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Structured abstract 

Introduction: Experimental and virtual screening contributes to the discovery of more than 

50% of clinical candidates. Considering the similar concept and goals, early phase drug 

discovery would benefit from the effective integration of these approaches.  

Areas covered: After reviewing the recent trends in both experimental and virtual screening, 

we discuss different integration strategies from parallel, focused, sequential and iterative 

screening. Strategic considerations are demonstrated in a number of real-life case studies. 

Expert opinion: Experimental and virtual screening are complementary approaches that 

should be integrated in lead discovery settings. Virtual screening can access extremely large 

synthetically feasible chemical space that can be effectively searched on GPU clusters or 

cloud architectures. Experimental screening provides reliable datasets by quantitative HTS 

applications, and DNA-encoded libraries (DEL) have enlarged the chemical space covered by 

these technologies. These developments, together with the use of artificial intelligence 

methods, represent new options for their efficient integration. The case studies discussed here 

demonstrate the benefits of complementary strategies such as focused and iterative screening. 

Keywords: artificial intelligence, DNA-encoded libraries, focused screening, high throughput 

screening, iterative screening, parallel screening, phenotypic screening, sequential screening, 

ultra-large screening, virtual screening 

Article highlights 

• Large virtual databases of synthetically accessible compounds cover the larger part of 

the chemical space available for virtual screening 

• DNA-encoded libraries (DELs) represent better coverage of the chemical space for 

experimental screening and provide large training datasets for virtual screening 

• Quantitative high-throughput screening generates better quality data available for the 

iterative improvement of virtual screening protocols 

• GPU clusters and cloud architectures, together with parallelized software applications 

and artificial intelligence techniques, provide higher performance for virtual screening 

• Iterative integration of experimental and virtual screening maximizes the benefits of 

these complementary approaches 

 

1. Introduction 

Lead generation is in the heart of the preclinical drug discovery process, since the main 

structural features of the lead molecules were shown to be kept during the optimization leading 

to clinical candidates [1]. A recent analysis of the clinical candidates revealed that 43% of small 

molecule drug candidates come from already existing compounds (already synthesized and 

characterized compounds, but not necessarily drugs) [2]. Although this approach would speed 

up discovery programs and is well suited for identifying fast followers, the limited freedom to 

operate would make navigation in the IP space difficult and risky. Screening technologies, 

however, provide new chemical matter that are outside these limitations. In fact, the other 57% 

of the leads originated from screening approaches including high-throughput screening (HTS, 

29%), virtual screening (VS, 14%), focused screens (8%), fragment screens (5%) and screening 

of DNA encoded libraries (1%). These figures suggest that in addition to experimental 

screening technologies, VS can contribute significantly to hit and lead discovery. Being the 

second after HTS, VS approaches have identical goals and objectives and therefore should not 



be treated as competitive, but highly complementary to experimental screening [3]. 

Consequently, early stage drug discovery programs could benefit from their integration. 

Focused screening, the third largest screening contributor of drug leads, reinforces the need for 

the effective integration. There are multiple options to integrate these technologies. In the order 

of integration level, these include the parallel approach, focused, sequential and iterative 

screening. Parallel screening uses experimental and virtual screening protocols on the same 

compound library. While HTS typically operates on large diverse screening decks, virtual 

screening can be used to focus the collection to a preselected subset of compounds, or even 

compounds not contained in the screening collection. Consequently, focused screening would 

provide higher hit rates realized with a diverse set of chemotypes. The next level of integration 

is sequential screening that attempts to maximize the cost-benefit ratio of the campaign by 

balancing the two technologies. Finally, the most integrated approach is iterative screening that 

utilizes the SAR knowledge generated by focused or sequential screening to redesign the 

screening library for maximizing the information content of the hits.  

We have discussed the integration strategies of VS and HTS ten years ago and collected a 

number of case studies for their effective integration in different scenarios [4]. Another 

contemporary review was also published on this topic, with more emphasis on virtual screening 

[5]. In the past ten years, the field has undergone major paradigm shifts. This review will 

therefore concentrate on introducing the rapidly changing landscape of VS and HTS, with 

recent case studies to illustrate their synergy in today’s AI-dominated applications. 

2. Virtual screening 

Parallel to the rapid increase of computational capacity, virtual screening has originally 

appeared as an inexpensive alternative to high-throughput screening, unlocking access to a 

much wider (virtual) chemical space than what was physically available. The rationalization of 

drug development costs, as well as the democratization of early drug discovery is still the main 

driving force in developing and applying computational methods in the hit discovery, hit-to-

lead and lead optimization processes [6]. Traditionally, VS methods are grouped into ligand-

based and (protein) structure-based methods, depending on whether the structure of the 

therapeutic (protein) target is utilized during the screening process. VS methods can be 

combined into intricate, step-wise or parallel screening workflows. In fact, some ligand-based 

methods are primarily utilized as fast pre-filtering steps prior to the main screening step that 

usually aims to prioritize/select compounds with on-target activity. These methods can be easily 

combined with experimental screening efforts as well, for more focused experimental screens 

or smarter library design that does not necessarily require HTS infrastructure. Since a detailed 

listing of virtual screening software is outside the scope of this review, we point to a recently 

published work with an exhaustive collection of online virtual screening tools [7]. In contrast 

to stand-alone software suites, these are less customizable webservers, representing a good 

starting point for non-expert practitioners. 

Large-scale filtering of physically available or synthetically accessible compound databases is 

most effectively realized using molecular descriptors. Molecular descriptors are numerical 

values that encode various features/characteristics of compounds, ranging from core physico-

chemical properties like molecular weight or lipophilicity (usually expressed as logP, where P 

is the octanol-water partition coefficient) to more intricate topological descriptors like the 

Randic index [8]. They can be efficiently calculated even for large databases, and therefore they 

are ideal choices to define filtering criteria to cut down on dataset size prior to the more 

computationally expensive screening steps. Since the well-known “rule of five” by Lipinski et 



al. [9], many descriptor-based filtering rules have been implemented to produce ligand sets 

focused by molecular size (chiefly, drug-like, lead-like and fragment filters, corresponding to 

various stages of early drug discovery), with some prominent examples collected in Table 1. It 

is worth to note that most of these rules utilize the molecular weight as a proxy for compound 

size, but recent trends have realized the superiority of the number of heavy (non-hydrogen) 

atoms for this purpose. For example, in our recent work [10] we apply only this criteria to 

capture the fragment size range defined by Murray and Rees [11]. Another important group of 

filtering rules aims to assess compound “quality”, i.e. the reliability of certain compound classes 

when they show up as screening hits (Table 1). In contrast to the descriptor-based REOS filters, 

the PAINS (Pan-Assay Interference Compounds) rules of Baell and Holloway explicitly define 

certain substructure classes that frequently show up as false positives in screening campaigns 

[12]. These substructure filters have been canonicalized as a “must” in modern VS efforts: most 

current molecular modeling/cheminformatics software offer a convenient way to remove 

PAINS from screening sets, and certain journals explicitly require this [13]. The issue of PAINS 

was even highlighted in a witfully illustrated comment in Nature [14]. In addition to the 

mentioned, more wide-spread filtering rules, descriptor-based scoring schemes/multi-criteria 

optimization methods can be used to compile focused libraries against prominent target classes, 

such as GPCRs [15] or kinases [16]. Since multi-criteria optimization is a very popular 

approach in drug discovery in general, we can point the reader to excellent reviews on the topic 

[17–19].  

Table 1. Some of the most well-known filtering rules for virtual screening/library design 

 Rules1,2 Reference 

Size-based rules 

Drug-like 

150 <= MW <= 500 

logP <= 5 

rotB <=7 

PSA < 150 

Hb_donors <= 5 

Hb_acceptors <= 10 

Lipinski et al. [9] 

“Rule of 5” 

 

160 <= MW <= 480 

-0.4 <= logP <= 5.6 

20 <= N_atoms <= 70 

40 <= MR <= 130 

Ghose et al. [20] 

 𝑄𝐸𝐷 = 𝑒
1
𝑛
∑ ln𝑑𝑖
𝑛
𝑖=1  

Bickerton et al. [21] 

“Quantitative estimate 

of drug-likeness” 

(QED) 

Lead-like 

250 <= MW <= 350 

logP <= 3.5 

rotB <= 7 

Teague et al. [22] 

Fragment 

MW <= 250 

logP <= 3.5 

rotB <=5 

Carr et al. [23] 

 

MW <= 300 

logP <= 3 

Hb_donors <= 3 

Hb_acceptors <= 3 

Congreve et al. [24] 

“Rule of 3” 

 



rotB <=3 

PSA <= 60 

 

10 <= N_heavy <= 16 

140 <= MW <= 230 

0 <= logP <= 2 

Murray and Rees [11] 

Quality-based rules 

REOS 

200 <= MW <= 500 

-5 <= logP <= 5 

Hb_donors <= 5 

Hb_acceptors <= 10 

-2 <= f. charge <= 2 

rotB <= 8 

15 <= N_heavy <= 50 

Walters and Namchuk 

[25] 

“Rapid Elimination of 

Swill” 

PAINS 

SMARTS patterns for 

substructure filter 

families A (16), B (55) 

and C (409) 

Baell and Holloway 

[12] 

“Pan-Assay 

Interference 

Compounds” 
1 MW: molecular weight, logP: (calculated) logarithm of the octanol-water partition coefficient, 

rotB: number of rotatable bonds, PSA: polar surface area, Hb_donors/acceptors: number of 

hydrogen-bond donor/acceptor groups, N_atoms: number of atoms, MR: molar refractivity, 

di: desirability functions based on eight pre-defined descriptors, N_heavy: number of heavy 

(non-hydrogen) atoms, f.charge: formal charge 
2 Optional criteria are marked with italics. 

In the last ten years, the driving force behind the development of VS methodology was the 

possibility of accessing larger and larger chemical spaces. While the chemical space of possible 

“druglike” molecules (MW <= 500) is estimated to be in the order of 1060 compounds [26, 27], 

“traditional” approaches enabled access to 105-106 compounds in big pharma for HTS, and 106-

107 compounds for the virtual screening of physically available, in-stock compounds. The 

research community (compound vendors, big pharma, as well as academic groups) has realized 

that it is possible to tap into chemical spaces of 108-1010 compounds by systematically 

generating virtual compound databases through the combination of existing chemical building 

blocks with robust chemical reactions [28]. Such databases of synthetically easily accessible 

compounds include vendor databases like Enamine’s REAL (readily accessible) database [29] 

and aggregators such as Mcule’s ULTIMATE [30], or the latest version of the popular ZINC 

database [31]. This approach was taken even further in big pharma, starting with the reaction-

driven chemical space generated at Pfizer [32], with recent proprietary virtual libraries reaching 

up to 1020 compounds [33]. It is worth to note that even larger chemical spaces are conceivable 

based on a purely rule-based (“whatever is correct on paper”) approach, without regard to 

synthetic accessibility: the latest iteration of the Reymond group’s generated database (GDB-

17) contains 166 billion (1.66 * 1011) virtual compounds with an upper limit of 17 heavy atoms 

[34]. Figure 1 summarizes the general hierarchy of chemical spaces available for virtual 

screening. 



 

Figure 1. General hierarchy of chemical spaces available for VS. In-house datasets typically 

include 103-104 compounds for academic research groups and 105-106 compounds for big 

pharma. In-stock commercially available compounds typically list 106-107 compounds on major 

aggregator sites. The scope of on-demand commercial compounds is quickly growing; currently 

it is in the magnitude of 108-1010 compounds. Virtual chemical space is practically unlimited 

and can only be quantified with certain constraints (e.g. 1060 compounds with MW <= 500, or 

1.66 * 1011 compounds with max. 17 heavy atoms). 

In the meantime, the computing power has increased steadily: high-performance computing 

(HPC) infrastructure is now widely available from commercial providers such as Amazon AWS 

or Google Cloud, and through funding agencies, as in the case of PRACE [35]. To keep up with 

the heavier workloads of ever larger virtual screens, the popular docking software Autodock 4 

was extended to GPU infrastructure, providing speedups of multiple orders of magnitude in 

comparison to the traditional CPU version [36]. In fact, a recent application has showcased the 

possibility to dock one billion compounds in a single day with Autodock-GPU, on HPC 

infrastructure [37]. Guidelines for large-scale docking based on the DOCK software and the 

ZINC database were recently published as well [38]. Similar speedups are observed for 

FastROCS [39], the GPU-based version of the popular shape similarity screening software 

ROCS (Rapid Overlay of Chemical Structures) [40, 41], and computationally efficient 

algorithms for pharmacophore screening were also reported [42], and even integrated with the 

ZINC database [43]. These advances resulted in the possibility to screen libraries in the 

magnitude of 100 million compounds or even more: the term “ultra-large virtual screening” 

was coined to distinguish these efforts from the earlier generations of VS methodologies. A 

recent opinion piece by Derek Lowe nicely illustrates the general progress of this field as a 

delicate balance between the increasing computational demand and new, more efficient 

algorithmic ideas [44]. The recent open-source software VirtualFlow provides a flexible 

platform for ultra-large virtual screens with support for the most popular file formats and 

multiple docking algorithms [45]. A recent review by Murugan et al. provides a summary of 

parallelized docking software, suitable for high-performance computing – along with an 

introduction to different software parallelization schemes and an outlook towards the future of 

quantum computing in virtual screening [46]. Successful applications of ultra-large screening 

were reported to result in high-affinity binders of the AmpC β-lactamase (AmpC) and the D4 

dopamine receptor [47], while the synthon-based V-SYNTHES approach links the library 

generation and screening steps to achieve the scale of 11 billion screened compounds, yielding 

hit rates around 30% and nanomolar hits against cannabinoid receptors and the ROCK1 kinase 

[48]. Screening the leadlike subset of the ZINC15 database (235 million compounds [49]) has 

resulted in the identification of potent, noncovalent inhibitors of the SARS-CoV-2 main 

protease [50]. It is worth to note that ligand- and structure-based virtual approaches (such as 

docking, shape screening and pharmacophore screening) can be flexibly combined to result in 

stepwise [51] or parallel [52] virtual screening workflows, although to our knowledge this is 



not yet widespread in ultra-large screens. We should note that consensus screening strategies 

can also be realized on the level of considering multiple scoring functions in docking-based 

virtual screening workflows [53, 54]. 

Another strong trend in virtual screening, as well as research in general, is the adaptation of 

artificial intelligence and machine learning methodologies. In structure-based virtual screening, 

the recent introduction of AlphaFold was a major game changer, providing accurately predicted 

protein structures by tackling the protein folding problem [55, 56]. In the meantime, machine 

learning is already heavily rooted in classification/regression problems concerning targets of 

general interest, such as ADMET targets [57], and deep learning methodologies are gaining 

popularity in ligand-based and structure-based virtual screening as well [58]. Another popular 

usage of AI methods in virtual screening is to cut back on the computational demand of docking 

by training deep learning models to predict the docking scores, thus bypassing the more 

demanding docking step for a large portion of the database (the “low-scoring” ligands) [59, 60]. 

A prominent platform, termed Deep Docking was contributed recently by the Cherkasov lab 

[61]. The Deep Docking workflow was demonstrated by the discovery of new SARS-CoV-2 

main protease inhibitors by the virtual screening of over 40 billion compounds [62], and an 

instructive introduction to this methodology was published earlier this year in Nature Protocols 

[63]. Another recent software is MolAICal, which implements deep learning tools to tackle the 

3D drug design problem through a different concept: a deep learning model is trained on 

experimental data from the PDBbind database [64], and applied prospectively to design 3D 

ligand structures inside the binding pocket, thus realizing an AI-enhanced solution for de novo 

design [65]. 

One frequently criticized aspect of machine learning models in general is their lack of 

interpretability: while “black-box” models may be successful in predicting new candidates, they 

offer little in terms of the rationale that could be provided to support further decision making. 

Additional limitations of the most mainstream machine learning concepts are sensitivity to their 

training input (i.e. usually they will be reliable to predict one specific bioassay, but not “mixed” 

results of the same end-point determined with different assay conditions), and the lack of multi-

target prediction within the same model. To deal with these limitations, an emerging trend in 

recent years has been the application of perturbation theory [66], combined with machine 

learning (PTML). Here, different assay conditions and targets can be incorporated into the 

model through the definition of the appropriate perturbation theory operators [67]. The method 

was most prominently demonstrated by the González-Díaz and Speck-Planche groups, with a 

wide range of applications in multi-target disease conditions like Alzheimer’s disease [68], 

oncology [69, 70] and multi-strain antituberculosis drugs [71], and in even more complex 

systems, such as metabolic reaction networks [72]. 

Altogether, we presume that AI methods will gain even more ground in the close future, parallel 

to the increasing size of VS datasets. 

3. Experimental screening 

For decades, the development of high-throughput screening technologies was driven by 

miniaturization. Accessing smaller sample volumes, while maintaining accuracy, translated 

into the possibility of larger screens, at better cost-to-volume ratios. In fact, high-throughput 

screening has already reached maturity in this aspect in the recent decade, when acoustic droplet 

handling instruments have pushed down the sample volumes of previously high-consumption 

techniques, such as protein crystallography, into the nanoliter scale [73]. Together with the 



previously unmatched global collaborative research efforts launched after the COVID-19 

outbreak, these advances have contributed to the democratization of accessing high-end 

screening instrumentation by academic research groups, through initiatives like COVID 

Moonshot [74]. COVID Moonshot has resulted in successful X-ray fragment screens against 

multiple SARS-CoV-2 viral targets, with compound libraries contributed by research groups 

all over the world [75, 76]. Similar collaborative screening efforts have resulted in the first 

inhibitors of novel oncotargets, such as OTUB2 [77]. These examples fit well into the overall 

trend of HTS shifting from a closed and proprietary effort towards a collaborative activity 

within the pharma sector [78]. At the same time, somewhat counterintuitively, the number of 

screened compounds per HTS project seemed to decrease in the past decades [79], possibly due 

to the advances in smarter library design, and higher-quality HTS data. It is also noteworthy 

that HTS has found applications outside of drug discovery as well, such as in biotechnology, 

for the design of industrial microorganisms [80]. 

With access to nL sample volumes, the past decade has brought forth serious advancements in 

increasing HTS data quality. One prominent trend is the development of quantitative HTS 

(qHTS) methods, where data reliability is enhanced by incorporating concentration-dependent 

measurements as part of the primary HTS campaign [81]. Quantitative HTS has since been 

implemented into major, public screens such as the Tox21 initiative [82], and data 

analysis/fitting methods have been fine-tuned to robustly handle the quality control of qHTS 

results [83, 84]. In the meantime, the focus of HTS screens has shifted from mechanistic (single-

target) towards phenotypic screening. Phenotypic screens typically employ cell-based 

endpoints to maximize the biological relevance of the resulting information [85] and therefore, 

they have no real alternative in virtual screening. While the mechanism of action of the resulting 

hits is obviously less clear, the success of phenotypic drug discovery was demonstrated by first-

in-class medicines [86], exemplified by novel treatment options against spinal muscular atrophy 

[87], cystic fibrosis [88] and hepatitis C [89]. Methodologies were adapted to simulate tumour 

microenvironments in qHTS settings, as well [90]. Phenotypic screens have found successful 

applications in the drug discovery against infectious diseases [91], including SARS-CoV-2 

[92]. Still, phenotypic HTS poses considerable challenges in hit validation and target 

deconvolution, which might discourage pharma companies from implementing this 

methodology [93, 94]. There have also been major paradigm shifts as well, including the 

development of human organoids: stem-cell derived 3D cell culture systems that recreate the 

architecture and physiology of human organs [95, 96]. At the same time, high-content screening 

techniques apply automated microscopy with quantitative image analysis for the high-

throughput, quantitative analysis of cellular phenotypes [97]. 

HTS has benefited from innovative new technologies as well, such as the application of DNA-

encoded libraries (DEL) [98]. First conceptualized in 1992 [99], the DEL technology has 

reached its maturity in the past decade, with the advent of the necessary technological advances 

[100]. DELs contain small molecules, which are individually coupled to unique DNA 

sequences, acting as “molecular barcodes”. The library is tested simultaneously in the same 

vessel, with the protein target immobilized and then incubated with the library members (DEL 

selection), which may approach billions of unique compounds, unlocking access to vast 

chemical spaces [101]. After different washing steps to remove non-binders, the most active 

binders are recovered by suitable elution procedures and their “barcodes” are read out by 

decoding their respective DNA tags, using high-throughput DNA sequencing after a PCR 

(polymerase chain reaction) amplification step (Figure 2) [102]. Significant efforts have been 

dedicated to perfecting the DEL technology, including the development of DNA-compatible 



(“on-DNA”) chemical reactions [103], as well as data analysis platforms [104]. More recently, 

DEL selection was made available on cell surfaces, and inside of living cells [105].  

 

Figure 2. General drug discovery workflow employing DEL libraries. The library is 

constructed by coupling small molecules to unique DNA tags. During experimental screening, 

some ligands are bound to the target protein (hits). Hits are detected by amplifying the 

corresponding DNA tags with a PCR reaction, and subsequently read out by DNA sequencing. 

Afterwards, the hits are validated and progressed to preclinical optimization and, ideally, 

clinical trials. Reprinted with permission from Gironda-Martínez et al. ACS Pharmacol. Transl. 

Sci., 2021, 4, 1265–1279. Copyright © 2021 American Chemical Society. 

Finally, HTS was not exempt from the major scientific trend of the recent years, i.e. the 

expansion of artificial intelligence (AI). In high-throughput screening, the main entry point of 

AI-driven technologies is the design of smarter screening campaigns. Instead of screening the 

full deck of available compounds, machine learning methods can be applied to conduct iterative 

screening campaigns, where a smaller batch of compounds is tested and the results are fed into 

a machine learning algorithm that recommends structural or biological analogs of the 

discovered hits to be tested in the next batch [106]. By iteratively repeating these steps, the 

majority of the active compounds can be retrieved by screening less than half of the full 

compound stack in as little as three to six iterations. In another example reported by Novartis, 

screening approx. 1% of the full collection in ≤ 10 iterations retained diverse compounds 

belonging to the top 0.5% of the most active compounds [107]. With more iterations, iterative 

screening can identify highly active molecules even in the (relatively common) case, where the 

initial set contains few or no actives [108]. 

4. Integration of virtual and experimental screening 

Various strategies exist for combining the advantages of virtual and experimental screening, 

although not all of them are employed to the same extent. In this section, we aim to showcase 

these possibilities on selected case studies of recently published hit discovery projects, mostly 

against prominent oncotargets. 



Parallel screening 

Parallel screening means the application of more screening methodologies on the same 

chemical library, independently of each other. Since the main goal of virtual screening is usually 

the rationalization of the capacity and efforts spent on experimental screening, employing a 

virtual and an experimental setup in parallel cannot be considered a typical concept. There are 

occasional examples nonetheless, mostly with the aim to provide a methodological comparison 

on the advantages and complementarities of these methods. One such example is the discovery 

of new inhibitors of the CDP-ME kinase (IspE), an antibacterial target [109]. Here, the authors 

have used their in-house virtual library of over 4 million compounds for a stepwise virtual 

screening cascade, finally purchasing and testing 14 compounds. In parallel, they have 

submitted a focused kinase-specific library of over 6,000 compounds for experimental 

screening. In addition, the HTS library was also submitted to virtual screening. Ultimately, 

besides identifying several new IspE inhibitors, the authors have dedicated a detailed discussion 

to the two methodologies, including the comparison of the retrieved hits by their chemical 

structures, as well as their ranks in the two hitlists. We also point to a classic example from the 

Shoichet lab [110], but we refrain from a more detailed summary here, as it was reviewed earlier 

[4]. 

In contrast to the above scenario, the parallel application of orthogonal virtual screening 

methodologies is more frequent. Here, the aim is usually to retrieve more robust results, for 

example by the consensus of two or more different virtual screening concepts, such as ligand 

docking, pharmacophore screening or shape screening. In our recent work, we have applied the 

three mentioned methods for the discovery of new inhibitors of the MELK kinase from our in-

house compound library [52]. MELK (Maternal Embryonic Leucine-zipper Kinase) is an 

oncotarget with diverse functions in cellular processes, which was observed to be overexpressed 

in many human cancers [111]. Our efforts have resulted in the discovery of several new MELK 

inhibitors, with six of the primary hits sharing the same 1,2,4-triazolo[1,5-b]isoquinoline 

scaffold. Further exploration of the structure-activity relationship (SAR) of this series finally 

led to the identification of a submicromolar hit [52]. From the nine primary hits, five have 

resulted from a consensus of all three modeling concepts, while four of them were nominated 

by various combinations of two screening concepts. While the application of consensus 

screening is inexpensive for small libraries, it requires more thorough consideration for ultra-

large screening. Nonetheless, with access to GPU workstations and HPC infrastructure, this is 

now feasible [37]. In fact, an early example was already published at the end of last year, where 

a Deep Docking workflow was implemented to screen 40 billion compounds with a consensus 

of five mainstream docking algorithms, resulting in the discovery of new SARS-CoV-2 main 

protease inhibitors [62]. 

In addition to multiple screening concepts and multiple docking programs, parallel virtual 

screening can be realized on the level of multiple scoring functions as well (consensus scoring), 

as exemplified by the work of Liao et al., which resulted in the first-in-class STAT5 inhibitor, 

IST5-002 [112]. Signal transducers and activators of transcription (STATs) are a family of 

seven transcription factors with key roles in intracellular signaling, recently pursued as 

promising oncotargets in diverse indications, such as leukemia [113]. So far only a handful of 

STAT5B inhibitor chemotypes were described [114], which primarily act by interfering with 

STAT5B dimer formation via binding to its SH2 domain [115]. In the above mentioned 

example, the authors have used multiple scoring functions (molecular mechanics energy, 

surface area and others) of the FlexX docking software to select 30 virtual hits by consensus, 

whose testing ultimately resulted in the micromolar inhibitor IST5-002. 



Focused screening 

In focused screening, computational approaches are applied to cut back on the demand of 

experimental testing by compiling focused compound libraries from the physically (or 

commercially) available compound pool. This includes various possibilities by mostly ligand-

based (and occasionally protein-based) screening methods, or their combinations.  

A typical area for the use of focused libraries is kinase drug discovery. Protein kinases are a 

family of over 600 human enzymes [116], whose core function is intracellular signaling, 

through the phosphorylation of specific sidechains of protein substrates [117].  Their key role 

in signaling eventually nominates most kinases as a therapeutic target against some form of 

disease, mostly oncological and autoimmune disorders that stem from abnormal signaling 

[118]. Since the source of phosphoryl groups is uniformly the adenosine triphosphate (ATP) 

molecule, the most important concept for kinase inhibition is the use of ATP-competitive small 

molecules – although other approaches also exist [119]. ATP-competitive binders are well-

characterized from a structural/topological point of view, therefore several approaches are 

available to compile kinase-focused molecular libraries. These include descriptor-based 

approaches relying on multi-criteria optimization rules [16] or the statistical characterization of 

kinase-like descriptor space [120], as well as fragment-based approaches based on the 

characteristic molecular recognition patterns between small-molecule kinase inhibitors and the 

conserved hinge region of kinases [121]. The concept was successfully applied in virtual 

screening campaigns against diverse kinase targets, such as Janus kinases (JAK) [122, 123] or 

inositol phosphate kinases [124], and such libraries are offered commercially by several 

compound vendors. A collection of guidelines and protocols for kinase library design was 

published recently [125]. 

Focused libraries can be compiled based on more target-specific concepts as well. In another 

effort to discover inhibitors of the above mentioned STAT5 transcription factor, Natarajan and 

colleagues have compiled a library of virtually O-phosphorylated natural products [126]. Here, 

the authors have exploited the easy synthetic access to O-phosphorylated natural products, as 

well as the heavily conserved, core recognition motif between the Arg618 sidechain of the SH2 

domain binding site and the phosphotyrosine moiety of the STAT5 substrate sequence. They 

have collected a library of suitable natural products and implemented an algorithmic step to 

modify their SMILES strings by adding an O-phosphoryl group to their phenolic moieties. The 

resulting virtual compounds were used for docking, and nine selected virtual hits were 

synthesized by a two-step phosphorylation/debenzylation process starting from the 

unphosphorylated, commercially available analogs. The work has ultimately resulted in Stafia-

1, the first inhibitor of STAT5A with selectivity over its close homologue STAT5B [126]. 

In the traditional sense, focused libraries aim to provide enhanced hit rates against a specific 

target or target class, as seen above. However, the same methodologies can be customized and 

applied for an inverse concept, in which the goal is to provide a sort of “general utility” 

compound library, which would maximize the chances of finding hits against any protein target, 

by the experimental screening of a strongly limited number of compounds. Evidently, this idea 

is most feasible for the design of fragment libraries, due to the more manageable size of the 

fragment chemical space. Pharmacophores are ideal representations of the structural diversity 

of the 3D pattern of interacting features (H-bond donors, acceptors, ionic centers, etc.) that are 

present in a fragment-sized molecule. We bring two examples for recent works that have 

applied the concept of pharmacophores for fragment library design. In the F2X libraries 

introduced by Wollenhaupt et al. for crystallographic fragment screening, commercially 



available fragments were clustered based on their 3D shape and pharmacophore similarity 

calculated with the ROCS (Rapid Overlay of Chemical Structures) method, to yield a small 

library of representative fragments with diverse pharmacophore arrangements [127]. The 

method was validated against two targets with excellent hit rates. In the meantime, we have 

developed a library design method (SpotXplorer) with a different concept: we have collected 

experimentally validated pharmacophore arrangements from publicly available fragment-

protein complexes and compiled a fragment library with maximized coverage of the 

representative 2- and 3-point fragment pharmacophores [10]. The resulting library of 96 

fragments have yielded diverse hits against several classes of target proteins, including the two 

SARS-CoV-2 protein targets. In both cases, the objective was to reach diversity within the 

library, as opposed to the above examples where an overall similarity of the compounds is 

implied, on the level of descriptors or substructures. 

Sequential screening 

Sequential screening aims to balance the cost vs. accuracy of computational methods, or cost 

vs. relevance of experimental screening methods. Sequential workflows apply gradually more 

expensive and more accurate steps to a gradually smaller pool of compounds, eliminating a 

large portion of the screening deck at each step, and progressing a fraction of the best 

compounds into the next step. 

Our recent work on SETD2 inhibitors nicely illustrates the concept [51]. SETD2 is a histone 

methyltransferase that was recently established as a new oncotarget, primarily against certain 

types of leukemia [128, 129]. So far, only a handful of nucleoside analog natural products were 

reported as SETD2 inhibitors, which prompted us to explore a wider chemical space in search 

of new compounds. Our hit discovery workflow started with a commercial library of close to 6 

million compounds and included gradually more accurate screening methods to cut down on 

computing time, while retaining the best candidates for the next step (Figure 3). This started 

with a PAINS filtering step to remove interference compounds (cf. section 2), then a general 

and permissive substructural pattern (extracted from known inhibitors) was used to shrink the 

compound pool by an order of magnitude, followed by a pharmacophore screening step to the 

same effect. Ligand docking itself has further reduced the number of compounds, from which 

the best unique molecules were visually inspected for their predicted binding poses, and 

clustered based on their chemical diversity. We should note that the calculations were 

performed on a single workstation with 8 CPUs in approx. 5 days; without the early filtering 

steps, the docking step would have taken years on the same infrastructure. The stepwise logic 

was kept in experimental testing as well: here, the selected 22 virtual hits were first evaluated 

in an enzyme-based assay format and only the three best compounds were progressed to the 

more expensive and laborious cell-based characterization. One of the compounds clearly stood 

out and was reported as the primary hit of this work. 



 

Figure 3. Stepwise screening workflow to discover new SETD2 inhibitors. From each step, a 

smaller fraction of the compound pool is progressed to the next step. (The figure was adapted 

as a modified version of Figure 3A from our recent work [51], © 2021 by the authors, licensee 

MDPI, Basel, Switzerland, under the Creative Commons Attribution (CC BY 4.0) license.) 

Other works employ stepwise protocols with different screening steps, for example Castillo-

González et al. have included rigorously developed QSAR models as an early filtering step in 

the discovery of G-quadruplex (G4) stabilizer ligands [130], reporting an excellent hitrate of 

23.5%. Similarly, a COVID-19 drug repurposing study has demonstrated the utility of shape 

similarity as an early filtering step, and ultimately resulted in the discovery of several existing 

drugs with anti-SARS-CoV-2 activity in human lung cells [131]. The steps of a sequential 

workflow can represent more subtle methodological differences. The recent work of Zhang et 

al. employed a sequential workflow of different docking steps to discover new inhibitors of 

STAT3, another member of the STAT transcription factor family mentioned above [132]. A 

commercial compound library was docked to the STAT3 binding site first by DOCK 4.0 [133], 

then the top 10% was promoted to a second round of docking by Glide SP (single precision 

mode) [134, 135], then the top 500 molecules were docked again by Glide XP (extra precision 

mode) [136], representing gradually more sophisticated docking steps. After the experimental 

testing of 100 molecules, the work has resulted in the discovery of a series of benzothiazole-

based STAT3 inhibitors. 

In experimental screening, a sequential workflow is generally used to minimize costs. While 

screening larger libraries, it is customary to carry out a primary screening with one 

concentration of the candidate compounds (in duplicate in triplicate) and then advance the 

primary hits to more thorough characterization by measuring their dose-response curves or 

promoting them into higher-level, mostly cell-based biochemical experiments. This is 

considered a default practice and will not be further illustrated here. 

Iterative and integrated screening 

Iterative screening follows the same philosophy as sequential screening, with the key difference 

that in iterative screening, results from a more advanced step are fed back to an earlier step, in 

order to increase overall performance and pick up candidates that might have been left out in 

previous iterations. In terms of virtual screening, a typical example of this is the Deep Docking 

workflow mentioned above, where “true” docking scores are fed back to the neural network in 

order to enhance the predictive capability and thereby the overall performance of the deep 

learning model [61]. The improved model is then used to nominate another iteration of 

compounds into the docking step. 



In the interplay of virtual and experimental screening, the experimental results that are 

generated from the compounds selected in the first round of virtual screening can be used to 

iteratively refine the VS methodology and promote new hit compounds in subsequent iterations. 

The VS methodology may be the same, or different, than in the earlier iterations. While some 

authors use the terms “iterative” and “integrated” interchangeably, others distinguish between 

the two by specifying that in the latter, the computational and experimental methodologies are 

integrated more closely within the hit retrieval process. One example of an integrated workflow 

would be to train the primary virtual screening methodology (e.g. a 2D similarity-based method 

or a machine learning model) with existing experimental data, and plugging in the newly 

generated experimental results into later iterations. In fact, a recent methodological paper by 

Miyao and Funatsu provides a detailed, retrospective comparison of available machine learning 

methods for iterative screening [137]. Since the advantages of the past decade have brought 

forth endless possibilities for the interplay of various computational and experimental methods, 

we feel that the line between these terms was blurred, and therefore we will not discuss these 

approaches separately. 

In a recent contribution, the authors compare several approaches to implement 2D and 3D 

virtual screening methods into integrated workflows [138]. In their recurring approach, a 2D 

similarity-based method is trained on existing active compounds and employed as a first round 

of virtual screening. Hits are selected and the results of the experimental testing are used to train 

a 3D ligand-based (e.g. pharmacophore screening) or structure-based (e.g. docking) virtual 

screening method to retrieve a second round of hits for testing. This approach was demonstrated 

on several targets, including the serine protease C1s in a recent example [139]. 

In a paper by Merck, the authors provide a comprehensive overview of integrated virtual 

screening strategies, illustrated on three case studies, corresponding to different scenarios 

regarding the availability of target structures and known active ligands [140]. Their third case 

study details the discovery of tool compounds of a new, non-disclosed immuno-oncological 

target with no known modulators, or structural information at the time of the study. An initial 

set of actives was retrieved by two parallel approaches: i) QSAR models based on the known 

ligands of homologous (25-30% sequence identity) target family members, and ii) a 

pharmacophore model based on known enzymatic substrates of Target A. The initial 

biochemical screen has confirmed 25 and 33 active hits from a set of 4,000 virtual hits (2,000 

for each arm). The activity information of these hits, as well as the inactives, were utilized to 

conduct four rounds of iterative focused screening (IFS) – a technique described by Merck for 

the CNS target alanine–serine–cysteine transporter-1 (Asc-1) [141]. Briefly, the information 

from the previous iteration is fed into three complementary methods (2D QSAR, 3D shape 

screening, activity fingerprints) to retrieve both similar, and structurally distinct additional 

hits. Finally, the study resulted in 19 distinct hit series for a previously underexplored target in 

an impressive timeframe of 6 months. 

5. Conclusion 

Both virtual and experimental screening are indispensable methodologies in the toolbox of early 

phase drug discovery. We have reviewed the current state-of-the-art in virtual and experimental 

screening, concentrating on the advances from the last decade. A main section was dedicated 

to illustrating the main options for the integration of these methodologies in order to increase 

the success rate and cost efficiency of hit discovery. Notably, we find that the field has 

undergone major paradigm shifts in the last ten years. The quick expansion of the accessible 

chemical space necessitates new algorithmic concepts and smarter integration of screening 



methods to discover and utilize novel chemical structures. We envision an even tighter 

integration of the available methodological tools over time, as explained in more detail below. 

Expert Opinion 

Recent studies revealed that experimental and virtual screening contributed to the identification 

of clinical candidates for more than half of the successful preclinical programs. Although 

integrative approaches, such as focused screens were used successfully, more efficient iterative 

protocols utilize the knowledge generated at the repeated cycles of virtual and experimental 

screens. In this scenario, large chemical space can be first focused by virtual screening 

approaches and the resulted subset becomes feasible for experimental testing. The results are 

then available to improve the predictive power of virtual screening tools. Artificial intelligence 

methods can be effectively used to extract and implement this target-specific knowledge that 

can be used to extend the chemical space of previous hits. Experimental screening of this library 

would provide higher hit rates and more diverse chemotypes with better profile. 

During the recent years, a significantly larger part of the chemical space became available. In 

addition to physical compound collections, large virtual compound databases are generated 

using commercially available building blocks and defined sets of robust reactions. Multistep 

virtual synthesis provided large synthetically accessible libraries due to the combinatorial 

explosion. Efficient extraction of synthetic knowledge from laboratory E-notebooks and high 

throughput experimentation used for reaction optimization would provide more and more 

robust reactions. Together with the ever-increasing set of available building blocks, these trends 

support the increased coverage of the chemical space. Efficient virtual screening of these 

libraries needs extended computational capacity and improved algorithms. Virtual screening 

benefits well from the application of GPU clusters and cloud architectures. Better access to 

these hardware resources and further improvements in software parallelization, however, would 

be needed to extend the present boundaries. More effective searching in extremely large 

databases would require new virtual screening methods in both algorithms and implementation. 

Reviewing the recent improvements in experimental screening, we mention only two major 

goals. Quantitative HTS techniques provide more reliable experimental datasets and increase 

the confidence in hit prioritization. Better quality data, however, improves the iterative learning 

curve of computational tools that can be used for virtual screening. This advantage would be 

effectively realized in integrated experimental and virtual screening campaigns, particularly in 

iterative setups. The other important achievement in experimental screening is the increasing 

availability of DNA encoded libraries (DELs). Although the technology is known for more than 

a decade, dramatic improvements in DNA-compatible chemistries resulted in a wide range of 

large DEL collections. Simultaneous developments in DEL selection techniques made DEL 

screening available even in living cells. An important aspect of DEL technologies is the 

democratization of large-scale screening that is now available even in academia. DEL screening 

provides large, annotated datasets of actives and inactives that might be considered as input to 

classification techniques. Developing such tools would be only the first step to utilize DEL 

datasets for virtual screening. Artificial intelligence tools, however, would extend their scope 

further and would connect the DEL space to the synthetically accessible chemical space. 

Considering the differences between the current set of robust reactions and the actual set of 

DNA-compatible reactions, both fields would benefit from further synthetic research. 
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