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Besides the simplex algorithm, linear programs can also be solved via interior point methods. The
theoretical background of such algorithms is the classical log-barrier problem. The aim of this note
is to study and generalize the barrier problem using the standard tools of Convex Analysis.
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1. Motivations

The simplex method developed by Dantzig [5, 6] approaches optimum of a given
linear program on the boundary of the feasible set. However, there are alternative
algorithms which find optimum through interior points. Such algorithm appears
first in the paper of Fiacco and McCormick [7], while the systematic study of these
methods can be traced back to Karmarkar [9]. Later Megiddo [12] proved that
Karmarkar’s algorithm relying on projective geometry is equivalent to an interior
point method, which was named central path method by Huard [8]. An excellent
summary on the nonlinear geometry of the central path method is the survey by
Bayer and Lagarias [1, 2]. For further theoretical details and implementation issues,
we refer to Roos, Terlaky, and Vial [14].
It is worth mentioning that the simplex method may require exponential many
iterations as Klee and Minty [11] demonstrated. In contrary, Khachiyan [10] pointed
out that any linear program can be solved in polynomial time with interior point
methods. The first easily implementable such method is due to Karmarkar [9].
The idea behind the central path method briefly is the following. The original
objective function is replaced by a one-parameter family of functions, while the
feasible set essentially remains unchanged. If the perturbed objectives have a unique
optimum for each parameter, then the optimal solutions form a parametrized curve
called the central path. As the parameter shrinks to zero, the perturbed objective
approaches to the original one. Thus the central path is expected to terminate in
the optimal solution of the original linear program.
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In this note, we are going to study the log-barrier problem, the theoretical back-
ground of some interior point methods. The book of Borwein and Lewis [4] contains
it as an exercise. The solution is based on the Fenchel conjugation. A detailed
and alternative approach is presented by Vanderbei [15]. Unfortunately, the rea-
soning is incorrect at a point: The Heine-Borel Theorem is applied in the relative
topology induced by an open subset of Rn. (However, this fact does not affect the
transparency and excellence of Vanderbei’s monograph.) Our approach combines
some ideas of Wright [16] and Vanderbei [15] with the standard methods of Convex
Analysis. The most important tool we have to develop is the recession cone of open
convex sets. This concept is well-known for closed convex sets (see Rockafellar [13]).
The main result, an extension of the barrier problem provides the resolvability of
concave programs in terms of two limit conditions. The most important advantage
of our approach is that the second order test to verify optimality can completely be
avoided by supposing only continuous differentiability on the objective.

2. Basic notions and notations

First we recall some basic facts from Linear Programming and Convex Analysis
which we will use throughout the discussion. Our basic and permanent references
are Vanderbei [15] and Rockafellar [13]. Let X and Y be nonempty sets, and let
D ⊆ X further b ∈ Y . Consider the constrained optimization problem

f(x) 7−→ max, g(x) = b,

where the objective function f : D → R and the constraint g : X → Y are given. We
say that x ∈ X is a feasible solution if x ∈ D and g(x) = b. An element x∗ ∈ X is
called a feasible optimal solution, if it is feasible and f(x) ≤ f(x∗) whenever x ∈ X
is a feasible solution.
In particular, let X = Rn and Y = Rm, furthermore A ∈ L (Rn,Rm) where
L (Rn,Rm) stands for the vector space of all linear maps from Rn to Rm. Then
the pair of special constrained optimization problems

(Primal)
cTx 7−→ max
Ax ≤ b,
x ≥ 0;

(Dual)
yT b 7−→ min
ATy ≥ c,

y ≥ 0

is termed the primal-dual pair in standard form. Here (and in any further analogue
situations) inequalities are meant coordinatewise. The notion of feasible (optimal)
solution remains the same as previously was mentioned. To achieve equality form
in the constraints, we can introduce the slack variables ω ∈ Rm and z ∈ Rn:

cTx 7−→ max
Ax+ ω = b,

x, ω ≥ 0;

yT b 7−→ min
ATy − z = c,

y, z ≥ 0.

It is well-known that the optimality of feasible primal and dual solutions can easily
be checked using the Complementary Slackness Theorem:
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Theorem 2.1. Let x = (x1, . . . , xn)
T and y = (y1, . . . , ym)

T be feasible solutions of
the primal and the dual problems, and let ω = (ω1, . . . , ωm)

T and z = (z1, . . . , zn)
T be

the attached slack variables. Then x and y are optimal for their respective problems
if and only if

x1z1 = · · · = xnzn = 0 = ω1y1 = · · · = ωmym.

Let X be a vector space, and let D ⊆ X be a convex set. We say that f : D → R is
a concave function if, for all λ ∈ [0, 1] and for all x, y ∈ D,

f
(
λx+ (1− λ)y

)
≥ λf(x) + (1− λ)f(y).

If this inequality is strict for all λ ∈]0, 1[ and for all x 6= y, then we speak about
strictly concave function. As it can easily be checked, the set of concave functions
on D forms a convex cone with respect to the pointwise operations. We quote here
the result of Bernstein and Doetch [3]: If a concave function acting on an open,
convex subset of a normed space is locally bounded from below at a point, then it is
locally Lipschitz. In the case of finite dimensional vector spaces this boundedness
property holds automatically. Thus Lipschitz property (in particular: continuity) is
fulfilled without any further restrictions: Any concave function acting on an open,
convex subset of a finite dimensional normed space is continuous.

3. Convex optimization problems

We are going to study the central path in a geometrical point of view. To do this,
we have to introduce first the path in an abstract setting and show its properties in
two lemmas.
Let T and B be nonempty sets. We say that F : T ×B → R fulfills the parametrized
global maximum property if, for all t ∈ T there exists a unique element h(t) ∈ B
such that

F
(
t, h(t)

)
> F (t, x)

holds for all x 6= h(t). In this case, h : T → B is a function, indeed. The function h
and the map F are called the path and its generator, respectively.
Now assume that T is a metric space and B is a nonempty subset of a Euclidean
space E, and consider the next limit conditions for F : T × B → R: For all t0 ∈ T
and for all x0 ∈ B \B,

lim
t→t0
x→x0

F (t, x) = −∞. (1)

For all t0 ∈ T , lim
t→t0

∥x∥→+∞

F (t, x) = −∞. (2)

These requirements on the path generator ensure that the induced central path is
continuous:
Lemma 3.1. Let T be a metric space, and B be a nonempty subset of a Euclidean
space E. If F : T × B → R is a continuous path generator which has the limit
conditions (1) and (2), then the path h : T → B is continuous.

Proof. Assume to the contrary that there exist t0 ∈ T and a sequence (tk) in T
such that tk → t0 whereas h(tk) 9 h(t0).
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Firstly, consider the case when h(tk) is bounded. Without loss of generality we may
assume that h(tk) → x0 ∈ B by the Bolzano-Weierstrass Theorem. If x0 ∈ B, then
the continuity and the maximum property of F imply

F (t0, x0) = lim
k→∞

F
(
tk, h(tk)

)
≥ lim

k→∞
F
(
tk, h(t0)

)
= F

(
t0, h(t0)

)
> F (t0, x0),

which is a contradiction. If x0 /∈ B, then the properties of F and the limit condition
(1) result in the contradiction

F
(
t0, h(t0)

)
= lim

k→∞
F
(
tk, h(t0)

)
≤ lim

k→∞
F
(
tk, h(tk)

)
= −∞.

To complete the proof, we have to discuss the case when h(tk) is unbounded. This
can be done similarly to the previous case, using the limit condition (2).

For special generators, we have monotonicity along the central path:

Lemma 3.2. Let I ⊆ R be an interval, B be a nonempty subset of a Euclidean
space E, c ∈ E, and g : E → R. If the function F : I ×B → R defined by

F (t, x) = cTx+ tg(x)

satisfies the parametrized global maximum property, then g◦h is monotone increasing.

Proof. By the parametrized global maximum property,

cTh(t) + tg
(
h(t)

)
≥ cTh(s) + tg

(
h(s)

)
= cTh(s) + sg

(
h(s)

)
+ (t− s)g

(
h(s)

)
≥ cTh(t) + sg

(
h(t)

)
+ (t− s)g

(
h(s)

)
.

Thus (t− s)g
(
h(t)

)
≥ (t− s)g

(
h(s)

)
follows, and proof is completed.

According to [13, p. 61], the recession cone rec(D) of a nonempty convex subset
D of a vector space X is defined by the set of v ∈ X such that x + αv ∈ D for
every x ∈ D and every real α ≥ 0. The recession cone of a closed convex set in a
Euclidean space is trivial if and only if the set is bounded. As the next lemma shows,
the same statements remain true if D is open and convex. The proof may be traced
back to the facts that for open sets rec(D) = rec(D) holds by [13, Corollary 8.3.1]
and for the property of closed convex sets by [13, Theorem 8.4]. For the sake of
completeness, we provide here an independent and direct approach. We note that
using open sets instead of closed ones will be essential later: The objective’s domain
of the log-barrier problem requires it.
Lemma 3.3. If D is a nonempty, open, convex subset of a Euclidean space X, and
v ∈ X, then the next statements are equivalent:
(i) There exists x ∈ D, such that x+ αv ∈ D for all α ≥ 0;
(ii) For all x ∈ D and for all α ≥ 0, we have that x+ αv ∈ D.
Moreover, D is bounded if and only if rec(D) is trivial.

Proof. Clearly, it suffices to prove the implication (i)⇒(ii). Assume that x+βv ∈ D
holds for some x ∈ D and for all β > 0. Let x0 ∈ D be arbitrary (see Figure 1).
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We may assume that x0 does not lie on the line whose direction is v and passes
trough x. By openness, x0 belongs to D with some neighborhood U . Let y ∈ U
such that x0 ∈ [x, y]. Consider a point w := x0 + αv, where α ≥ 0. Then the
parallel lines (with direction v) determined by x and x0, furthermore the point y are
on the same plane. By the Axiom of Parallels, y determines a line which intersects
the half-line {x + βv | β > 0} at a point z. Then, z ∈ D by assumption (i), and
w ∈ [y, z]. That is, w can be represented as the convex combination of two elements
of D. Since D is convex, w ∈ D follows.

The necessity of the second statement is clear. Conversely, assume to the contrary
that rec(D) is trivial while D is unbounded. Then, D contains an unbounded
sequence (xk) (see Figure 2). By (ii) and by the openness of D, we may assume that
the closed unit ball with center at the origin is contained in D. Similarly, we may
also assume that (xk) does not contain the zero vector. Define the sequence (vk) by

vk :=
xk

‖xk‖
.

This sequence is bounded since its members are unit vectors. The Bolzano-Weier-
strass Theorem guarantees that (vk) has a limit point v; moreover, we may assume
that vk → v as k → +∞. By the indirect assumption, v /∈ rec(D). Thus,

α0 := sup{α ≥ 0 | αv ∈ D} < +∞.

Furthermore, the convexity of D ensures that αv ∈ D if α < α0 and αv /∈ D if
α > α0. In particular, these properties show that p := α0v ∈ ∂D. Therefore, p /∈ D
since D is open. Consider now the set defined by

C := {α(p− x) | α ≥ 0, ‖x‖ = 1}.
The convexity of closed unit ball provides that C is a convex cone. Clearly, v ∈ C,
and hence vk ∈ C for sufficiently large indices. Thus, xk ∈ p+C if k is large enough.
However, in such cases, p can be obtained as a convex combination of xk and a unit
vector. Both of these elements belong to D, therefore p ∈ D by convexity. This
contradiction completes the proof.
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The last auxiliary tool is an optimum property of constrained problems with strictly
concave objective and linear conditions. Since the statement is well-known, we omit
its proof.
Lemma 3.4. Assume that X and Y are Euclidean spaces, D ⊆ X is a nonempty,
open, convex set, A ∈ L (X,Y ), and b ∈ Y . If f : D → R is a strictly concave
function, and the concave program

f(x) 7−→ max, Ax = b

has a feasible local maximum, then the local maximum is a global one, and the
maximizer is unique.

4. The main results

The main results are presented in two theorems. The first one gives a sufficient
condition for a concave program to have optimal feasible solution. The limit pro-
perties involved guarantee that the “large” values of the objective are allocated in a
compact subset of the domain. In the proof the recession cone plays a key role.

Theorem 4.1. Assume that X and Y are Euclidean spaces, D ⊆ X is a nonempty,
open, convex set, A ∈ L (X,Y ), and b ∈ Y . If a concave function f : D → R
satisfies the limit conditions

lim
x→x0

f(x) = −∞ and lim
α→+∞

f(x+ αv) = −∞ (3)

for all x0 ∈ ∂D and for all v ∈ rec(D), and the concave program

f(x) 7−→ max, Ax = b

has a feasible solution, then it has a feasible optimal solution, as well.

Proof. Let c ∈ R be given, and consider the open sublevel set Lc of the objective
function f :

Lc(f) = {x ∈ D | f(x) > c} = f−1
(
]−∞, c[

)
.

We claim that Lc(f) ⊆ X is open, convex and bounded for all c ∈ R.
The level set is a continuous preimage of an open set, thus it is open in the relative
topology of D. However, D itself is open in the Euclidean topology, therefore Lc(f)
is open in the Euclidean topology of X. If x, y ∈ Lc(f) and λ ∈ [0, 1], then we have
λx+ (1− λ)y ∈ D, and

f
(
λx+ (1− λ)y

)
≥ λf(x) + (1− λ)f(y) ≥ λc+ (1− λ)c = c.

Thus Lc(f) is convex. Finally, assume to contrary that Lc(f) is unbounded. Then
there exists a recession direction v by Lemma 3.3. Clearly, v is a recession direction
for D, as well. Let x ∈ Lc(f) be arbitrary. By the second limit condition, there exists
α > 0 such that f(x + αv) < c. On the other hand, the property x + αv ∈ Lc(f)
implies f(x+ αv) > c, which is obviously impossible.
Now we prove that Lc(f) ⊆ D. To do this, it suffices to verify that ∂Lc(f) ⊆ D.
Assume that this is not the case and let x0 ∈ ∂Lc(f) \ D. Then x0 ∈ ∂D since
Lc(f) ⊆ D holds evidently. Take a sequence (xk) in Lc(f) such that xk → x0.
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The inequality f(xk) > c implies limk→∞ f(xk) ≥ c > −∞, which contradicts to the
first limit property.
Closure does not effect convexity and boundedness, therefore Lc(f) is a convex,
compact set by the Heine-Borel Theorem. The family {Lc(f) | c ∈ R} covers D,
and we have a feasible solution. Thus Lc0(f) intersects the feasible set for some
c0 ∈ R. The intersection, denoted by K, is compact, being the feasible set closed.
By the continuity of f , there exists x∗ ∈ K such that

f(x∗) = max
K

f.

Now take a feasible solution x ∈ D. If x ∈ K, then f(x∗) ≥ f(x) by the choice of x∗.
If x /∈ K, then x /∈ Lc0(f), and hence f(x) ≤ c0. On the other hand, by continuity
again, f(x∗) ≥ c0. In other words, x∗ is a feasible optimal solution of the concave
program.

The second main result is an extension of the log-barrier problem. Observe that
the one-parameter family of the concave problems reduces to a linear program in
standard form if we set t = 0. The previous results ensure that its central path
exists and it is continuous. Moreover, each limit point of its graph represents an
optimal solution of the original primal-dual pair. To check optimality, we do not
need second order tests. Thus, we may assume that the objective is continuously
(instead of twice) differentiable. This is the reason why Lagrange multipliers and
complementary slackness are sufficient for us.
To formulate the statement, we shall need the concept of standard projections. Let
X be a Euclidean space and consider its standard base. If 1 ≤ k ≤ dim(X), then
the kth standard projection πk : X → R is the function which assigns the standard
coordinate xk to all x ∈ X.

Theorem 4.2. Let D ⊆ Rn+m
+ be a nonempty, open, convex set, A ∈ L (Rn,Rm),

and b ∈ Rm, furthermore c ∈ Rn. Assume that g : D → R is a continuously
differentiable strictly concave function such that ∂kg are nonnegative, πk∂kg are
bounded, and the function

(x, ω) 7−→ cTx+ tg(x, ω)

satisfies the limit conditions (3) for all t > 0. If the original primal-dual pair has a
feasible solution in D, then the central path of the family of concave programs

cTx+ tg(x, ω) 7−→ max, Ax+ ω = b

is well-defined and continuous. Moreover, each limit point at t = 0 of the central
path’s graph is an optimal solution of the attached primal-dual pair.

Proof. For a fixed parameter t > 0, the concave program above has a unique
optimal solution by Lemma 3.4 and Theorem 4.1. Thus the central path of the
family is well-defined, indeed. Taking into consideration the special form of the
objective function, the limit conditions (3) mean that the map

F
(
t, (x, ω)

)
:= cTx+ tg(x, ω)
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fulfills the conditions (1) and (2). Thus, by Lemma 3.1, the central path is continu-
ous. For the second statement, consider the Lagrange-functional

L(x, ω, y) := cTx+ tg(x, ω) + yT (b− Ax− ω).

Then, the unique optimal solution x = x(t) and ω = ω(t) of the perturbed problem
satisfies the Lagrange system

∂L

∂xj

= cj + t
∂g

∂xj

−
m∑
i=1

yiaij = t
∂g

∂xj

− zj = 0, j = 1, . . . , n

∂L

∂ωi

= = t
∂g

∂ωi

− yi = 0, i = 1, . . . ,m.

Since ∂kg are nonnegative, y = y(t) and z = z(t) are nonnegative, as well. Thus, y
is a feasible solution of the dual problem, and z is its slack variable. Moreover, the
last terms of the Lagrange system imply

txj
∂g

∂xj

= xjzj and tωi
∂g

∂ωi

= ωiyi.

Let (x∗, ω∗, y∗, z∗) be an arbitrary limit point at t = 0 of the primal-dual central
path’s graph. Since it belongs to D, it is a feasible solution of the original primal-
dual pair. For simplicity, assume that (x, ω, y, z)(t) → (x∗, ω∗, y∗, z∗) as t → 0.
Passing the limit t → 0 in the equations above, 0 = x∗

jz
∗
j and 0 = ω∗

i y
∗
i follow for all

indices i and j by the boundedness of πk∂kg. Thus, by the Complementary Slackness
Theorem, (x∗, ω∗, y∗, z∗) is a feasible optimal solution for the original primal-dual
problem.

Note also that the generator F
(
t, (x, ω)

)
= cTx + tg(x, ω) fulfills the conditions of

Lemma 3.2. Thus the values of the objective increases along the central path as the
parameter t approaches to zero.
Finally we revisit the classical log-barrier problem and handle it as a direct corollary
of the previous theorem. Consider a linear program in standard form, of which con-
straints are given in equality form using slack variables. Requiring strict positivity
on all the variables, for all parameters t > 0 perturb the original objective function
in the following way:

cTx+ t

n∑
j=1

log xj + t

m∑
i=1

logωi 7−→ max

Ax+ ω = b, x, ω > 0.

This one-parameter family of constrained programs is the classical logarithmic bar-
rier problem.

Theorem 4.3. If the original primal-dual pair has a positive feasible solution, then
the central path of the barrier-problem exists and continuous. Moreover, its each
limit point at zero is a feasible optimal solution of the original primal-dual pair.
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Proof. We show that the conditions of Theorem 4.2 hold. Let D ⊆ Rn+m
+ be the

positive orthant. Then, D is a nonempty, open and convex set. Let ϕk(x, ω) = log xj

if k = j, and ϕk(x, ω) = logωi if k = n+ i, and define g : D → R by

g(x, ω) = t

n+m∑
k=1

ϕk(x, ω).

Then, g is continuously differentiable and strictly concave; its partial derivatives
are positive and πk∂kg = 1. The objective function of the barrier-problem can be
written as

f(x, ω) = cTx+ tg(x, ω).

Finally we prove that f satisfies the limit conditions (3). Let (x∗, ω∗) be a positive
feasible solution of the primal, and (y∗, z∗) be a positive feasible solution of the dual.
Using the definition of slack variables,

zT∗ x+ yT∗ ω = (ATy∗ − c)Tx+ yT∗ (b− Ax) = yT∗ b− cTx

holds for each primal feasible solution (x, ω). Thus,

f(x, ω) = t
n+m∑
k=1

ϕk(x, ω) + cTx

= t
n+m∑
k=1

ϕk(x, ω) + yT∗ b− zT∗ x− yT∗ ω.

If (x0, ω0) ∈ ∂D and (x, ω) → (x0, ω0), then there exists an index j such that
xj → 0, or there exists an index i such that ωi → 0. Then ϕk(x, ω) → −∞ where k
corresponds to j or i, while cTx has a finite limit. Thus, in this case, f(x, ω) → −∞.
If (x, ω) ∈ rec(D), then x, ω > 0. Using the convention xn+i = ωi again, the
objective function can be represented as the sum of terms

t logαxk − αxk + β.

Here xk are positive therefore f(αx, αω) → −∞ as α → +∞. Thus the statement
follows directly from Theorem 4.2.
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