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ABSTRACT: Molecular dynamics (MD) is a core methodology
of molecular modeling and computational design for the study of
the dynamics and temporal evolution of molecular systems. MD
simulations have particularly benefited from the rapid increase of
computational power that has characterized the past decades of
computational chemical research, being the first method to be
successfully migrated to the GPU infrastructure. While new-
generation MD software is capable of delivering simulations on an
ever-increasing scale, relatively less effort is invested in developing
postprocessing methods that can keep up with the quickly
expanding volumes of data that are being generated. Here, we
introduce a new idea for sampling frames from large MD
trajectories, based on the recently introduced framework of extended similarity indices. Our approach presents a new, linearly
scaling alternative to the traditional approach of applying a clustering algorithm that usually scales as a quadratic function of the
number of frames. When showcasing its usage on case studies with different system sizes and simulation lengths, we have registered
speedups of up to 2 orders of magnitude, as compared to traditional clustering algorithms. The conformational diversity of the
selected frames is also noticeably higher, which is a further advantage for certain applications, such as the selection of structural
ensembles for ligand docking. The method is available open-source at https://github.com/ramirandaq/MultipleComparisons.

1. INTRODUCTION
With the exponential increase in computer hardware capacity,
the application of molecular dynamics (MD) has become an
essential tool in computational chemistry and related studies.
The usage of graphical processing units (GPUs) extends the
feasible length of MD simulations,1 allowing researchers to
simulate processes even in the microsecond time scale.2 While
many disciplines benefit from MD simulations, such as
medicinal chemistry,3 materials science,4 biophysics,5 or
biochemistry,6 this paper focuses mainly on the first one. MD
is commonly used to examine specific events and properties on a
molecular basis, most notably structural changes,7 structural
stability,8 chemical reactions,9 and dynamics of atomic-level
phenomena.4 Coupled with statistical thermodynamics, MD
simulations are able to account for energies of simulation-related
processes, as well.10 Additionally, structures obtained from MD
trajectories aid other computational methods, too. Protein
structures extracted from trajectories help to overcome the
limitations of rigid ligand docking,11 enabling the ligands to fit
into multiple protein structures.12 This approach is commonly
termed ensemble docking13 and was shown to increase the
performance of structure-based virtual screening, a popular
method for early hit discovery in rational drug design.14

Moreover, the stability of these protein−ligand complexes can

be verified also by MD simulations.15 Besides the structural data,
the output trajectories of the simulations require postprocessing
methods to extract valuable results. Common procedures are
simulation event analysis, simulation quality analysis, and
trajectory clustering.16,17 The latter is used frequently to obtain
representative structures of the given trajectory; however, frame
selection and clustering are highly nontrivial tasks, which can be
heavily problem-dependent. The main questions are which
indices should be used for the selection (the most frequent
choice is the root mean squared distance, RMSD) and how the
selection should be made (most different structures or most
common structures). Commercial MD software packages
(AMBERtools, Desmond, NAMD) usually contain built-in
clustering programs;16 however, their performance is hard to
measure, and their applicability for different trajectory formats is
ponderous.
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Therefore, as an alternative to clustering methods, we have
developed a diversity picker based on the recently introduced
extended continuous similarity indices, which requires only the
coordinates of the atoms in the extracted snapshots of the
trajectory and can be implemented easily. The algorithm is
inspired by the diversity pickers commonly applied in
cheminformatics to sample large chemical spaces, usually
based on the use of binary molecular fingerprints.18 The various
versions of the extended similarity indices18−20 have shown
great promise in the problems of diversity selection21 and
exploration of large and various data sets22,23 including complex
biological ensembles.24 The keys to this success are the ability of
the extended indices to quantify similarities between any
number of objects and the fact that they can do so with linear
scaling.

In ref 24, we explored the application of extended similarity
indices to the classif ication of conformations in biological
ensembles. To this end, we developed a novel hierarchical
agglomerative clustering algorithm that successfully distin-
guished between conformations corresponding to different
stages along multiple folding pathways. However, the fact that
we had to start from a clustering step means that this approach
scaled as O(N2). Moreover, we only considered extended
similarity indices defined over binary vectors.24 That is, there
was the need to perform a preprocessing step transforming the
real-valued coordinates into bit-vectors via contact maps. This is
problematic for three reasons: a) this preprocessing step can be
time-consuming, b) it is not clear a priori which residues should
be selected to provide an optimum contact map representation,
and c) there is an intrinsic information loss when we go from
real-valued to binary quantities. In this work, we overcome this
latter deficiency by defining extended continuous similarity
indices. Hence, a novel extended similarity-based algorithm was
developed to efficiently select diverse and representative
structures from long MD simulations. We evaluated the new
method on case studies of MD simulations with different lengths
and system sizes. The obtained trajectories were evaluated, and
its performance was compared with common clustering
algorithms as benchmarks. Notably, the developed algorithm
was used for the postprocessing of a 100 μs long MD simulation
of the SARS-CoV-2 main protease (PDB: 6Y84) to demonstrate
the potential benefits of the extended continuous similarity
indices, including their excellent scalability. The latter is
especially relevant today, as the increase in computational
capacities and access to powerful supercomputers enable access
to unprecedented simulation times, but the efficiency of
postprocessing methods rarely matches the capabilities of the
core simulation programs. As the emphasis of this new method is
on sampling, instead of classifying, the different conformations
do not require any clustering step, which makes it very attractive,
as the overall approach scales as O(N). Furthermore, in this
manuscript, we circumvent all these issues by using a
generalization of the extended similarity indices that is suitable
for real-valued quantities. This means that the only preprocess-
ing required is a simple normalization of the coordinates, that we
can include as many atomic coordinates as possible, and that we
are not losing any information while performing the sampling.
Our method is available open-source at https://github.com/
ramirandaq/MultipleComparisons.

2. MATERIALS AND METHODS
2.1. Extended Continuous Similarity for MD Simu-

lation Data. The analysis of MD data differs from the more

conventional cheminformatic applications of our extended
similarity indices due to the fundamentally different nature of
the input data in both cases. In fact, we regard the recently
introduced extended continuous similarity indices as a set of
new similarity measures altogether, since they include
completely original concepts to allow for the similarity
calculation of an arbitrary number of continuous vectors.20

Nonetheless, we decided to keep the names of the existing
similarity metrics that served as their basis (e.g., Russell-Rao,
Jaccard-Tanimoto, etc.), so that they can be more easily traced
back to the widely known, “traditional” measures. For reference,
the original extended (or n-ary) similarity indices were defined
over dichotomous variables18,21 (e.g., binary molecular finger-
prints), which simplified the connection to the standard binary
indices, such as the Tanimoto coefficient. However, since we are
now dealing with atomic coordinates, we need to be able to
efficiently process real-valued vectors. This also means that our
similarity indices are capable of processing these vectors in other
fields as well.20 The real-valued vectors in this situation demand
two key aspects: first, we need to find a suitable way to normalize
the coordinate values, since the extended continuous indices are
defined over the [0, 1] interval. There are many (in principle,
infinite) ways to perform a normalization, but the nature of this
problem leads to a very natural decision. As noted above, the
ultimate goal of our approach is to select different conformations
that are, at the same time, as representative and diverse as
possible. We also want our selection to be in accordance with
standard approaches used to assess the quality of the frames
selected, which is typically based on the root-mean-square
distance (RMSD) values of the chosen structures. In other
words, our normalization scheme must be consistent with the
RMSD calculation, so the scaling procedure should not interfere
with the selection algorithm. The notion of consistency25−27 is
central to the work with similarity indices and in this particular
case can be expressed quite simply: let {qi(a)} and {qi(b)} be the
coordinates corresponding to any two frames, a and b, then the
normalization function n(qi) must satisfy
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Notice that any function that satisfies this inequality will
preserve the intrinsic ordering of the conformations, so we just
need to find a suitable functional form. Luckily, this can be easily
done by taking
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max mini
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i i (2)

It is critical that the minimum and maximum in the
normalization function are taken over all the coordinates of all
the conformations, which is the only way to guarantee a proper
uniform scaling.

The second key step in the definition of the real-valued
extended indices is how to obtain the analogues of the 1-
similarity, 0-similarity, and dissimilarity counters introduced for
the dichotomous n-ary indices.18,21 There are several variants
that could establish a one-to-one correspondence between the
binary and the continuous case, but once again the nature of the
problem at hand suggests a simple solution. In our recent work
that applied the original extended similarity indices to the study
of the conformational landscape of several biomolecules,24 it was
shown that a simple column-wise sum of the matrix of
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conformations was the best alternative. Hence, this will be the
procedure that we will follow here, with the sum of each column
of the normalized matrix taken as the central elements of the
formalism.20

The first step is then to store the coordinates of each
conformation in a row vector. Next, we arrange all these vectors
in a matrix, where the rows are conformations, and the columns
correspond to the coordinates of each atom. Then we proceed to
normalize the entries in this matrix using eq 2 and generate a row
vector containing the sum of each column of the normalized
matrix. This is the key input required to calculate the extended
similarity of the set of conformations. With this, we can proceed
to classify the entries of the column sum vector in high-content
similarity, low-content similarity, or dissimilarity counters.
Finally, after appropriately weighting these counters, we can
calculate any desired n-ary similarity index.

Figure 1 illustrates the most important steps from the starting
point to the generation of extended continuous similarity
indices. The details of each step can be followed in the
Supporting Information with an example calculation of the
nonweighted extended continuous Rogers-Tanimoto index.
2.2. Diversity Selection with ECS-MeDiv. The diversity

selection algorithm proposed here is rooted in two central ideas
previously explored in unrelated applications of the extended
similarity indices: (i) medoid determination and (ii) selecting
the most diverse structures from a given data set. It has been
shown that the extended similarity indices provide a very
attractive solution to the problem of finding the most
representative element of a set (e.g., the medoid).22,24 This is
done by calculating the complementary similarity of each
element (that is, the extended similarity of the original set minus
the corresponding element) and picking the point with lowest
complementary value. The complementary similarity is a
measure of how “connected” an element is to all others in the
set. A “central” element (e.g., the medoid) will be heavily

connected to the remaining elements; hence, if we remove it and
calculate the similarity of the other points, this value will be low
(compared to the removal of other elements). Consequently, a
low complementary similarity is synonymous with the central
character of an element in the set. This naturally leads to a
ranking of elements, from more representative or “central” to
less representative or “outliers”.

Notice, however, that this ranking is not sufficient for our
present purposes. Selecting only central conformations is a bad
sampling strategy because it will heavily favor native-like
structures, which correspond to a very narrow region of the
conformational space. Meanwhile, sampling just from the outlier
structures means that we are going to miss important low-energy
structures that are close to the native state. These problems
cannot be solved by just using a diversity picker because we
would still need to solve the problem of how to initialize the
algorithm (which structure should we pick first?). That specific
selection must be made reasonably and consistently, otherwise it
can lead to nonreproducible errors and oversampling of outlier
regions of the conformational space.

We approached these problems by combining these
approaches in our Extended Continuous Similarity − Medoid
Diversity (ECS-MeDiv) algorithm. The general strategy is as
follows:

1. Select the medoid of the set as the starting conformation
for the diversity picker.

2. Repeatedly, given the set of conformations already picked
C = {c1,...,cn} select the conformation c′ such that the set
{c1,...,cn,c′} has the lowest possible extended similarity.

2.1 If there are several conformations c′,c″,... that lead to the
same extended similarity when added to the preselected
conformations, pick the one that has the lowest value of
the average binary similarity with all the elements of the
preselected set.

Figure 1. Calculation steps of the extended continuous similarity indices from a database with continuous vectors.
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3. Continue until the desired number of conformations has
been selected (or the conformation pool has been
exhausted).

This algorithm improves upon our Max_nDis picker21

because step 2.1 allows for a more thorough selection of the
diverse conformations by effectively serving as a tiebreaker
between conformations with the same extended similarity with
respect to the preselected set. That is, we still use the
minimization of the extended similarity (step 2) as the driving
force of the algorithm, but step 2.1 adds an extra layer that leads
to an even more diverse set in the end. The focus on the
extended similarity also means that we do not need to generate
the binary distance matrix, hence guaranteeing an efficient global
exploration of all the conformations. Having to calculate a small
(if any) number of binary similarities at each step implies that
the ECS-MeDiv algorithm scales linearly for the selection in
cases like the ones considered here, where one is only interested
in a comparatively small number of conformations (5−10 out of
1000 or 100000). Notice also how by starting from the medoid
(also a linearly scaling step) we ensure a uniform sampling of the
MD trajectories.
2.3. Data Sets. To showcase the utility of our method, we

have performed equilibrium MD simulations on two model
systems (case studies) of medicinal chemistry relevance. The
first system was the SH2 domain of the STAT5B transcription
factor. SH2 domains are small, modular protein units that
recognize phosphotyrosine-containing peptide motifs in a highly
selective manner and are widely utilized in cellular signal
transduction.28 STATs (Signal Transducers and Activators of
Transcription) are a small family of multidomain proteins with

pivotal roles in the regulation of DNA transcription.29 Dimer
formation via the SH2 domain is a primary requirement of
STAT function, and the inhibition of this protein−protein
interaction was identified as a point of pharmaceutical
intervention for several oncological indications, such as acute
myeloid leukemia.30 This is especially relevant when STATs
themselves act as oncogenesis drivers, upon point mutations in
the SH2 domain.29 One such driver mutation of STAT5B,
namely N642H, was recently identified to induce a significant
conformational change in the SH2 domain.31 Our first model
system involved the simulation of the wild-type and N642H
mutant SH2 domains of STAT5B, representing two variants of a
small and relatively flexible protein (Figure 2A).

The second model system is a structure of the 2C9 isoenzyme
of the cytochrome P450 (CYP) protein family of heme-thiolate
enzymes.32 CYPs have key roles in the metabolic processes of
virtually all organisms by catalyzing a vast range of reactions,
including the activation of molecular oxygen. In humans, hepatic
CYP enzymes are the main drivers of drug metabolism,33 with
the 2C9 isozyme being responsible for the hepatic clearance of
12−16% of clinically relevant drugs.34 CYP 2C9 is a highly
relevant ADME (Absorption, Distribution, Metabolism, Ex-
cretion) target, and significant efforts are dedicated to the in
silico prediction of the affinity of small molecules to this
enzyme.35,36 Here, we have simulated the dynamics of the CYP
2C9 isozyme (PDB: 5K7K37) with and without its cocrystallized
small-molecule inhibitor, representing a larger, more rigid
system (Figure 2B).

Finally, we have demonstrated the performance of our
method on a long simulation of an even larger system. To that

Figure 2.Model systems:A)Wild-type (green, PDB: 6MBW) and N642H mutant (cyan, PDB: 6MBZ) structure of the SH2 domain of STAT5B, with
residue 642 highlighted as sticks. In the mutant structure, the uppermost β sheet is disconnected because of the mutation.31 B) CYP 2C9 in complex
with a small-molecule inhibitor (green sticks, PDB: 5K7K).37 This system was simulated in the holo (liganded, “CYP complex”) and apo (unliganded,
“CYP protein”) states, and the heme cofactor (white sticks) was kept in both simulations.C)Dimer structure of the SARS-CoV-2 main protease in the
apo (unliganded) state (PDB: 6Y84). The monomers are shown in different colors. The table contains the number of amino acids, atoms, and frames
for the MD simulations of each model system.
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end, we have downloaded the publicly available, 100 μs
trajectory of the SARS-CoV-2 main protease performed on
the Anton 2 supercomputer38 by D. E. Shaw Research. The main
protease (3CLPro) cleaves the replicated viral polypeptides into
functional proteins, and it was identified early as a potential
antiviral target (Figure 2C).39 Since the outbreak of the COVID-
19 pandemic, it was in the forefront of drug discovery efforts,
from state-of-the-art crystallographic fragment screening
approaches by academia40 to the recent breakthrough of Pfizer
to provide the first approved antiviral drug specifically developed
against COVID-19.41 Here, the simulation of the 3CLPro dimer
serves as a case study to represent the current state of the art in
terms of accessible simulation length on a fairly large molecular
system.
2.4.Molecular Dynamics Simulations. Starting structures

for the four proteins were extracted from the PDB structure
5K7K (CYP complex and CYP protein),37 6MBW (SH2 wild
type, wt), and 6MBZ (SH2 N642H mutant).31 Protein
preparation was performed with Schrödinger Maestro’s Protein
Preparation Wizard.42 For the wild-type and mutant SH2
domain structures, chains B and A were kept, respectively. The
CYP complex structure contains the HEM cofactor and a bound
small-molecule ligand 6RJ, while the CYP protein was created
from the same PDB file with the deletion of 6RJ. System
preparation was carried out with Desmond’s system builder. All
structures were immersed into a minimized, buffer-sized
orthorhombic TIP3P water-box. System neutralization was
achieved by chlorine ion addition. The assigned force field was
set to OPLS3e.43 The resultant solvated systems were relaxed by
Desmond’s relaxation protocol. Molecular dynamics simulations
were performed by Desmond in the NVT ensemble at 298.15 K,
applying Nose−́Hoover temperature regulation.44,45 Two
unbiased MD simulations were carried out for every system
with simulation times of 10 and 1000 ns, respectively. These
correspond to scenarios of a quick and more thorough
conformational sampling by MD. Every trajectory consists of
1000 frames, which were later used for the similarity
examinations and the diversity selection (clustering). The
molecular dynamics simulation of the SARS-CoV-2 main
protease (100 μs) was performed based on the PDB structure
6Y84 on the Anton 2 supercomputer38 by D. E. Shaw Research,
and the trajectory was obtained from their web site:
https://www.deshawresearch.com/downloads/download_
trajectory_sarscov2.cgi/.

All the evaluations and diversity selection studies were based
on the C, Cα, and N atoms of the protein backbone. The x, y,
and z coordinates of these atoms were extracted with an in-
house script, using VMD46 to convert the Desmond trajectory
files into a series of mol2 format structures. The script is available
at https://github.com/ramirandaq/MultipleComparisons.
2.5. Benchmark Clustering of theMD Simulations. The

benchmark clustering was done with (i) the affinity propagation
algorithm, as implemented in Schrödinger Maestro (trj_clus-
ter.py),47 (ii) the hierarchical agglomerative approach,48 and
(iii) the k-means method.49 The latter two are implemented in
the cpptraj module of AMBERtools.16 The number of clusters
was set to 5, 6, 7, 8, 9, and 10, respectively. The representative
frames of the resultant clusters with the C, Cα, and N
coordinates were written out for the similarity calculations. All
the other parameters of the clustering methods were set to their
default values.
2.6. Statistical Analysis. The similarity values calculated

with 16 different extended continuous similarity indices were

given for each system (4) and each simulation length (2). The
data set consists of tables with the x, y, and z atomic coordinates
in the columns and the actual coordinate values throughout the
1000 frames in the rows in a sequential order. The structural
diversity of the MD frames was visualized with the t-distributed
stochastic neighbor embedding (t-SNE) method based on the
atomic coordinates.50 This allowed us to detect the differences
of the traversed conformational space between the simulations
of different lengths.

Analysis of variance (ANOVA) was used for the statistical
comparison of the factors such as the (i) similarity indices (16),
(ii) simulation lengths (2), or (iii) molecular systems (4).
Moreover, we have analyzed the results of the diverse set
selections with ANOVA, as well. STATISTICA 13 software
(TIBCO) was used for the statistical analysis of the data sets. t-
SNE vectors (dimensions) were calculated in the KNIME
Analytics Platform,51 while the figures were created with
GNUplot.52

2.7. RMSD Calculations. The average pairwise root-mean-
square deviation (RMSD) for the given set of selected frames
was calculated using an in-house script, following eqs S1 and S2.
Note that RMSD refers to that average pairwise RMSD value
throughout the publication. The standard deviation (std) was
computed based on the difference between the average pairwise
RMSD and the specific pairwise RMSDs (see eq S3).

3. RESULTS AND DISCUSSION
To explore the applicability of the proposed methodology, we
examined four different biologically relevant systems (further on
referred to as the CYP complex, CYP protein, SH2 wild-type,
and SH2 mutant, cf. section 2.2, Figure 2) with 10 and 1000 ns
long MD simulation lengths. The coordinates of the backbone
atoms (C, Cα, and N) were extracted for the 1000 frames of each
simulation, and the extended continuous similarity indices were
calculated for each system and simulation length. Figure 3 shows
the complete workflow of the study with the most relevant steps.

Sixteen different similarity indices were calculated for each
MD run and evaluated with ANOVA. In the next step, we
applied our diversity picker on the MD simulations for each case
study and compared it to benchmark clustering algorithms based
on the RMSD values. Finally, we showed how the extended
similarity-based diversity selection protocol works on an

Figure 3. Major steps of our workflow to examine and compare the
usage of various continuous similarity indices.
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exceptionally long MD trajectory of the main protease
(3CLPro) of SARS-CoV-2 with 100,000 frames.
3.1. Evaluation of theMD Simulation Results. As a basic

description of the MD simulations, we have visualized the
trajectories on t-SNE plots, where the 1000 snapshots of the MD
simulations, described by the x, y, and z coordinates, are plotted
as data points on a two-dimensional graph (Figure 4). The data
points are colored gradually as the simulation time progresses.
This representation visualizes the sampled conformational space
and gives valuable information on the heterogeneity of the MD
frames during the simulation.

A simulation length of 10 ns is considered fairly short, and
only slight conformational changes are expected during this
period of time. However, it is common to use comparable
simulation lengths for quick, equilibrium conformational
sampling. Comparing the 10 ns long MDs across the different
systems (CYP and SH2), the main differences arise from the size

of the proteins. The SH2 domain consists of 97 residues and is
much more flexible than the CYP systems with around 500
residues and an overall more rigid structure. The 10 ns t-SNE
plots of the CYP systems reveal linearly progressing trajectories,
in which the conformational space is discovered more sparsely
than in the case of the SH2 proteins, where the frames are more
scattered, especially in the case of the N642H mutant.

The 1000 ns simulation length is more suitable for examining
protein dynamics, and overall, more significant conformational
changes are expected in this case. The t-SNE plots of the 1000 ns
simulations show similar trends as the 10 ns ones, with
somewhat poorer sampling and more diffuse but still linear
trajectories for the CYP systems. The degree of scattering is
comparable between the ligand-bound and ligand-free systems,
so the bound ligand does not seem to constrain the dynamics of
the protein. Interestingly, the t-SNE plot of the wild-type SH2

Figure 4. t-SNE plots of the 10 and 1000 ns long MD simulations’ coordinates of the CYP 2C9 protein (A, E), CYP 2C9-ligand complex (B, F), wild-
type (C, G), and N642H mutant SH2 domains (D, H). The data points are gradually colored from blue (first frame) to red (1000th frame) following
the progression of simulation time.
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domain reveals three clusters, while the mutant SH2 domain
assumes several recurring conformational states.

The coordinates extracted from the MD frames were used to
calculate the 16 different, extended continuous similarity indices
for each set of MD simulations. The similarity indices were
merged into one data set, and factorial ANOVA was used for
their comparison in combination with the simulation length as
another factor (Figure 5). Due to the separation of the indices
based on the range of the similarity values (y axis), we have
presented the difference between the MD simulation lengths
with the use of the extended continuous Consonni-Todeschini 2

and Rogers-Tanimoto (always in nonweighted versions, cCT2
and cRT, respectively) separately. As we observe the two
mentioned indices more closely, the difference becomes more
apparent: in both cases, the similarity between the frames is
lower for the longer MD simulations, which is consistent with a
more thorough sampling of the conformational space. Viewing
the similarity of the case studies separately, we can see that the
decrease of similarity is more pronounced for the SH2 domain
simulations, especially for the wild-type protein. The result is in
concordance with the findings in the t-SNE plots, where the

Figure 5. Extended continuous similarity values for the case studies merged: (A) based on the different similarity indices. cCT2 and cRT are
emphasized in B and C, respectively, where the MD simulation length is compared. In the bottom row (D, E), the similarity of the frames for each case
study is plotted separately in both simulation length cases. Similarities, plotted in the figure, are average similarity values with the 95% confidence
intervals (except for the bottom graphs, where single similarity values are compared).
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smaller SH2 domains were shown to be more flexible than the
larger CYP 2C9 protein.
3.2. Diversity Selection of the MD Frames. In this

section, we show the application of the extended continuous
similarity indices for diversity selection, namely, to select 5 to 10
diverse frames out of each MD trajectory. This is a common
practice in modeling studies, producing diverse protein
conformations, e.g., for ensemble docking. We have compared
the performance of our diversity picker to three clustering
algorithms as benchmarks: (i) the affinity propagation algorithm
implemented in the Schrödinger suite (from here on, affprop),47

(ii) the hierarchical agglomeration approach (hieragglo), and
(iii) the k-means method (kmeans) implemented in the
AMBER tools simulation package. All 16 extended continuous
indices were applied for the diversity selection with the ECS-
MeDiv method. In each case, we had to select the most diverse
5−10 out of the 1000 frames of trajectory. Finally, root-mean-
square distance (RMSD) values were calculated between each
pair of the selected frames, and the RMSD values were compared
with ANOVA. The merged data set for the ANOVA comparison

contained the RMSD values of each selection case (5−10
diverse frame selection), with each similarity indices (16 + 3
benchmarks) and for all the four case studies. We used RMSD
values as a performance parameter because it is the most
commonly used indicator in MD and 3D molecular modeling in
general. Here, larger RMSDs are better, since ideally our aim is
to select structurally diverse frames to better represent the
complete conformational space of the protein. In terms of
RMSD, two extended continuous indices, namely cCT2 and
cRT, were in a comparable range with the hieragglo benchmark
algorithm, although the 95% confidence intervals were very wide
in each case (Figure 6A). The reason for the wide confidence
intervals is clear: the range of the RMSD values is different for
the 10 and 1000 ns simulation lengths (Figure 6B), with the
differences between the indices being larger at the longer
simulation length, as we would expect. Therefore, we have
included the simulation length as a factor in the next step, along
with the similarity indices and the case studies. (We have
selected the most promising cCT2- and cRT-based ECS-MeDiv
algorithms in Figure 6C for clarity.) All the applied factors have

Figure 6.Comparison of the diversity selection methods with ANOVA. Average RMSD values of the selected frames are plotted on the y axis in every
case. A) The red dotted line highlights the methods with the best performance (their names are highlighted on the x axis). B) The same results are
presented with the simulation length being an additional factor in ANOVA. C) The case studies were added as a third factor for the analysis. (Only the
two best indices are shown for clarity.) Average RMSD values with 95% confidence intervals are plotted in every figure.
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carried statistically significant differences (α = 0.05), and in
seven out of eight cases, cCT2 or cRT could beat all three
benchmark methods. Variances are established based on the
data points corresponding to the selection of 5−10 frames.
Interestingly, the hieragglo algorithm outperformed the other
two benchmark algorithms in each case.

As an additional comparison between the extended similarity
indices and the clustering algorithms, we have rank-transformed
the RMSD results and counted the “wins” (highest RMSD) for
each method. The cCT2-based ECS-MeDiv method dominated
this competition with 12 wins, followed by the cRT-based ECS-
MeDiv and the hieragglo methods with 8−8 wins each. On the
other hand, cRT has the lowest sum of rankings, which means
that usually the cRT-based ECS-MeDiv selection could provide
higher RMSD values for the selected frames than most of the
other indices (see Supporting Information Table S1).

We also compared the calculation time of our two best-
performing methods and the benchmark methods on the 100 μs
SARS-CoV-2 main protease trajectory as a case study for a state-
of-the-art long MD simulation. The affinity propagation
algorithm was omitted as it showed poor performance in the
previous studies. Due to highly increased calculation times, we
have compared the results only for the selection of 10 frames out
of 100,000. Table 1 shows the average RMSD values between
the selected 10 frames for the cRT- and cCT2-based ECS-
MeDiv selections along with two benchmark methods.

Clearly, our extended continuous similarity-based diversity
selection algorithms performed better, not only providing the
best average RMSD values but also doing so in a drastically more
efficient way. The calculations were 1 and 2 orders of magnitude
faster than the benchmark kmeans and hieragglo algorithms,
thanks to the linear (rather than quadratic) scaling of our
method. Notice that while the hieragglo method came close to
our algorithm in terms of RMSD values, it was the most time-
demanding method.

4. CONCLUSIONS
We have presented the application of the extended continuous
similarity indices as a novel tool to describe the conformational
diversity in a set of structures, such as the frames of a molecular
dynamics simulation. In addition, a new frame selection
algorithm called ECS-MeDiv was developed, and its applic-
ability and performance were demonstrated in diverse frame
selection from molecular dynamics simulations and bench-
marked against state-of-the-art solutions. The extended
continuous similarity indices showed outstanding results in
terms of RMSDs; two out of the 16, namely the cCT2 and cRT,
indices could provide more diverse frame sets than the
benchmark methods. Additionally, comparing the computa-
tional requirements for the frame selection from extremely long
100 μs SARS-CoV-2 main protease trajectory with 100,000

frames showed that the ECS-MeDiv, coupled with the cCT2 and
cRT indices, drastically outperforms the hierarchical agglomer-
ative method. In summary, the developed cCT2- and cRT-based
ECS-MeDiv selection algorithms are suitable for the diverse
selection of molecular structures extracted from MD trajectories.
Moreover, the application of the extended continuous similarity
indices is entirely general, and they can be easily adapted
to describe the similarity of any data set with continuous
values. The algorithm, along with basic usage examples, is
available open-source at https://github.com/ramirandaq/
MultipleComparisons.

5. DATA AND SOFTWARE AVAILABILITY
The Maestro molecular modeling program package and
Desmond are commercial software with paid licenses. The
AmberTools suite is free of charge, and its components are
mostly released under the GNU General Public License (GPL).
The molecular visualization software VMD is available to
noncommercial users under a distribution-specific license.
KNIME, the Konstanz Information Miner, is a free and open-
source data analytics, reporting, and integration platform.
Statistica is a proprietary advanced analytics software package.
The source code of GNUplot, a portable command-line driven
graphing utility, is copyrighted but freely distributed. Sample
calculations and our scripts for the calculation of extended
continuous similarities are available open-source at
https://github.com/ramirandaq/MultipleComparisons.
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