODAGA was reported to possess considerable value in the
PET imaging of GRPR-expressing malignancies at preclinical level [12]. 18F-labelled BBN
analogues AMBA and RMI (DOTA-CH2CO-G-4-aminobenzoyl-f-W-A-V-G-H-Sta-L-NH2,
GRPR antagonist) were first synthesized for molecular PET imaging of PCa in 2013 [2].
Positron emitter 68-Gallium (68Ga) eluated from readily available 68-Germanium/68-
Gallium (68Ge/68Ga) generators has favorable energy, half-life, chemical purity as well as
quality that are satisfactory for the radiolabeling process of different peptides including
AMBA [7,13,14]. Suitable targeting properties of 68Ga- or 177-Lutetium (177Lu)-labelled,
DOTA-conjugated AMBA were confirmed in preclinical studies [10,15]. Further, 68Ga-
AMBA PET was found to be better than 18F-methylcolin-based metabolic in-vivo PET
diagnostics of PCa [16]. GRPR targeting potential of 68Ga- and 177Lu-labelled ProBOMB2—
a novel BBN derivate—was investigated in preclinical models of GRPR-positive PC-3
human prostate cancer tumor-bearing male immunocompromised mice [17]. Based on
the high-quality images of exceptional contrast and discrete background activity, as well
as satisfactory pharmacokinetic properties, these novel peptide-based tracers anticipate
promising future usage not only in diagnostics but also in therapeutic fields.

In PET imaging, scandium-44 (44Sc) is a novel radiometal that is of much hope as a
potential radioisotope in radiopharmaceutical development and molecular diagnostics.
Approximately, in the last 10 years, the number of 44Sc-labelled radiopharmaceuticals
has been increasing due to their outstanding physicochemical properties such as longer
half-life (approximately 4 h), high positron branching (I = 94.27%, Emean (β+) = 0.63 MeV),
and Lu-like coordination chemistry [18]. A vast array of peptide-based 44Sc-labelled
radiopharmaceuticals is of pivotal significance in tumor detection (44Sc-DOTA-folate, 44Sc-
DOTA-NOC, 44Sc-NODAGA-NOC and 44Sc-DOTA-NAPamide), in the monitoring of
tumor-associated angiogenetic processes (44Sc-AAZTA-RGD), or in hypoxia detection (44Sc-
labelled DO3AM-NI) [19–23]. Moreover, the favorable biodistribution of 44Sc-labelled
peptides draws attention to their suitability for the production of GRPR-specific peptide
radiopharmaceuticals [24].

Peptide radiolabeling is performed with the application of bifunctional chelators
(BFC) [7]. Besides the most widely utilized DTPA or DOTA chelators, studies applying
NOTA and NODAGA for labelling purposes are also underway [7]. Based on existing litera-
ture data, both NOTA and NODAGA demonstrated superior performance to DOTA during
68Ga labeling regarding specific activity, stability, and biodistribution in vivo [25,26]. In one
study, the radiochemical characteristics of DOTA, NOTA, and NODAGA were compared
when labelling AMBA [7]. Among the evaluated AMBA-chelators, NODAGA-AMBA—
labelled with 68Ga—was depicted with the most suitable radiochemical properties [7].
Although, in-vitro and in-vivo studies dealing with 64Cu and 18F-labelled NODAGA-
AMBA revealed some of their undesirable characteristics such as relatively low stability
and fast tumor clearance [2].

Initiated by the above-detailed research findings, in this study we intended to syn-
thesize AMBA-based NODAGA-conjugated radiocomplexes labeled with both 68Ga and
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44Sc. Furthermore, we aimed at assessing the GRPR specificity of the newly synthetized
44Sc-labelled NODAGA-AMBA in vitro and in vivo using PC-3 xenograft prostate tumors.

2. Results
2.1. Radiochemistry

68Ga and 44Sc radiolabeling of the NODAGA-AMBA was performed manually be-
hind the L-Block Shield in both cases. The average reaction time of radiolabeling was
approximately 25 min (Figure 1). The RCP of both products was found over 98.0%.
The molar activity was 19.72 ± 0.13 GBq/µmoL for [68Ga]Ga-NODAGA-AMBA and
20.87 ± 0.12 GBq/µmoL for [44Sc]Sc-NODAGA-AMBA.
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Figure 1. Schematic representation of 68Ga and 44Sc radiolabeling reactions of the NODAGA-
Gly-4-Abz-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 (NODAGA-AMBA) precursor and radio-HPLC
chromatogram of the [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA.

2.2. LogP and Serum Stability Measurements

The octanol/water partition coefficient was found to be −2.75 ± 0.18 for [68Ga]Ga-
NODAGA-AMBA and −2.81 ± 0.14 for [44Sc]Sc-NODAGA-AMBA, showing an insignifi-
cant effect of the metal on the polarity of the tracer. For in-vitro stability measurements,
the labelled compounds were mixed with mouse plasma, Na2EDTA, and oxalic acid. Sam-
ples were injected at different time points to the HPLC with and without a column. The
comparison of the radioactivity peaks detected during the bypass and the on-column mea-
surements showed no adsorption on the system. In the case of [68Ga]Ga-NODAGA-AMBA,
the analytical radio-HPLC showed that the RCP of 68Ga-labelled compound decreased
to approximately 92% at 15 min and decreased to approximately 85% at 90 min. In the
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case of [44Sc]Sc-NODAGA-AMBA, the RCP remained over 98%, which means that the
44Sc-labelled compound remained stable during the measured 15 and 90 min time periods.

2.3. In Vitro Cellular Uptake Studies

The GRPR specificity of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA
was investigated using receptor-positive PC-3 and negative HaCaT cell lines. The accumula-
tion of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA in PC-3 cancer cells was
significantly higher (p < 0.01) than in the receptor negative cell line at each investigated time
point (Figure 2). The accumulation of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-
AMBA in PC-3 cells was approximately 25-fold higher at 60 and 120 min, than the uptake
of the receptor negative HaCaT cells, confirming the GRPR specificity of the investigated
radiotracers. Comparing the cellular uptake of the two GRPR specific radiotracers, we
found that the [44Sc]Sc-NODAGA-AMBA accumulation in PC-3 cells was relatively higher
(5.65 ± 0.95 at 60 min; 5.58 ± 1.20 at 120 min) than that of [68Ga]Ga-NODAGA-AMBA
(4.11 ± 0.79 at 60 min; 3.77 ± 1.08 at 120 min); however, these differences were not signifi-
cant at p < 0.05. Analyzing the %ID data of the blocking experiments, we found that in the
presence of 200 nM BBN during the incubation time, the radiotracer uptake of the GRPR
positive PC-3 cells significantly decreased ([68Ga]Ga-NODAGA-AMBA: 0.35 ± 0.09 at
60 min and 0.33 ± 0.12 at 120 min; [44Sc]Sc-NODAGA-AMBA: 0.38 ± 0.10 and 0.41 ± 0.12
at 60 and 120 min, respectively). In the case of the receptor-negative HaCaT cells, no effect
was found after the addition of blocking agent (Figure 2).
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Figure 2. Assessment of in-vitro cellular uptake studies of gastrin-releasing peptide receptor (GRPR)-
specific [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA radiopharmaceuticals. Com-
parison of radiotracer uptake results of GRPR-positive PC-3 and negative HaCaT cells after 60 and
120 min incubation time in the presence and absence of 200 nM bombesin (BBN) as a blockade.
Significance level between the PC-3 cells and the blocked PC-3 or HaCaT cells: p ≤ 0.01 (**). %ID:
Radiotracer accumulation in 106 cells was expressed as the percentage of the incubating dose. The
data shown are means ± SD of the results of at least three independent experiments, each performed
in triplicate.

2.4. Biodistribution and Pharmacokinetic Studies in Healthy Mice

For the determination of the normal distribution of the GRPR-specific radiopharma-
ceuticals, ex-vivo studies were performed for 30, 60, 120, and 180 min after the intravenous



Int. J. Mol. Sci. 2022, 23, 10061 5 of 17

injection of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA using healthy con-
trol animals (Figure 3). After the quantitative analysis of the ex-vivo results, relatively lower
[44Sc]Sc-NODAGA-AMBA (Figure 3B) accumulation was observed in the selected organs
and tissues than using the 68Ga-labelled probe (Figure 3A) at the same time points, but this
difference was not significant at p < 0.05 (Figure 3). Low radiotracer uptake was found in the
blood, liver, spleen, gastrointestinal tract, and in the thoracic organs using both radiotracers
at each investigated time point. In contrast, notable accumulation was observed in the uri-
nary system (approx. %ID/g: 2–8 in the kidneys, and approx. %ID/g: 250–450 in the urine),
in the adrenal glands (approx. %ID/g: 0.5–3) and in the pancreas (approx. %ID/g: 1–4)
with both radiotracers. Overall, the radioactivity of the examined organs decreased with
time using both ra-diopharmacons (Figure 3). Pharmacokinetics of [68Ga]Ga-NODAGA-
AMBA and [44Sc]Sc-NODAGA-AMBA was studied in healthy control CB17 SCID mice.
There was no significant difference (at p≤0.05) between the pharmacokinetic parameters
of [68Ga]Ga-NODAGA-AMBA (Figure 3C) and [44Sc]Sc-NODAGA-AMBA (Figure 3D).
The half-life of the radiolabeled pharmacons in the blood is less than 30 minutes in both
cases, and this result is consistent with the logP values. The in-vivo stability was deter-
mined using healthy mice by analytical radio-HPLC method. Samples were taken at 30,
60, 120, and 180 min and both radiolabeled compounds: [68Ga]Ga-NODAGA-AMBA and
[44Sc]Sc-NODAGA-AMBA remained stable during the measured period. No measurable
amount of metabolite was found with radio-HPLC technique, indicating excellent in-vivo
metabolic stability.

2.5. PET Imaging and Ex Vivo Biodistribution Studies of PC-3 Tumor-Bearing Mice

The GRPR positive tumor-targeting potential of [68Ga]Ga-NODAGA-AMBA and
[44Sc]Sc-NODAGA-AMBA was investigated by preclinical PET imaging 60 and 120 min
after intravenous radiotracer injection. Representative decay-corrected PET images are
shown in Figure 4. Qualitative analysis of the PET images revealed that the subcutaneously
growing GRPR-positive PC-3 tumors were clearly visualized using both radiotracers at each
investigated time point (Figure 4A, red arrows). After the quantitative SUV analysis, we
found that 60 min after the injection of [44Sc]Sc-NODAGA-AMBA, the SUVmean, SUVmax,
T/M SUVmean, and T/M SUVmax values of PC-3 tumors were 0.90 ± 0.17, 1.54 ± 0.18,
6.16 ± 1.24, and 6.71 ± 1.08, respectively. Relatively lower accumulation was found in the
same tumors by using the 68Ga-labelled probe (SUVmean: 0.69 ± 0.15, SUVmax: 1.19 ± 0.11,
T/M SUVmean: 5.50 ± 0.54, T/M SUVmax: 5.58 ± 1.07), however, this difference between
the two radiotracers was not significant (p ≤ 0.05) at 60 min; moreover, it remained the same
at 120 min (Figure 4B). Furthermore, 120 min post-injection of [68Ga]Ga-NODAGA-AMBA
and [44Sc]Sc-NODAGA-AMBA the T/M ratios showed higher values than 60 min after
injection due to the decreased background activity (Figure 4B, right). This in-vivo data
correlated well with the ex-vivo experiments (Table 1), where similarly higher [44Sc]Sc-
NODAGA-AMBA uptake was observed in PC-3 tumors.
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AMBA (B). Quantitative %ID/g tissue analysis of ex-vivo biodistribution data (n = 5 control animals/
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radiotracer/time point) 30, 60, 120, and 180 min after intravenous tracer injection. %ID values are
presented as mean ± SD. In-vivo blood clearance of [68Ga]Ga-NODAGA-AMBA (C) and [44Sc]Sc-
NODAGA-AMBA (D) in healthy control CB17 SCID mice (n = 3 animals/radiotracer/time point).
%ID/mL values are presented as mean ± SD.
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Figure 4. In-vivo assessment of tumor-targeting properties of [68Ga]Ga-NODAGA-AMBA and
[44Sc]Sc-NODAGA-AMBA radiotracers. (A) positron emission tomography (PET) imaging and
quantitative image analysis of PC-3 tumors [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-
AMBA radiotracers. (A) Representative coronal (upper row) and transaxial (lower row) decay-
corrected PET images of GRPR-positive PC-3 tumor-bearing mice 60 and 120 min post-injection, and
14 ± 1 days after tumor cell inoculation. (B) quantitative standardized uptake value (SUV) analysis
of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA accumulation in experimental PC3
tumors (n = 5 animals/radiotracer/time point). Red arrows: PC3 tumors; T/M: tumor-to-muscle
ratio. SUV values are presented as mean ± SD.
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Table 1. Ex-vivo assessment of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA accu-
mulation (%ID/g) in PC-3 experimental tumors 60 and 120 min after intravenous tracer injection
and 14 ± 1 days after tumor induction. Significance level between non-blocked and blocked tumors:
p ≤ 0.01 (**); 15 mg/kg BBN was used for blocking. T/M: tumor-to-muscle ratio.

Tumor
[68Ga]Ga-NODAGA-AMBA [44Sc]Sc-NODAGA-AMBA

60 min 120 min 60 min 120 min

PC3 3.78 ± 0.93 ** 3.29 ± 1.20 ** 4.56 ± 0.45 ** 4.14 ± 0.47 **
PC3 blocked 0.60 ± 0.22 0.48 ± 0.14 0.79 ± 0.16 0.69 ± 0.17

PC3 T/M 13.21 ± 2.47 ** 21.64 ± 3.78 ** 16.88 ± 1.96 ** 27.57 ± 2.88 **
PC3 T/M blocked 1.97 ± 0.22 2.86 ± 0.47 2.19 ± 0.36 3.04 ± 0.62

The GRPR receptor specificity of the radiolabeled probes was attested in vivo (Figure 5)
and ex vivo (Table 1) by blocking experiments using PC-3 tumor-bearing mice. Assessing
the qualitative analysis of the decay-corrected PET images, we found low or moderate
accumulation in the experimental PC-3 tumors after 30 min of BBN pretreatment using both
radiotracers (Figure 5A, black arrows). The quantitative image analysis showed that the
SUV values significantly (p ≤ 0.01) decreased (SUVmean: 0.14 ± 0.08, SUVmax: 0.25 ± 0.05
using [44Sc]Sc-NODAGA-AMBA; and SUVmean: 0.09 ± 0.05, SUVmax: 0.19 ± 0.07 using
[68Ga]Ga-NODAGA-AMBA) after intravenous bombesin pretreatment (Figure 5B). When
the SUV values of the blocked PC-3 tumors were compared with the non-blocking tumors
120 min after radiotracer injection, we found approximately 6-fold lower accumulation
(significant at p ≤ 0.01) using [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA,
confirming the GRPR-binding specificity of the radiotracers. These in-vivo data correlated
well with the ex-vivo blocking experiments (Table 1). As Table 1 shows, the %ID/g values
significantly (p ≤ 0.01) decreased in PC-3 tumors using both GRPR-specific radiotracers
after the BBN pretreatment, in which observation showed that the tracer uptake of the
tumors was blocked efficiently confirming the GRPR-binding specificity (Table 1).
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row) and transaxial (lower row) PET images of blocked (15 mg/kg bombesin) GRPR-positive PC-3
tumors. (B) Quantitative SUV analysis of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA
accumulation in blocked PC-3 tumors (n = 5 animals/radiotracer/time point). Decay-corrected PET
images and data were obtained 14 ± 1 days after tumor cell inoculation and 60 and 120 min after
intravenous injection of the radiotracers. Black arrows: blocked PC3 tumors. Significance level:
p ≤ 0.01 (**). T/M: tumor-to-muscle ratio. SUV values are presented as mean ± SD.

3. Discussion

GRPR-overexpressing PCa cells serve as a highly promising area of research in terms
of diagnostic advances of PCa [4]. Concerning peptide-based radiopharmaceuticals, consid-
erable attention has been placed on GRPR affine BBN and its analogues thereof with regard
to radiopharmaceutical development for imaging and therapeutic purposes as well [27,28].
Recent studies have analyzed the performance of a wide variety of radiolabeled BBN
analogues such as AMBA in both diagnostic and therapeutic settings [28].

Therefore, we evaluated the GRPR specificity of two peptide-based radiopharmaceuticals—
[68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA—applying receptor-positive PC-3
and receptor-negative HaCaT cell lines. Given that both tracer uptake of the PC-3 cells was
significantly higher compared to the control at each investigated time point—in accordance
with the in-vivo and ex-vivo experiments—we managed to establish the GRPR specificity of the
examined radiopharmaceuticals.

Several previous studies have already strengthened the GRPR positivity of PC-3
human prostate cell lines. In recent research conducted by Bologna and co-workers, BBN
binding sites were identified in PC-3 cells [29]. In addition, BBN antagonist RC-3095
resulted in the growth inhibition of PC-3 cells transplanted into nude mice [30]. In one study
conducted by Liolios et al., PC-3 tumors showed high accumulation of GRPR affine 99mTc-
labelled BBN analogue 99mTc-GGC-(Ornithine)3-BN(2-14) (99mTc-BN-O) [31]. Based on
the absence of activity of irrelevant molecules including [D-Trp6]LHRH and somatostatin
analogue RC-160 to impede the binding of 125I[Tyr4]-BBN, BBN receptor specificity of
both PC-3 and DU-145 human prostate cell lines was further highlighted by Reile H. and
colleagues [6]. In addition, a vast array of preclinical studies proved that PCa models
show response to BBN and BBN antagonists [6]. Further, BBN was reported to trigger the
proliferation of PC-3 and DU-145 human PCa cell lines [29,32]. Therefore, PC-3 cells seem
to be promising to test the diagnostic efficacy of radiolabeled GRPR-peptide analogues.

In our present work we evaluated the GRPR specificity of two peptide-based radio-
pharmaceuticals: [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA. For this
purpose, already-proven GRPR receptor positive PC-3 cells and receptor-negative control
HaCaT cell lines were applied. Given that both tracer uptake of the PC-3 cells was signifi-
cantly higher compared to the control at each investigated time point, in accordance with
the in vivo and ex vivo experiments, we managed to establish the GRPR specificity of the
examined radiopharmaceuticals.

In agreement with our results, according to a prior study executed by Zhang-Yin and
co-workers, PC-3 tumors were visualized with increased 68Ga-AMBA uptake [33]. With the
application of PC-3 PCa cell lines characterized by GRPR expression but androgen receptor
(AR) and prostate specific membrane antigen (PSMA) deficiency, Schroeder et al. reported
the superiority of 68Ga-AMBA over 18F-fluorocholine (18F-FCH) regarding the in-vivo PET
imaging of PCa xenografts [16]. Further, PC-3 tumors were definitely recognized with
[68Ga]Ga-NOTA-AMBA in µPET/CT images of PC-3 xenograft mice in research carried
out by Dam et al. [34]. The above-detailed results together with no lacrimal or salivary
gland accumulation and insignificant hepatobiliary elimination of 68Ga-AMBA presuppose
the feasibility of 68Ga-labelled peptide-based PET imaging of PCa with enhanced contrast
and a more tissue-specific targeting potential. Although our results of 68Ga-GRPR-based
peptide imaging are comparable to those of the existing literature, to our best knowledge,
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no previous research data is available regarding the performance evaluation of [44Sc]Sc-
NODAGA-AMBA in the diagnostics of PCa.

In vitro cellular uptake analysis of the two GRPR-specific radioconjugates revealed
that the accumulation of [44Sc]Sc-NODAGA-AMBA in PC-3 cells was relatively higher than
that of [68Ga]Ga-NODAGA-AMBA, although the difference did not seem to be statistically
significant. The explanation of this finding is not yet fully covered, and future large scale
studies are required to elucidate the exact reason behind this. Since the 4-hour physical half-
life of 44Sc makes the transportation of 44Sc-labelled tracers to distinct isotope laboratories
possible, physiological processes featured with slower kinetic properties could be widely
assessed [35,36]. Additionally, improved resolution and image quality of 44Sc PET images
compared to 68Ga PET scans may further outline the excellence of 44Sc over 68Ga [35]. Even
though, head-to-head comparison of the uptake of 68Ga and 44Sc-labeled peptides did not
reveal any remarkable differences, the favorable characteristics of 44Sc for radiolabeling
procedures may emphasize its superiority over 68Ga in the diagnostic algorithm of PCa.

Applying GRPR-blocking experiment with BBN, we managed to confirm the specific
tumor-targeting efficiency of the investigated radioconjugates. In accordance with in-vivo
and ex-vivo studies, significantly decreased tracer uptake of the GRPR-positive PC-3 cells
was depicted in the case of the blocking experiments, whereas the blocking agent expressed
no effect on control HaCaT cells. In line with our results, Kim et al. reported discrete
tumor uptake of [64Cu]Cu-NODAGA-BBN or [64Cu]Cu-NODAGA-galacto-BBN following
the administration of 15 mg/BW of non-radioactive blocking ligands (NODAGA-BBN, or
NODAGA-galacto-BBN) [37]. They presented the reduction of the radiopharmaceutical
accumulation in the group of PC-3 tumor-bearing nude mice injected with the GRPR-
blocking agent 30 min prior to the tracer administration compared to those pets that did
not receive the blocking ligand [37].

Prior research generally confirms that GRPR could be encountered amongst others in
the central nervous system, gastrointestinal (GIT) tract, pancreas, and the adrenal cortex [5].
Therefore, we employed healthy control animals to explore the physiological biodistri-
bution of GRPRs. In accordance with literature data substantiating the physiological
existence of GRPR in urogenital smooth muscle, we depicted considerable tracer uptake
in the urinary system as well [38]. Radiopharmaceutical accumulation in the kidneys and
in the urine remained high due to the predominant renal elimination of the tracer. In
line with our ex-vivo results, Fournier et al.—evaluating two BBN-based radiopharma-
ceuticals for the identification of breast and prostate cancers in Balb/c and tumor-bearing
Balb/c nude mice—showed elevated accumulation of both 64Cu and 68Ga/NOTA-PEG-
[D-Tyr6,βAla11,Thi13,Nle14]BBN(6-14) [68Ga/NOTA-PEG-BBN(6-14)] in the pancreas and
adrenal glands abounding in GRPR [39,40]. Another study also corroborated the presence
of BB2 (bombesin type 2 receptor/GRPR) in pancreatic acinar cells [41]. Further, Liolios and
co-workers showed notably increased uptake of GRPR affine [99mTc]Tc-BN-O of the pan-
creas compared to other tissues [31]. However, in agreement with our findings, low (below
6% ID/g) tracer accumulation was depicted in the heart, lung, muscle, and spleen [31]. Fur-
ther supporting the occurrence of GRPR in the lung, Johnson et al. reported that pulmonary
neuroendocrine cells (NECs) exhibited the gene of GRPR [42]. Moreover, a high amount of
GRP was depicted in both human and mouse fetal lung [43,44]. In addition, healthy control
animals in our study demonstrated low gastrointestinal [68Ga]Ga-NODAGA-AMBA and
[44Sc]Sc-NODAGA-AMBA uptake. Existing literature data also evidenced minor GRPR
expression in the neuroendocrine cells of the gastrointestinal organs [45].

In summary, both [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-NODAGA-AMBA ex-
press outstanding tumor-targeting PET properties. Given the advantageous chemical
characteristics of 44Sc, [44Sc]Sc-NODAGA-AMBA seems to be a novel clinically translat-
able BBN analogue-based PET radiopharmaceutical in the diagnostic assessment of GRPR
positive PCa.
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4. Materials and Methods
4.1. Chemicals

NODAGA-Gly-4-Abz-Gln-Trp-Ala-Val-Gly-His-Leu-Met-NH2 (NODAGA-AMBA)
was obtained from ABX advanced biochemical compounds GmbH (Cat. No.: 9814) (Rade-
berg, Germany). For the radiolabeling procedures, the ultra-pure (u.p.) solvents and
sodium acetate (NaOAc) were obtained from Sigma-Aldrich Ltd. (Budapest, Hungary).
Ultra-pure HCl was purchased from Merck Ltd. (Budapest, Hungary). 68Ga radioisotope
was obtained from a 68Ge/68Ga isotope generator (Gallia-Pharm, Eckert and Ziegler Ger-
many), 44Sc was produced in a GE PETtrace cyclotron at the Division of Nuclear Medicine
and Translational Imaging, Department of Medical Imaging, Faculty of Medicine, Univer-
sity of Debrecen (Debrecen Hungary). All other reagents and solvents were obtained from
Sigma-Aldrich Ltd. (Budapest, Hungary) and VWR International Ltd. (Debrecen, Hungary)
and used without further purification.

4.2. 68Ga-Labelling of NODAGA-AMBA
68Ga (t 1

2
= 68 min, β+ = 89% and EC = 11%) was acquired from a 68Ge/68Ga generator

(50 mCi, Gallia-Pharm, Eckert and Ziegler, Berlin, Germany). The labelling protocol is
based on our previous work [46]. Briefly, the generator eluate was fractioned and the
top fraction that contained 70–75% of the total radioactivity was used for radiolabeling.
An amount of 1,2 mL of 68Ga-solution from the highest activity aliquot, 170 µL NaOAc
buffer (0.5 M, pH = 4), 70 µL NaOH (2%), and 6 µL of stock solution NODAGA-AMBA
(1 mM) were mixed to ensure a pH of 4.3−4.5 in a 5 mL Eppendorf tube, and this was
incubated for 5 min at 95 ◦C. Thereafter, the solution was pipetted into an Oasis HLB 1 cc
Vac Cartridge (Waters) and was washed with 2 mL of water to remove a buffer. The product
([68Ga]Ga-NODAGA-AMBA) was eluted with 350 µL of 96% EtOH/isotonic NaCl solution
(mixture ratio 2:1). The radiochemical purity (RCP) of the product was determined with
radio-HPLC on a KNAUER RP-HPLC system with the Supelco Discovery® Bio Wide Pore
C-18 analytical column (250 mm × 4.6 mm; particle size: 10 µm). The HPLC system was
combined with a radiodetector and the signals were detected simultaneously. Gradient
elution was achieved at a flow rate of 1 mL/min. The mobile phase consisted of eluent
A: (0.1% TFA in water) and eluent B: (0.1% TFA in acetonitrile-water (95:5, v/v)). Before
performing further experiments, the product was diluted with isotonic (0.9%) saline and
was filtered to be sterile.

4.3. 44Sc-Labelling of NODAGA-AMBA

One-hundred-and-twenty milligrams of natural calcium (Ca) (99.99%) as a solid target
was pressed into an aluminum target holder and was irradiated for 60 min with 30 µA
beam using the GE PETtrace Cyclotron. After the irradiation, the irradiated Ca target
was dissolved in 3 M u.p. HCl and the solution was transferred into a preconditioned
self-loaded DGA resin (70 mg/cartridge). Following the loading of solution, the column
was washed with 3 mL 3 M u.p. HCl, and 3 mL 1 M HNO3, and then it was repeatedly
washed with 3 mL 3 M u.p. HCl to remove the remaining Ca target materials. After the
purification, the 44Sc isotope was eluted with 2 mL 0.1 M u.p. HCl in 200 µL fractions, and
the highest activity fractions were mixed and were used for radiolabeling. The labelling
protocol is based on our previous work [21]. Briefly: 1 mL 44Sc-solution, 1150 µL NaOAc
buffer (0.5 M, pH = 4), and 6 µL of stock solution of NODAGA-AMBA (1 mM) were mixed,
and the reaction was incubated for 15 min at 95 ◦C. Thereafter, the solution was pipetted
into a Light C18 Sep-Pak Cartridge and was washed with 2 mL of water. The product
([44Sc]Sc-NODAGA-AMBA) was eluted with 500 µL of 96% EtOH/isotonic NaCl solution
(mixture ratio 2:1). The RCP of the product was determined with the above-mentioned
KNAUER RP-HPLC system.
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4.4. Determination of Partition Coefficient and Metabolic Stability of 68Ga- and 44Sc-Labelled
NODAGA-AMBA

For the determination of LogP value and the in-vitro serum stability, the same protocol
was used as was described earlier by our research group [47]. Briefly, for the determina-
tion of the partition coefficient (logP), 10 µL of [68Ga]Ga-NODAGA-AMBA or [44Sc]Sc-
NODAGA-AMBA solution (approximately 5 MBq) was mixed with 500 µL of 1-octanol and
490 µL of water in a test tube. To reach equilibrium state, the mixture was firmly stirred
and then centrifuged (20.000 rpm, 5 min). One-hundred microliters of the samples were
pipetted into vials from each layer, and the radioactivity of the fractions was determined
with a calibrated gamma counter (Perkin-Elmer Packard Cobra, Waltham, MA, USA). The
measurements were performed in triplicates for both labelled compounds.

After 15 and 90 min incubation time, a 50 µL sample was taken and 50 µL abs. EtOH
was added to the aliquots. Then, the samples were centrifuged (20.000 rpm, 5 min), and the
supernatant was removed and diluted with the eluent of HPLC. This was followed by the
performance of the analytical measurements.

4.5. Cell Lines

Human PCa PC-3 (positive—high BBN/GRPR expression) and human immortal ker-
atinocyte HaCaT (negative) cell lines were purchased from the American Type Culture
Collection (ATCC, Manassas, VA, USA) and Thermo Fisher Scientific (London, UK), re-
spectively. PC-3 and HaCaT cells were cultured in RPMI-1640 medium (Sigma-Aldrich,
St. Louis, MO, USA) with 10% Fetal Bovine Serum (FBS, GIBCO Life technologies) sup-
plemented with 1% Antibiotic and Antimicotic solution (Sigma-Aldrich). All cell lines
were cultured at standard conditions (5% CO2, 37 ◦C). For in-vitro uptake, measurements
and subcutaneous tumor inoculation cells were used at 85% confluence after five passages.
The viability of the cells was always higher than 90%, as assessed by the trypan blue
exclusion test.

4.6. Cellular Uptake Studies

PC-3 and HaCaT cells were trypsinized, centrifuged, suspended, and aliquoted in
test tubes at a cell concentration of 1 × 106/1 mL RPMI-1640 solution. Tubes were in-
cubated for 60 or 120 min in the presence of 0.37 MBq of [68Ga]Ga-NODAGA-AMBA or
[44Sc]Sc-NODAGA-AMBA at 37 ◦C. In blocking experiments, 200 nM bombesin (Sigma-
Aldrich) was added to the cells. After the incubation time, samples were washed three
times with ice-cold PBS and the radioactivity was measured with a calibrated gamma
counter (Perkin-Elmer Packard Cobra, Waltham, MA, USA) for 1 min within the 68Ga-
and 44Sc-sensitive energy window. Decay-corrected radiotracer uptake was expressed as
counts/(min × (106 cells)) (cpm). The uptake of the radiopharmaceuticals was expressed
as percentage of the total radioactivity of radiotracers added to the cells (%ID/million cells).
Each experiment was performed in triplicate and the displayed data represent the means
of at least three independent experiments (±SD).

4.7. In Vivo Tumor Model

Immunodefficient CB17 SCID mice were housed under sterile conditions in IVC cages
(Sealsafe Blue line IVC system, Techniplast, Akronom Ltd., Budapest, Hungary) at the
temperature of 26 ± 2 ◦C with 55 ± 10% humidity and artificial lighting with a circadian
cycle of 12 h. Sterile semi-synthetic diet (Akronom Ltd., Budapest, Hungary) and sterile
drinking water were available ad libitum to all animals. Laboratory animals were kept and
treated in compliance with all applicable sections of the Hungarian Laws and regulations
of the European Union.

For animal experiments, 12-week-old female CB17 SCID (n = 64) were used. For the
induction of GRPR-expressing tumor model, mice were anesthetized with a dedicated small
animal anesthesia device (Tec3 Isoflurane Vaporizer, Eickemeyer Veterinary Equipment,
Sunbury-on-Thames, UK) applying 3% isoflurane (Forane, AbbVie), 0.4 L/min O2, and
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1.4 L/min N2O, and 5 × 106 PC-3 tumor cells in 0.9% NaCl (100 µL) were injected subcuta-
neously into the left shoulder area of CB17 SCID mice. In-vivo and ex-vivo experiments
were carried out 14 ± 1 days after subcutaneous injection of tumor cells at the tumor
volume of approximately 86 mm3.

4.8. In Vivo PET Imaging

For in-vivo imaging studies, mice were injected intravenously with 11.3 ± 1.4 MBq of
[68Ga]Ga-NODAGA-AMBA or [44Sc]Sc-NODAGA-AMBA via the lateral tail vein under
isoflurane anesthesia. Sixty and 120 min after radiotracer injection, mice were anesthetized
by 3% isoflurane (Forane) and 20 min static PET scans were performed from the tumorous
area using the preclinical miniPET device (University of Debrecen, Faculty of Medicine,
Department of Medical Imaging, Division of Nuclear Medicine and Translational Imaging).
Following the reconstruction of PET volumes using the three-dimensional Ordered Subsets
Expectation Maximization (3D-OSEM) algorithm, volumes of interest (VOIs) were manually
drawn around the examined regions using the BrainCAD image analysis software and
quantitative standardized uptake values (SUVs) values were calculated as follows: SUV =
[VOI activity (Bq/mL)]/[injected activity (Bq)/animal weight (g)], assuming a density of
1 g/mL. Tumor-to-muscle (T/M) ratios were calculated from the SUV values of the tumor
and background (muscle).

4.9. Ex Vivo Biodistribution Studies

Thirty, 60, 120, and 180 min after the intravenous injection of 11.3 ± 1.4 MBq [68Ga]Ga-
NODAGA-AMBA or [44Sc]Sc-NODAGA-AMBA healthy control and PC-3 tumor-bearing
mice were euthanized with 5% Forane, sacrificed, and tissue samples were taken from
the selected organs. The weight and the radioactivities of both the tumors and normal
tissues were measured with calibrated gamma counter, and the uptake was expressed as
%ID/g tissue.

4.10. Pharmacokinetic Studies and In Vivo Stability

For pharmacokinetic studies, healthy control CB17 SCID mice (n = 12) were injected
intravenously with 10.8 ± 1.6 MBq of [68Ga]Ga-NODAGA-AMBA or [44Sc]Sc-NODAGA-
AMBA under isoflurane anesthesia. Thereafter, approximately 30 µL blood samples were
collected from the saphenous vein into a capillary tube at the following time points: 30, 60,
120, and 180 minutes. The volume of the blood was determined using a digital caliper. Blood
samples were placed in a γ-counter and the radioactivity of each sample was measured.
Results were expressed as a percentage of the injected activity per mL (% ID/mL). For
the determination of in vivo serum stability of [68Ga]Ga-NODAGA-AMBA and [44Sc]Sc-
NODAGA-AMBA, blood samples were taken from the mice at the previously mentioned
time points (30, 60, 120, and 180 min). Firstly, the blood samples were centrifuged at 4◦C,
10,000 rpm for 5 min. Thereafter, 50 µL samples were taken from the supernatant and
mixed with ice-cold abs. ethanol (50 µL) and centrifuged again at 4◦C, 10 000 rpm for 5 min.
The supernatants were analyzed by analytical radio-HPLC. In all cases, the radio-HPLC
chromatograms were compared to the original chromatograms of the radiotracers to find
any metabolite forms.

4.11. Blocking Experiments

For blocking experiments, PC-3 tumor-bearing mice were injected intravenously
with 15 mg/kg of BBN (Sigma-Aldrich) 30 min prior to the injection of 11.3 ± 1.4 MBq
[68Ga]Ga-NODAGA-AMBA or [44Sc]Sc-NODAGA-AMBA and in-vivo and ex-vivo organ
distribution studies were performed as described above.

4.12. Statistical Analysis

Significance was calculated by student’s two-tailed t-test, two-way ANOVA, and
the Mann–Whitney rank-sum tests, and the significance level was set at p ≤ 0.05 unless
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otherwise indicated. A commercial software package (MedCalc 18.5, MedCalc Software,
Mariakerke, Belgium) was used for all statistical analyses. Data are presented as mean ± SD
of at least three independent experiments.

5. Conclusions

In conclusion, our newly synthesized [44Sc]Sc-NODAGA-AMBA radiopharmaceutical
showed excellent binding affinity to GRPR-positive PC-3 prostate cancer cells and tumors.
Due to its favorable physical-chemical properties and high selectivity, [44Sc]Sc-NODAGA-
AMBA seems to be a promising molecular probe for PET imaging of PSMA and AR-negative
prostate cancers and metastases.
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