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Abstract 

 Alzheimer’s disease (AD) is the most common form of dementia in the elderly. For 

more effective therapy early diagnostic markers could be beneficial. Therefore we compared 

one year old rats with adults and examined if changes in possible brain markers of AD 

preceeded memory decline. We also tested if vasopressin-deficient animals were useful 

model of AD as vasopressin has well known positive effect on memory and AD patient has 

decreased vasopressin production. 

We compared adult (3 month) and old (12 month), normal and vasopressin-deficient 

Brattleboro rats. To receive a comprehensive picture about their memory we examined their 

social discrimination, object discrimination and conditioned learning abilities (shuttle box).  

Amyloid precursor protein (APP), mitogen-activated protein kinase 1 (MAPK1), β-actin and 

tryptophan 2,3-dioxygenase 2 (TDO2) mRNA levels was measured by quantitative PCR. 

There was no difference between the memory of adult and aged groups. The 

vasopressin-deficient rats at both ages showed a weaker performance in the course of social 

and object discrimination tests and a higher escape failure during the shuttle box experiment. 

The brain marker mRNAs of the elder animals were higher than the levels of the adults, but 

the absence of vasopressin had no influence on them. 

Thus, the one year old rats showed elevated levels of AD-related markers, but 

memory deficits were observable only in vasopressin deficient animals. Vasopressin does not 

seem to have pathogenic role in AD. Changes in the studied markers might predict later 

symptoms, although further studies are required for confirmation.  

Keywords: APP, β-actin, MAPK1, memory, object discrimination, shuttle box, social 

discrimination, TDO2  
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1. Introduction 

Alzheimer’s disease (AD) is a heterogenous neurodegenerative disorder and the most 

common form of dementia worldwide. It is characterized pathologically by senile plaques, 

neurofibrillary tangles, neuronal loss, and clinically by a progressive cognitive decline. There 

is a growing body of evidence that the most beneficial effects of treatment might only be 

achieved in the preclinical stage of dementia, prior to the immense hallmarks of 

neurodegeneration [36]. Therefore early biological markers are very important [24]. The 

amyloid hypothesis of AD postulates that the initiating molecule of the disease is amyloid-, 

a proteolytic derivative of the amyloid precursor protein (APP) [51], ultimately leading to 

neuronal degeneration and dementia [25]. It is assumed that APP is an important protein for 

tissue repair and its expression is up-regulated following nerve damage [64]. Interestingly, 

the APP level of the human cerebrospinal liquor shows a positive correlation with the 

progress of age independently from any illness [10]. Beside amyloid-β, neurofibrillary 

tangles (NFT) are other hallmarks of AD [11]. NFT production is a result of abnormal 

hyperphosphorylation of the microtubule-associated protein tau and the mitogen-activated 

protein kinase (MAPK) plays a leading role in this abnormal hyperphosphorylation [27]. The 

β-actin has a relatively stable expression, but this molecule is considered to be involved in 

synaptogenesis, neuronal plasticity and clinical conditions like depression and AD, too [23]. 

The tryptophan 2,3-dioxygenase (TDO2) enzyme is a rate limiting factor in the metabolism 

of the neuro-immune modulator quinolinic acid [50] and this way promotes the 

neurodegenerative processes.  

During the course of aging some important changes are found in the human 

hypothalamus. Among others, the normal circadian fluctuations seen in the number of 

vasopressin (AVP) neurons in the nucleus suprachiasmaticus of young subjects diminished in 

elderly subjects [38], thus an important role of AVP during the course of aging could be 
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supposed [14]. Although the main function of AVP is the antidiuresis in kidney, it plays a key 

role in hypothalamo-pituitary-adrenocortical (HPA) axis regulation, thereby in stress-related 

psychiatric diseases, like depression [31]. Depression can also be one of the earliest 

symptoms of AD [2]. Half of the AD patients suffer from minor or major depressive disorder, 

too [47, 56]. As the leading symptom of AD is the memory deficit [28], molecules that 

influence memory formation might have a pathogenic role. In connection with its role in 

circadian regulation [15] AVP might be such a molecule. Indeed, administration of AVP 

receptor antagonists resulted in memory impairment both in mice [3] and in rats [39]. The 

adult AVP-deficient Brattleboro rats showed reduced social discrimination ability which was 

improved by AVP administration [16]. Moreover, a significant AVP decrease has been found 

in many brain regions of AD patients [20, 34]. A recent study in rats found centrally 

administered AVP protective against amyloid-β protein-induced memory decline in the 

Morris water maze test [42], supporting the beneficial effect of central AVP in the prevention 

and treatment of AD. 

We aimed to test if aging influenced the effect of AVP on memory and if the possible 

behavioral changes were underlined by alteration in Alzheimer’s related molecules. In this 

case AVP-deficient animals could be a useful model of Alzheimer`s disease. We compared 

adult (10-12 weeks old) and older (1 year old) AVP-deficient (di/di) and control (+/+) 

animals of the Brattleboro strain. This strain is due to a spontaneous mutation in the 

neurophysin region of the AVP gene resulting in abnormal AVP synthesis [53]. Previous 

studies on memory did not use older Brattleboro rats and the control animals were also 

questionable (see later) [4]. Our hypothesis was that aging will further enhance the impaired 

learning ability of AVP-deficient rats and it will be accompanied by enhanced mRNA level 

of APP, β-actin, MAPK1 and TDO2, which – according to our knowledge - were never 

examined in one-year-old rats. Thus, at the same time we tested also the possibility that 
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changes in possible brain markers of AD preceeded memory decline. As parietal lobe 

dysfunction is an important characteristic of early AD we took tissue samples from the 

parietal cortex [32].  

2. Material and methods 

2.1. Animals 

Male Brattleboro rats, naturally deficient in AVP were used in their adult (~330 g, 10-12 

weeks old) or older (~500 g, 1 year old) age. Rats were obtained from the local breeding
 

colony of the Institute of Experimental Medicine in Budapest,
 
Hungary started from breeder 

rats from Harlan, Indianapolis, IN, USA. The animals were kept under controlled laboratory 

conditions (21±1 ◦C, 50–70% humidity, 12 h light starting at 07:00 h)
 
with commercial rat 

chow (Charles River, Budapest, Hungary) and tap water ad libitum.  

We compared the AVP deficient homozygous recessive (di/di) rats with diabetes insipidus to 

normal homozygous dominant (+/+) control rats [68]. As Brattleboro rats originated from Long 

Evans strain approx. 50 years ago, it is not a proper control for AVP-deficiency. Our control, +/+ rats 

were bread out locally [68]. They are in close relationship with the AVP-deficient ones (heterozygous 

mothers are the daughters of +/+ mothers). The only difference is the point mutation in the AVP gene.  

The adult animals were sexually naive, and the older animals were sexually experienced 

breeder rats. To avoid possible confounding effect of social contact with other rats (e.g. 

hierarchy [61]) all experiments were performed on single-housed animals (approx. 1 week 

isolation).  

All manipulations of the animals were approved by
 
the local committee for animal health and 

care and performed
 

according to the European Communities Council Directive 

recommendations
 
for the care and use of laboratory animals (86/609/CEE). 
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2.2. Behavior 

2.2.1. Social discrimination test 

Olfactory memory was tested during the light phase between 9:00 am and 1:00 pm using the 

social discrimination procedure [17]. First, the rats were transferred to a new cage (41.3 x 26 

x 29.8 cm, GeoMaxi, Ferplast, Italy) with fresh bedding 1 h before starting the test. Each 

social discrimination test consisted of two 4 min exposures to juveniles in the new cage. 

During the first, sampling phase the adult animal was allowed to acquire the olfactory signal 

of a given juvenile (Juvenile 1). The little male or female Wistar rats were 25-30 days old. 

The observed animals do not regard them as rival, or prey in this age and body size. After 4 

min Juvenile 1 was removed and kept individually in a fresh cage with food and water ad 

libitum. After 30 minutes interval the adult was re-exposed to Juvenile 1 (old) together with a 

second, novel juvenile (Juvenile 2) (choice phase). The duration of the investigatory behavior 

of the adult towards each juvenile was measured separately by a trained observer blind to the 

animal’s age and genotype. To allow the observer to distinguish between the two juveniles, 

one of them was marked with green lines (Edding 30 permanent marker, odorless, green, 

Edding AG, Germany) at least 30 min before testing. To exclude the opportunity of 

preference or aversive reaction toward the marked animals we randomised the marking 

between Juvenile 1 and Juvenile 2. The tests were videotaped and the investigatory behavior 

was analysed by events recorder (H77). Investigatory behavior was defined as direct action 

towards the juvenile rat including anogenital sniffing, licking, hunting, pawing and close 

pursuing. A significantly longer investigation duration of Juvenile 2 versus Juvenile 1 during 

choice phase is taken as an evidence for an intact recognition memory [17]. The 

discrimination index was calculated as follows: Discrimination index = time percentage 

Juvenile 2 / (time percentage Juvenile 1 + time percentage Juvenile 2) The result of the index 

changes between 0 and 1, where 0.5 = no discrimination. Normally the animals spend more 
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time with the new stimulus (novelty effect), thus the index below 0.5 is a sign of memory 

deficit.  

2.2.2. Object discrimination test 

For the object related equivalent of social discrimination we developed an experimental 

design comparable to the social paradigm in both time course and test settings. Two different 

objects were used instead of juveniles. A cat bedding filled blue round iron box (diameter: 

9.5 cm, height: 4 cm) and comparable size transparent glass bottle (diameter: 7 cm, height 7.5 

cm) were used. One of this objects (Object 1) was presented for 4 min (sampling phase), than 

removed, and 30 min later the same (Object 1) and a different object (Object 2) were 

introduced to the rat for 4 min. The objects were thoroughly cleaned with water before each 

test. The tests were videotaped and analysed as mentioned before. In behavior directed 

towards the object we distinguished sniffing and gnawing as an important component. To 

exclude object preference the two objects were randomly used as Object 1 or Object 2, and to 

exclude place preference the place of Object 1 and Object 2 were also randomised. 

Discrimination index was calculated as previously. 

2.2.3. Shuttle box test 

The shuttle-box apparatus consisted of two identical compartments (30 x 30 x 30 cm each) 

separated by a barrier with a gate in the middle [5]. It was placed in an isolated room. 

Animals were trained to cross the barrier under the duration of a flashlight (conditioned 

stimulus, CS). If they fail to do so they were punished with a footshock (unconditioned 

stimulus, US) of 0.3 mA delivered via the grid floor of the shuttle-box. Each trial consisted of 

three periods: (1) Resting period (intertrial interval) was constant. Intertrial crossings (IC) 

were not punished. (2) CS period when CS was presented for a maximum of 10 sec, 

signalling the impending footshock. If the rat responded within this 10 sec period (referred to 

conditioned avoidance response, CAR), the CS was terminated and the next trial started again 
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without delivery of US. (3) If the animal failed to respond to CS, the footshock (US) was 

applied together with the light until the rat responded or for a maximum of 5 sec (CS + US 

period). In case the rat failed to escape the US within 5 sec, it was considered as escape 

failure (EF). The rats got 100 trials in daily sessions for 5 consecutive days. The number of 

CAR, EF and IC were automatically recorded during the five daily sessions. On the days of 

the experiments animals were transported in their home cages to the laboratory 60 min prior 

to the shuttle-box session. All parts of the experiment were made at comparable periods of 

the day during the light period. On the first day the animals were allowed to habituate to the 

environment for 5 minutes. 

2.3. Molecular changes 

Samples and RNA preparation 

Naive animals were anaesthetized intraperitoneally by 10% chloralhydrat and after 

transcardial perfusion by 2-4°C physiological saline both hemispherium were removed and 

samples were taken from the parietal cortex (30 mg/animal) on wet ice and were stored 

immediately on -80C until processing.  

Total RNAs were extracted and purified using NucleoSpin RNA purification kit (Macherey-

Nagel, Durren, Germany) according to the manufacturer’s instructions. We homogenized 30 

mg brain tissue with 350 µl RA1 buffer and then we lysed the cells using 3.5 µl 

mercaptoethanol. We filtered the lysatum on the first filter by centrifugation (60 s, 1000 g), 

then we added 350 µl 70% ethanol to it and centrifuged again through the second filter (30 s, 

11000 g). At this time the nucleic acids tied on the filter. We salted out the silica membrane 

with 350 µl membrane salt buffer (desalting buffer, MDB). Than we gave 10 µl rDNase, 90 

µl rDNase reaction buffer and 95 µl rDNase reaction mix to the solution, incubated on room 

temperature for 15 minutes. Then we washed it and desiccated the membrane by spin drying 

with 200 µl RA2 buffer (30 s, 11000 g), then with 600 µl RA3 buffer (30 s, 11000 g), and 
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finally again 250 µl RA3 buffer (2 minutes, 11000 g). We dissolved the solution containing 

full cell RNA from the membrane with 60 µl ribonuclease free water (1 minute, 11000 g). 

Finally we added 0.5 µl ribonuclease inhibitor to the solutions and stored it on –80 °C until 

use. 

Reverse transcriptase polymerase chain reaction (RT-PCR) 

We measured the full RNA concentration of the solutions with a spectrophotometric method, 

nanodrop apparatus. We added 15 µl reverse transcription cocktail [reverse transcriptase (1.5 

µl), DNA-polimerase, monomer (1.2 µl), random primer one (3 µl), RT buffer (3 µl), 

ribonuclease inhibitor and bidistilled water (4.8 µl) onto the 2 µg/15 µl concentration diluted 

RNA solutions. The primers were the follows:  

APP  forward: 5’-CCC CAA GAT CCG GTT AAA CT-3’  

reverse: 5’-TAC TTG TCG ACT GCG TCA GG-3’  

MAPK1 forward: 5’-CCA AGC TCA ACC GTC TCA TC-3’  

   reverse: 5’-GGC TGG TAG GGT AGT TGA TGC-3’ 

β-actin forward: 5’-CCC GCG GAG TAC AAC CTT CT-3’  

 reverse: 5’-CGT CAT CCA TGG CGA ACT-3’  

TDO2 forward: 5’-TGT AGC CGT GAC TGA TGT TCA GA-3’  

reverse: 5’-ACA GGT ACA AGG TGT TCG TGG AT-3’  

GAPDH forward: 5’-AGA TCC ACA ACG GAT ACA TT-3’  

   reverse: 5’-TCC CTC AAG ATT GTC AGC AA-3’ 

The reverse transcriptase synthetized copy DNA (cDNA) from the full cell mRNS during the 

polymerase chain reaction, then we gave 10 µl Roche SYBR Green Mix, 1 µl primer to 9 µl 

template cDNA. The RT-PCR machine (Corbett 3000 RT-PCR) defined the mRNS quantities 

in the original solutions. 
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In the course of data evaluation we applied the ∆∆Ct method [33]. The reference gene was 

the glyceraldehyde 3-phosphate dehydrogenase (GAPDH). All results are normalized to the 

values of adult +/+ rats. 

2.4. Statistical analysis 

The results are expressed as mean + S.E.M. Statistical significance was evaluated by two way 

analysis of variance (ANOVA; discrimination sample phase, discrimination index, brain 

markers; levels age and genotype) or repeated measure ANOVA (discrimination tests, shuttle 

box; time as within factor) followed by Neumann Keuls post hoc test, or evaluated by single 

sample t-test (in case of discrimination index) using Statistica 9.0 software (StatSoft, Tulsa, 

USA). A p value of less than 0.05 is considered to be significant. 

3. Results 

3.1. Behavior 

3.1.1. Social discrimination test 

During the whole social discrimination test (sampling + choice) the adult rats spent 

significantly more time with the juveniles, than the old ones based on repeated measure 

ANOVA (age F(1,37)=6.21, p<0.05) (Fig.1A). During the sample phase there was only a 

marginally significant effect of age by factorial ANOVA (age F(1,45)=3.08 p=0.08). At the 

same time during the choice phase the age had a significant effect by repeated measure 

ANOVA (age F(1,37)=11.97 p<0.01). In point of discrimination the time spent with old 

(juvenile 1) or new (juvenile 2) juveniles was significantly different by repeated measure 

ANOVA (old-new F(1,37)=13.44 p<0.01), but the genotype just marginally influenced this 

parameter (old-new x genotype F(1,37)=3.54 p=0.07).  

The discrimination index, originated from the time percentages of the choice phase, 

significantly differed between the genotypes (genotype F(1,37)=4.85 p<0.05), but the age had 

no effect by factorial ANOVA (Fig.1B). If we examine the difference of the discrimination 
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index from 0.5 (0.5 = not discrimination) by single sample t-test, we observed that the AVP-

deficient animals (di/di) were unable to discriminate (adult +/+: p<0.05; old +/+: p<0.05; 

adult di/di: p=0.78; old di/di: p=0.19). 

3.1.2. Object discrimination test 

During the whole object discrimination test (sampling + choice) the AVP-deficient 

rats spent significantly more time with the objects, than the +/+ ones based on repeated 

measure ANOVA (genotype F(1,30)=16.94, p<0.01) (Fig.2A). Both during the sampling phase 

(genotype by factorial ANOVA F(1,35)=16.34, p<0.01) and the choice phase alone (genotype 

by repeated measure ANOVA F(1,30)=11.83 p<0.01) the effect of genotype remained 

significant. In point of the discrimination there was a significant difference between the time 

spent with old (object 1) and new (object 2) object during the choice phase by repeated 

measure ANOVA (old-new F(1,30)=18.03 p<0.01) and this effect was different between the 

two genotypes (old-new x genotype F(1,30)=9.26 p<0.01).  

The discrimination index significantly differed between the two genotypes (genotype 

by factorial ANOVA F(1,30)=28.84 p<0.01) without any influence of age (Fig.2B). Based on 

the difference of the discrimination index from 0.5 by single sample t-test the AVP-deficient 

(di/di) animals were unable to discriminate (adult +/+: p<0.01; old +/+: p<0.01; adult di/di: 

p=0.94; old di/di: p=0.33).  

3.1.3. Shuttle box test 

 In case of intertrial crossing (IC) the two genotypes showed significant difference 

from each other (genotype F(1,35)=20.73, p<0.01) (Fig.3A). This parameter was higher in the 

AVP-deficient rats. The effect of the time was also significant (time F(4,140)=11.78, p<0.01) 

being the IC levels higher at later time-points. The effect of genotype was even more 

pronounced in the course of the experiment (genotype x time F(4,140)=6.80, p<0.01).  
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The conditioned avoidance response (CAR) differed between the two genotypes, too 

(genotype F(1,35)=15.30, p<0.01), being higher in the AVP-deficient rats (Fig.3B). The effect 

of the time was also significant (time F(4,140)=11.60, p<0.01).  

The escape failure (EF) differed also between the two genotypes (genotype 

F(1,35)=9.31, p<0.01), being higher in AVP-deficient rats (Fig.3C). The effect of the time was 

also significant (time F(4,140)=19.04, p<0.01), but the effect of genotype became smaller with 

time (genotype x time F(4,140)=3.22, p<0.01). There was a marginally significant effect of age 

x time interaction (age x time F(4,140)=2.02, p=0.09), with higher levels in old animals.  

3.2. Molecular changes 

The relative quantity of all the measured mRNA (APP, MAPK1, β-actin and TDO2) 

were significantly higher in the cerebral cortex of the 1 year old than adult animals (age APP 

F(1,23)= 62.81, p<0.01; MAPK1 F(1,26)= 4.33, p<0.05; β-actin F(1,24)= 35.20, p<0.01; TDO2 

F(1,26)= 48.24, p<0.01) without any effect of the genotype or interaction between age and 

genotype (Fig.4A-D).  

4. Discussion 

During the memory tests the AVP-deficient rats showed weaker performance 

independently of the age, while AD-related molecular markers were higher in older rats 

independently from the genotype. Thus, we were unable to support our first hypothesis, that 

AVP-deficient animals are good AD models, but we found that in 1 year old rats the changes 

in examined brain markers preceeded memory decline. 

Some authors reported memory deficits already in 1 year old rats [46]. As we assumed 

a further decrease in AVP-deficient rats, we did not use older animals with more pronounced 

memory disturbances. In our hand the 1 year old rats did not show any decline in memory 

traces compared to the adult population, although the results of the studied AD markers were 

already pathological. This could prompt further studies on an early diagnosis.  
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The social and object discrimination tests investigate short term, stressless memory 

processes, while shuttle box tests long term, stressfull learning. In accordance with the 

literature the AVP-deficient animals showed weaker discrimination abilities, than the normal 

ones [7, 16]. Previous studies used only adult animals, but – despite our expectations – aging 

did not enhance the memory disturbances of the AVP-deficient rats. Data in the literature on 

the results of avoidance tests are not consistent (e.g. no effect: [9]; memory deficit: [63]; 

prolonged extinction: [29]). The findings obtained in the shuttle box test in the present 

experiments were also contradictory. Both the adult and aged di/di rats showed worse escape 

failure, however their conditioned avoidance response (CAR) was superior to control 

animals. Take into consideration the ubiquiter role of AVP in our body [19], many other 

processes may confound the shuttle box performance of Brattleboro rats. (1) Although 

decline in activity is an important problem of human aging and can be found also in animals 

[45, 55], it is not a core symptom of AD and cannot be always detected in older rats [46]. On 

the contrary, higher physical activity seems to be protective against AD [6]. Enhanced 

activity of the di/di animals was reflected by enhanced sampling time in the object 

discrimination task and increased intertrial crossing (IC) during shuttle box experiment. 

Although in our previous experiments we could not detect any hyperactivity [37],  some other 

authors found Brattleboro rats to be hyperactive in a novel environment already in their 10-

day-old age [12, 54]. Enhanced locomotion can lead to higher CAR values independently 

from any memory processes. (2) AVP is an important regulator of the HPA axis, which 

consist from corticotropin-releasing hormone (CRH) in the hypothalamus, 

adrenocorticotropin in the pituitary and glucocorticoids in the adrenal cortex. The 

glucocorticoid hypothesis of aging and AD proposed that chronic exposure to glucocorticoids 

induced hippocampal atrophy with a decline in learning abilities [30]. Aged-superior learners 

had lower expression of glucocorticoid receptor and CRH mRNA in the hypothalamus 
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compared with other groups [35]. During the critical perinatal period the Brattleboro rats 

have higher resting glucocorticoid levels [66], which could contribute to their worse 

discrimination abilities later in life. On the contrary, different stressors, like the footshock 

during the shuttle box testing, may induce lower HPA axis reactivity [67]. Lower 

glucocorticoid levels can be accompanied by reduced inactivity in the shuttle box [1]. (3) The 

time spent in inactive posture (immobility) depends also on the subject`s temperament and 

coping style. The well-known depression test, forced swimming measures also the coping of 

the animals, however some authors suggested that it reflected effects of learning and memory 

rather than effects of despair or depression [65]. According to these assumptions the 

diminished immobility time of AVP-deficient rats during the forced swimming test [37] 

could be interpreted as changes in temperament [8, 26], more active coping style or even 

learning disabilities. Other depressive-like symptoms, like anhedonia, which is also changed 

in the Brattleboro rat [48], may also influence memory processes. 

As far as we know AD-related markers were never tested in AVP-deficient 

Brattleboro rats, and the studied markers were not examined in 1 year old „normal” rats 

either. According to the amyloid hypothesis APP is the initiating molecule of AD. Although 

several authors emphasize the involvement of APP metabolism in normal aging and AD [40], 

our results suggest that altered APP expression may also contribute. Literary data referred to 

AVP and APP interaction [41, 59], which we failed to confirm.  

The MAPK pathway is a key regulator of pro-inflammatory cytokine biosynthesis, which 

may contribute to the chronic low-grade inflammation observed with aging  [43]. We found a 

small increase in the MAPK mRNA level in old rats, which was more pronounced in AVP-

deficient animals. Signalisation cascade of AVP may include the MAPK pathway as well 

[44]. Although an elevated MAPK expression in old di/di rats seems to be contradictory, this 
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is not the only pathway for AVP and many other molecules may manipulate the MAPK 

cascade.  

The β-actin, a non-muscle cytoskeletal protein, has a relatively stable expression, therefore it 

is worldwide applied as a reference gene in the course of PCR [49]. Newer data indicated that 

β-actin is differentially expressed in the brain specimens of both AD and control subjects 

[23]. Indeed, the results of recent research in the pathomechanism of AD emphasize the 

significance of cytoskeletal changes [18]. Remodelling of the cytoskeletal architecture is a 

basic phenomenon in neuronal plasticity [58]. Despite previous report on constant -actin 

gene expression in aging [60], we found an elevated level in old rats, perhaps due to some 

methodological differences. Changes in actin remodelling may influence the neurotransmitter 

release, among others the secretion of AVP [62].  

The TDO2 enzyme plays a role in the transformation of the tryptophan to kynurenine [57] 

and increased concentrations of kynurenine metabolics leads to neurotoxic effects [52]. 

Regarding AD pathomechanism post mortem immunocytochemistry in the hippocampus of 

AD patients revealed elevated TDO2 levels [21] and amyloid-β treatment increased TDO2 

expression [22]. Thus, elevated TDO2 level in one year old rats might anticipate pathological 

changes. Although Comai et al. found a decline in the enzyme activities involved in 

tryptophan metabolism in old Sprague-Dawley rats compared to 2-3 month old ones [13],  it 

may be explained with methodological differences.  

5. Conclusions 

Our finding on early appearance of specific markers before appearance of any 

memory decline may prompt further studies and in the long run can be helpful in early 

diagnosis. The positive impact of AVP on memory was confirmed, thus it can be a useful 

cognitive enhancer. AVP-related other psychological functions like circadian clock, activity, 

stress and coping may also contribute to its positive effect on AD. As the absence or presence 
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of AVP did not influence the levels of AD-related markers, AVP decrease in AD patients 

seems to be more likely the result rather than the cause of AD development. However, we 

cannot close out the possibility that AVP effects the processing/metabolism of these factors 

rather that their mRNA levels.   
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Figure legend 

Fig.1 

Social discrimination test. n=7-13. A. Time percent spent with the juveniles during the 

sample and the choice phases. B. Discrimination index = time percentage with juvenile 2 / 

(time percentage with juvenile 1 + time percentage with juvenile 2). Abbreviations:  *p<0.05, 

**p<0.01 vs. juvenile 1., #p<0.05 vs. 0.5 (no choice). 

Fig.2 

Object discrimination test. n=7-10. A. Time percent spent with the objects during the sample 

and the choice phases. B. Discrimination index (= time percentage Object 2 / (time 

percentage Object 1 + time percentage Object 2)). Abbreviations: $p<0.05 vs. +/+; **p<0.01 

vs. object 1.; ##p<0.01 vs. 0.5 (no choice). 

Fig.3 

Shuttle box test. n=7-12. A. Intertrial crossing. B. Conditioned avoidance response. C. Escape 

failure. Abbreviations: $p<0.05, $$p<0.01 vs. +/+; +p<0.05, ++p<0.01 vs. day 1.; **p<0.01 

vs. adult 

Fig.4  

Alzheimer`s markers’ mRNA levels in comparison to adult, 3 month old +/+ animals 

calculated by the 2
-∆∆Ct

 method with glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

standard. n=6-10. A. Amyloid precursor protein (APP). B. Mitogen-activated protein kinase 1 

(MAPK1). C. β-actin. D. Tryptophan 2,3-dioxygenase 2 (TDO2). Abbreviations: *p<0.05, 

**p<0.01 vs. adult; $p=0.05 vs. +/+. 


