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1Departmet of Sofware Engineering, University of Szeged, Szeged, Hungary
2FrontEndART Ltd., Szeged, Hungary

{aladics, hpeter, ferenc}@inf.u-szeged.hu

Keywords: Just-in-Time Vulnerability Detection, Dataset, SZZ, Vulnerability Introducing Commits

Abstract: In the domain of vulnerability detection from the source code by applying static analysis, the number and qual-
ity of available datasets for creating and testing security analysis methods is quite low. To be precise, there
are already several public datasets containing vulnerability fixing commits; however, vulnerability introducing
commit datasets are scarce, which would be essential for creating and validating just-in-time vulnerability
detection approaches. In this paper, we propose an SZZ (an algorithm originally developed to find bug intro-
ducing commits) based method with a specific filtering mechanism to create vulnerability introducing commit
datasets from vulnerability fixes. The filtering phase involves measuring a relevance score for each vulnera-
bility introducing commit candidates based on commit similarities. We generated a novel Java vulnerability
introducing dataset from the existing project-KB repository to demonstrate our algorithm’s capabilities. We
also showcase the generated database and the effectiveness of our filtering method through several hand-picked
examples from the dataset.

1 INTRODUCTION

Many software engineering-related tasks, such as
quality assurance or testing, are now aided by ma-
chine learning, which relies heavily on the abundance
of data. Most of these tasks are typically based on ma-
chine learning, therefore the availability of datasets is
crucial to train reliably and to get a generally well-
performing model.

Fortunately, when the goal is related to vulnera-
bility fixes, there are already well established datasets
that can be relied on. These datasets typically contain
validated code changes (i.e. commits) that fix a par-
ticular vulnerability described in a Common Vulner-
abilities and Exposures (CVE) (MITRE Corporation,
v 21) entry, a publicly disclosed security vulnerability
in a software system. One such dataset is published
as part of the repository “project-KB” (project kay-
bee) (Ponta et al., 2019) maintained by SAP.

This dataset contains CVE entries and their cor-
responding commit references of Java software sys-
tems that are known to have fixed the security issues.
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Datasets like project-KB can be exploited in various
use cases such as aggregating security related statis-
tics, getting insight on the security state of a system
and also checking which version of a specific library
or software contains a security risk. The latter use
case is crucial for larger projects that use many other
(typically open source) software components to know
what kind of security issues is the system is exposed
to by using those external libraries.

There are tasks, however, that are not related to
vulnerability fixes but to vulnerability introducing
commits, such as just-in-time vulnerability detection
and localization (Amin et al., 2019; Cao et al., 2021;
Li et al., 2013), when the purpose is to find the vul-
nerable part of the system or detect the presence of a
security bug. In these cases, finding the appropriate
dataset can be challenging, if possible at all. This is
partly due to the fact that while fixing commits are
sometimes available as part of the CVE entries (or at
least it is possible to examine the commit history and
apply heuristics to identify the fixing commit (Ponta
et al., 2019)), the commit which introduced that par-
ticular vulnerability can be ambiguous and not trivial
to find.

Our aim in this work is to help solve the lack of
vulnerability introducing commit datasets by provid-



ing a method to automatically generate them from
vulnerability fixing datasets. The procedure consists
of two phases, the first involves running an implemen-
tation of the SZZ algorithm (Sliwerski et al., 2005)
called SZZ Unleashed (Borg et al., 2019) for each fix-
ing commit in the dataset, which results in a set of
candidate introducing commits for each fixing com-
mit. However, inspecting these candidate commits
shows that the results from the first phase are hardly
usable in practice due to a number of issues. The most
prominent of these issues are that the number of the
candidates and more importantly the number of false
positives can be very high.

Therefore, we designed a second phase, which in-
volves the filtering of the results produced by the first
phase to overcome the issues. The filtering involves
selecting the top n most relevant commits, where n is
an arbitrarily chosen number, and commit relevance
is determined by a metric called the relevance score.
The relevance score is a heuristic that is assigned to
each candidate introducing commit and it measures
the commit’s vulnerability introducing relevance: the
higher it is the more likely that the commit is indeed
a real introducing commit. The calculation of the rel-
evance score and the filtering process is discussed in
more details in Section 4.

Applying the method briefly explained, we gen-
erated a novel Java vulnerability introducing com-
mit dataset from the project-KB vulnerability fixing
dataset and made it publicly available1 together with
the tools implementing the generation process. To
summarize, the main contributions of our work are
as follows:

• We propose a two-phase method to automatically
generate accurate vulnerability introducing com-
mit datasets from vulnerability fixes;

• As part of our method, we suggest a way to
measure introducing commit relevance to a fixing
commit, which we refer to as the relevance score;

• We provide a toolchain that can be used to gen-
erate new vulnerability introducing datasets from
existing repositories, similar to the project-KB
dataset;

• We publish a novel Java vulnerability introduc-
ing commit dataset created from the project-KB
repository using our proposed method and tool.

The rest of the paper is organized as follows. We
list the works related to ours in Section 2. Section 3
gives a motivation for our research through a running
example. We describe the technical details of the pro-
posed two-phase method for generating vulnerability

1https://doi.org/10.5281/zenodo.5785239

introducing commit datasets in Section 4. We demon-
strate the usage of the proposed method by creating a
novel Java vulnerability introducing commit dataset,
which is presented in Section 5. In Section 6, we enu-
merate the possible threats to the validity of our work,
while we conclude the paper in Section 7.

2 RELATED WORK

Lately, the number of vulnerabilities is increasing at
an alarming rate, which is mainly traceable by the dis-
closed open source software vulnerability entries. Ac-
cording to the report by WhiteSource (whi, c 14), the
number of published open source software vulnerabil-
ities in 2020 rose by over 50% compared to the previ-
ous year, from 6111 to 9658. This sharp increase is an
unambiguous indicator of the ever-growing problem
of software vulnerabilities and also shows the urgent
need to understand them better and faster.

To understand security issues, analyze them,
draw conclusions, or build tools that can help man-
aging these issues, systematically gathered collec-
tions of data are essential. There are a couple of
datasets (Gkortzis et al., 2018; Ponta et al., 2019)
available containing information about vulnerability
fixes (i.e. set of commits fixing a known vulnera-
bility and the source code version before and after
this fix). Most of them build on the information con-
tained in the Common Vulnerabilities and Exposures
(CVE) repository (cve, v 20) of publicly disclosed
vulnerabilities. CVE provides detailed information
about the specific vulnerability, in particular a unique
identifier (CVE-ID), a description and a set of public
references. The National Vulnerability Database or
NVD (nvd, v 20) contains practically all vulnerabili-
ties in CVE (except some that are pending at the time
but will be added later) and extends them with addi-
tional information such as vulnerability type (CWE)
and severity scores (CVSS).

Vulnerability fixing datasets leverage the informa-
tion present in the CVE and NVD databases, which
sometimes contain links to the actual fixing patches of
a vulnerability. The project-KB dataset (pro, c 14) is
part of the project-KB repository maintained by SAP.
It contains manually curated entries of vulnerability
fixes in Java projects, where most of these entries have
a corresponding CVE record. The authors describe
this dataset and publish a snapshot of it in a separate
publication (Ponta et al., 2019).

Another dataset that involves automatic collection
of CVE entries from NVD is VulinOSS (Gkortzis
et al., 2018), which contains reported vulnerabilities
of 8694 open-source project versions. As part of their



research, the authors supplemented the corresponding
source code with various source code metrics.

Yunhui Zhengi et al. (Zheng et al., 2021) use static
analyzer tools to generate a fixing commit dataset
specifically for machine learning uses. First, they col-
lect several candidate fixing commits using machine
learning methods then they use differential analysis:
they run static analysis on the before and after com-
mit versions of the fixing commit. If a set of issues
detected before the fixing commit disappear in the af-
ter state, they label it as positive, otherwise the fixing
commit is labeled as negative.

Guru Prasad Bhandari et al. (Bhandari et al.,
2021) as the main contribution of their research pub-
lished the tool CVEFixes, which can automatically
generate a fixing commit database by parsing and val-
idating every record from NVD currently available.
The initial release in 2021 contained all published
CVEs up to 9 June, covering 5365 CVE records.

Datasets of vulnerability fixing commits can be
used for a wide variety of downstream tasks, such as
locating security patches (Tan et al., 2021; Li and Pax-
son, 2017; Wang et al., 2021b; Wang et al., 2021a),
vulnerable code clone detection (Woo et al., 2021;
Xiao et al., 2020), and patch presence testing (Dai
et al., 2020; Falleri et al., 2014). Tan et al. (Tan et al.,
2021) facilitate security patch detection by vulnera-
bility commit correlation ranking. They ranked com-
mits by training a RankNet model on features they
parsed from commits and CVE vulnerability entries.
Our research has a similar goal but while they focused
on fixing commits, we target vulnerability introducing
commits. Additionally, they used machine learning
models to achieve the ranking, while in our work we
follow a simpler approach.

As it can be seen, there are various datasets avail-
able when the task is related to vulnerability fixes. In
the case of vulnerability introducing commits, how-
ever, the available resources are a lot more scarce.
Meneely et al. and Shin et al. investigate source code
repository metadata in relation with CVE entries (Me-
neely and Williams, 2012; Meneely et al., 2013; Me-
neely et al., 2014). Using features like code churn and
lines of code they created a database from mappings
of CVEs to commits for the Mozilla Firefox Browser,
Apache HTTP server and parts of the RHEL Linux
kernel. However, this database is not publicly acces-
sible and also not scalable, since it is manually con-
structed.

One attempt to automatize this process is an ap-
proach called VCCFinder by Henning Perl et al. (Perl
et al., 2015). In their work, the authors describe
a mapping of CVEs to GitHub commits in order
to create a vulnerability contributing commit (VCC)

database. This mapping is based on a heuristic that
involves the git blame command and some filtering,
such as excluding lines in documentation. This work
has a similar goal to our research, even though we
took a different approach at some points.

In contrast to VCCFinder, in our work we used
an enhanced version of the well-known SZZ al-
gorithm (Sliwerski et al., 2005), called SZZ Un-
leashed (Borg et al., 2019) to find the introducing
commits. For a commit, that is said to be bug intro-
ducing, the SZZ algorithm is using the git blame com-
mand (which maps each line in the commit to the last
modifier) to find all of the commits that directly pre-
ceded it. After that, additional steps are made to filter
out non bug-related commits by using various infor-
mation, such as the bug report date. SZZUnleashed
provides various improvements over the base SZZ al-
gorithm detailed in their work, like line-mappings and
the support for git based issue trackers. As opposed
to VCCFinder, SZZ considers more information and
it will produce a set of candidate vulnerability intro-
ducing commits, while VCCFinder produces at most
one (the one with most lines blamed). This gives us
the possibility to identify multiple commits as intro-
ducing, which is the case in many real-world prob-
lems (a vulnerability can be introduced through mul-
tiple commits). We also provide more flexibility on
the introducing commit filtering phase, such as choos-
ing file extension, and we also propose a way to mea-
sure the relevance of each candidate commit as well
as each related commit file’s contribution score. This
way, the user can gain insight into the ranking process
and adjust it accordingly.

3 OVERVIEW AND MOTIVATION

In this section we demonstrate the motivation behind
our research and give intuition on how our method
works through a running example. We discuss our
method in more detail in Section 4.

As already mentioned, the starting point of our ap-
proach is having a vulnerability fixing commit (VFC)
for which we want to generate a set of introducing
commits (VIC). VFCs can be found in VFC datasets
such as project-KB (Ponta et al., 2019), and in most
of the cases a VFC can be linked to a correspond-
ing CVE id (i.e. to the actual vulnerability it fixes).
One such VFC is linked to the CVE 2016-3674 (cve, c
14a) entry, a vulnerability allowing an attacker to per-
form an XML external entity attack (Herzog, 2010)
in multiple components of the XStream (xst, c 14)
project, a Java to XML serializer library. This vulner-
ability occurs in multiple files, such as Dom4JDriver,



DomDriver, SjsxpDriver, StaxDriver, and 3 more.

commit sha : c9b121a88664988ccbabd83fa27bfc2a5e0bd139
++− x s t r e a m / s r c / . . . / i o / xml / S t a x D r i v e r . j a v a

/ / B e f o r e a p p l y i n g f i x
p r o t e c t e d XMLInputFactory c r e a t e I n p u t F a c t o r y ( ) {

re turn XMLInputFactory . n e w I n s t a n c e ( ) ;
}

/ / A f t e r a p p l y i n g f i x
p r o t e c t e d XMLInputFactory c r e a t e I n p u t F a c t o r y ( ) {

f i n a l XMLInputFactory i n s t a n c e = XMLInputFactory .
n e w I n s t a n c e ( ) ;

i n s t a n c e . s e t P r o p e r t y ( XMLInputFactory .
IS SUPPORTING EXTERNAL ENTITIES , f a l s e ) ;

re turn i n s t a n c e ;
}

Figure 1: Before and after applying the changes in file Stax-
Driver.java in project XStream as part of fixing CVE-2016-
3674

Figure 1 shows the affected source code state
before and after applying the fix in the vulnerable
StaxDriver .java file (only the relevant changed
source code is shown). It can be observed that the
commit fixing this vulnerability simply sets an ap-
propriate flag on the XMLInputFactory. Our goal
is to find the commit that introduced changes that
led to this vulnerability, that is, yield the ”Before
applying fix” state in Figure 1. In this particu-
lar example, the commit that added the XMLInput-
Factory instantiation statement without setting the
IS_SUPPORTING_EXTERNAL_ENTITIES flag to false.

To achieve this, we choose to use an open-source
implementation of a recent variant of the SZZ algo-
rithm, called SZZ Unleashed (Borg et al., 2019) to
find a set of possible introducing commits. SZZ (Sli-
werski et al., 2005) was originally designed to provide
a process to automatically identify the fix inducing
lines to lines that are changed in a bug-fixing com-
mit. Since the vulnerability occurs in multiple files,
it is very likely that it has been introduced through
multiple commits. We run SZZ Unleashed as part
of our own proposed tool, called BugIntroducerMiner
to generate the VICs. BugIntroducerMiner is a sim-
ple wrapper around SZZ Unleashed and its purpose
is to run SZZ Unleashed on commits stored in VFC
dataset, in our case on project-KB. In Figure 2, we
can see the results of our tool for the VFC shown in
Figure 1, which has the commit hash c9b121...2

As discussed before, the fix is rather simple and
involves adding a line that sets a specific flag. How-
ever, due to the fact that the vulnerability occurs in
multiple files, SZZ found 17 candidate introducing

2In the figures, we show only part of the results to re-
main concise. Omitting data is marked with ’...’

CVE−2016 −3674:
c o m m i t s W i t h I n t r o d u c e r s :

c9b121a88664988ccbabd83fa27bfc2a5e0bd139 :
[ deec01beaa1bd878f7acda9f035a39238a217ae9 ,
bba4bc28e62073f9baac9c58cbc14de958df3b7e ,
72 e fd4a37f0ab81d2dfeb013d35ec7cbed0510b1 ,
. . .
1 b0f802b01632954c6ba2a6605592e3e2975f72f ,
4 fd39f2f2616d4ea9e1d25d30dc78931be01dfb0 ,
c9794d2f905985c8e45fa4d77525c130a5fd0a20 ]

r epo : h t t p s : / / g i t h u b . com / x−s t r e am / x s t r e a m

Figure 2: Result of running the BugIntroducerMiner tool on
the VFC corresponding to CVE 2016-3674.

commits. This is hardly manageable because a lot
of practical uses prefer that for each CVE entry we
have only few (ideally just one) introducing commit.
To make things worse, manually checking the candi-
date commits we found that many of them are false
positives or contribute little to the vulnerability intro-
duction. For example, the changes are made in com-
ments, or in source code next to the fix location (i.e
in a neighboring row that SZZ still considers), or hap-
pened in files that the user is not interested in (config-
uration files instead of java source files).

For these reasons, we applied an additional fil-
tering step, which we implemented as another tool,
FilterBugIntroducer. The filtering is based on rank-
ing the candidate commits according to their rele-
vance score that is calculated by measuring similarity
between the candidate commits and the source code
state before the fixing commit. The calculated scores
for our running example can be seen on Figure 3. We
will detail how these scores are calculated in the fol-
lowing sections, but here we briefly summarize their
purpose. For each candidate VIC we calculate a score
called relevance score (Overall score in the figure)
that measures how relevant that commit is as vulner-
ability introducing. This score is calculated by ag-
gregating the contribution scores (Total in the figure)
for each file corresponding to the VIC. Contribution
score corresponds to the file’s contribution to the vul-
nerability. It is calculated by multiplying the file’s
similarity to the fixing file (calculated as the portion
of identical lines in all lines) with the fixing file’s base
score, where the base score is just a simple metric
that denotes the quanitity of changes happened in that
specific file relative to all the changes in the commit.
In the figure, the Overall score denotes the relevance
score we used to rank the candidate VICs.

For our running example, we choose the top 2 can-
didate VICs, which are displayed in Figure 3. The
fix patch with the highest relevance score can be seen
in Section 5 (Figure 8), where we further discuss the
benefits of our results over plain SZZ. After manually
inspecting these commits, we can conclude that the
filtering produced reasonable results:

• 4fd39... introduces the vulnerability in multiple



files, for example, file SjsxpDriver.java is cre-
ated in this commit and the vulnerable part has
not changed until the VFC. In file StaxDriver
.java, the vulnerability is introduced in the
method added in this commit (i.e. the method
contains the instantiation without setting the ap-
propriate flag).

• 72efd... changed several files that are patched in
the fix with multiple smaller changes whose result
is changed in the VFC.

After this brief overview and motivating example,
in the following sections we are elaborating on the
way we are performing the mapping of VFCs to sets
of VICs, we explain how we calculate the relevance
scores and how can these results be used in general.

============ CVE−2016 −3674 ============

Repo : h t t p s : / / g i t h u b . com / x−s t r e am / x s t r e a m
SHA: c9b121a88664988ccbabd83fa27bfc2a5e0bd139

F i l e base s c o r e s :
S j s x p D r i v e r . j a v a : 0 .25982952983227936
S t a n d a r d S t a x D r i v e r . j a v a : 0 .3634863898817707
S t a x D r i v e r . j a v a : 0 .2073137200989827
WstxDr ive r . j a v a : 0 .16937036018696727

I n t r o d u c i n g commit SHAs :
. . .
− 4 fd39f2 f2616d4ea9e1d25d30dc78931be01dfb0

− S j s x p D r i v e r . j a v a :
S i m i l a r i t y : 0 .7142857142857143
C o n t r i b u t i o n : 0 .18559252130877096

− S t a x D r i v e r . j a v a :
S i m i l a r i t y : 0 . 4
C o n t r i b u t i o n : 0 .08292548803959308

− WstxDr ive r . j a v a :
S i m i l a r i t y : 0 .5714285714285714
C o n t r i b u t i o n : 0 .09678306296398129

Re levance s c o r e : 0 .3653010723123453
. . .

− 72 e fd4a37f0ab81d2dfeb013d35ec7cbed0510b1
− S j s x p D r i v e r . j a v a :

S i m i l a r i t y : 0 .2857142857142857
C o n t r i b u t i o n : 0 .07423700852350838

− S t a n d a r d S t a x D r i v e r . j a v a :
S i m i l a r i t y : 0 .21428571428571427
C o n t r i b u t i o n : 0 .07788994068895086

− S t a x D r i v e r . j a v a :
S i m i l a r i t y : 0 . 4
C o n t r i b u t i o n : 0 .08292548803959308

− WstxDr ive r . j a v a :
S i m i l a r i t y : 0 .21428571428571427
C o n t r i b u t i o n : 0 .036293648611492986

Re levance s c o r e : 0 .2713460858635453

Figure 3: The calculated relevance scores per candidate
VIC (Relevance score), contribution scores for each file cor-
responding to a VIC (Contribution), and the base scores for
each file in the VFC (File base scores) .

4 METHODOLOGY

One of the main contributions of this paper is a two-
phase method to generate VIC datasets from VFC
databases. The two phases of the method are:

1. Identifying the vulnerability introducing com-
mits (VICs): Run SZZ Unleashed for each
commit in a vulnerability fixing commit (VFC)
database to identify a set of candidate VICs. We
implemented a tool called BugIntroducerMiner
that is able to perform this phase for databases
structured like project-KB.

2. Filtering: Taking the previous phase’s output (the
SZZ results) as input, we perform a filtering phase
(using another tool we created, called FilterBug-
Introducer). The output of this phase is the top n
most relevant commits ranked by their relevance
scores, where n is an arbitrarily chosen number.

4.1 Phase 1 - Identifying the
Introducing Commits

The input to our proposed VIC extraction algorithm
is, as already discussed, a VFC database. We adjusted
this algorithm to databases structured like the project-
KB dataset, which we briefly described in Section2,
however, the general idea discussed here can easily
be applied to different datasets as well.

To understand the properties of a typical VFC
database, we describe the structure of the project-
KB dataset (i.e. the dataset we use to demon-
strate our method), which can be seen in Figure 4a.
The database contains its data organized into fold-
ers named after the CVE identifiers of the vulnera-
bilities to which fixing commits are published. Each
folder contains a statement.yaml file that describes
the found vulnerability fixing commits linked to the
CVE. Figure 4b shows an example statement file for
the vulnerability referenced as CVE-2008-1728. It
can be seen that a vulnerability fixing entry contains
some metadata, such as the textual description of the
vulnerability, the CVE id and a section fixes that iden-
tifies VFCs, such as the repository URL, the branch
and the commit hash.

The statement.yaml contain all the necessary in-
formation about the VFCs in the database. Our goal
was to extract the VICs for each VFC entry and we
made some decisions regarding the parsing:

• A statement.yaml file’s fixes section can have mul-
tiple elements. This happens when a vulnerability
is fixed in multiple branches or in different repos-
itories. Usually, the master branch of the main
repository is the first element of the fixes section,
so we chose that as the fix. Other entries are
typically the duplicates of the same fix in other
branches.

• A statement.yaml file’s fix (an element of the fixes
section) can have multiple associated commits.



a) Repository structure
<r e p o r o o t >/

s t a t e m e n t s /
CVE−2005 −3745/

s t a t e m e m t . yaml
CVE−2006 −1546/

s t a t e m e n t . yaml
. . .

LICENSE . t x t
README. md
. . .

b) Example statement.yaml file
v u l n e r a b i l i t y i d : CVE−2008 −1728
n o t e s :
− t e x t : Connec t ionManager Impl . j a v a i n I g n i t e R e a l t i m e

O p e n f i r e 3 . 4 . 5 a l l o w s remote a u t h e n t i c a t e d u s e r s t o
c a u s e a d e n i a l o f s e r v i c e ( daemon o u t a g e ) by
t r i g g e r i n g l a r g e o u t g o i n g queues w i t h o u t r e a d i n g
messages .

f i x e s :
− i d : DEFAULT BRANCH

commits :
− i d : c9cd1e521673e f0cccb8795b78d3cbae fb8a576a
r e p o s i t o r y : h t t p s : / / g i t h u b . com / i g n i t e r e a l t i m e / O p e n f i r e

Figure 4: Project-KB structure (a) with an example state-
ment file (b)

This happens when a vulnerability fix involves
multiple commits. In such cases, we choose the
latest commit as it will contain all the previous
changes, and as so it represents the final, ”fixed”
state.

After parsing the database, we get a set of VFCs
for which we try to identify VICs by running SZZ Un-
leashed, an implementation of the SZZ algorithm. An
example output of this process can be seen in Figure 2
(the complete output of this phase contains multiple
such CVE elements).

In summary, phase 1 involves parsing every vul-
nerability fixing entry in the source database to get a
set of VFCs. Then, SZZ Unleashed is run on each
VFC and the results from multiple SZZ Unleashed
runs are aggregated to get a candidate VIC database.

However, as we mentioned in Section 3, the SZZ
algorithm’s results are hardly usable as is for a num-
ber of reasons:

• SZZ takes into account every change in the com-
mit and it cannot be configured to detect changes
only in a special file type. So it is possible that
a change happens in a documentation file and the
change will generate many false positive introduc-
ing commits.

• SZZ does not offer a ranking on the provided re-
sults, so if a fix is complex, involving multiple
files and multiple changes per file, the extracted
number of introducing commits are too large to
handle, even if we exclude false positives. In such
cases, a way to choose the commit with most rele-
vance to the vulnerability would be welcome. For
example, running SZZ Unleashed on CVE-2016-
2141 results in a VIC set of 634 elements.

• Results are problematic to explain as no detailed
information is provided of the way the candidate
VICs were chosen, making it hard to draw conclu-
sions from them.

Taking these issues into consideration, we de-
signed a filtering phase, which aims to address the
above mentioned problems.

4.2 Phase 2 - Filtering

The input for this phase is the output of the first phase,
that is a list in which every element is a pair of VFC
and a set of candidate VICs (like in Figure 2). Our
aim in this phase is to provide a score for each candi-
date VIC that measures its relevance to the VFC. We
refer to this score as relevance score, and it can be
calculated for a pair of VFC and VIC. The score cal-
culation algorithm is shown in Figure 5a as a pseudo
code.

Relevance score is produced by iterating over each
file changed in the candidate introducing commit and
identifying and comparing it to the corresponding file
in the fixing commit - if it exists. This usually in-
volves an enhanced name check for equality that also
considers name changes through the git history. In
the pseudo code, the function get_by_name refers to
this action and returns the corresponding fixing file or
the None value if it is not found. If the value is not
None, it is possible to continue with calculating the
contribution score as the product of the fixing file’s
base score and the similarity between the fixing file
and the candidate introducing commit file. The final
relevance score is simply the sum of the contribution
scores calculated for all pairs of changed files in the
fixing and introducing commits.

The similarity method (denoted as
compute_similarity in the pseudo code) can
be an arbitrary function that quantifies similarity
between two texts. Here, for the sake of simplicity,
we decided to use a straightforward method: we
counted the ratio of identical lines in the two files
after excluding empty lines.

The other operand of the product is the base score
that estimates in what proportion does a file take part
in the VFC (i.e. the ratio of changed lines in the
file compared to the total lines changed in the fixing
patch). Every corresponding file in the candidate VIC
is weighted by this score as a VIC has more contri-
bution to the vulnerability if the files it changes have
greater part in the fixing (which means more changes
were needed in them as part of the vulnerability fix, so
they have more faulty parts). This score is determined
beforehand as a result of the algorithm presented in
Figure 5b. As part of calculating the base scores, we



a) Relevance score
r e l e v a n c e s c o r e = 0
f o r i n t r o d u c i n g f i l e i n i n t r o d u c i n g c o m m i t . f i l e s :

f i x i n g f i l e = f i x i n g c o m m i t . f i x i n g f i l e s . ge t by name (
i n t r o d u c i n g f i l e )

i f f i x i n g f i l e i s None :
c o n t in u e

f i l e s i m i l a r i t y s c o r e = c o m p u t e s i m i l a r i t y ( f i x i n g f i l e ,
i n t r o d u c i n g f i l e )

c o n t r i b u t i o n s c o r e = f i x i n g f i l e . b a s e s c o r e *
f i l e s i m i l a r i t y s c o r e

r e l e v a n c e s c o r e += c o n t r i b u t i o n s c o r e

b) Base score
summed length = sum ( f i x i n g c o m m i t . p a t c h e s )

f o r f i l e i n f i x i n g c o m m i t . a l l f i l e s :
i f f i l e . i s J a v a ( ) :

b a s e s c o r e = f i l e . p a t c h . l e n g t h / summed length
f i x i n g c o m m i t . f i x i n g f i l e s . add ( f i l e , b a s e s c o r e )

Figure 5: Pseudo code for calculating relevance score (a)
for a candidate VIC (introducing commit) and calculating
base score (b) while selecting Java files. In both cases the
VFC (fixing commit) is given

can filter on the files based on their types in the fix-
ing commit, in this particular example, only Java files
will contribute to the final relevance score of the VIC.
Please note however, this part is easily changeable and
as such the method can be freely extensible to any file
type.

After this second, filtering phase the final output
of the method is the proposed VIC dataset contain-
ing pairs of VFC and a set of VICs. Here, the set of
VICs are filtered by ranking them based on relevance
scores and keeping only the top n elements. A part of
the dataset extracted this way from project-KB can be
seen in Figure 6 (see Section 5 for the details).

5 RESULTS

In this section, we showcase the usage of our pro-
posed method by presenting the tools we developed
to perform the two phases: BugIntroducerMiner and
FilterBugIntroducer. We also describe the dataset
extracted from the project-KB database using these
tools,3 and briefly discuss the improvement of our
method over simply running the plain SZZ on the fix-
ing commits.

5.1 BugIntroducerMiner

To perform the first phase of our method (see Sec-
tion 4.1), we developed a Java tool called BugIntro-
ducerMiner. Information about its prerequisites and
additional details (such as the exact parametrization)

3Both the extracted VIC dataset and the tools are avail-
able publicly: https://doi.org/10.5281/zenodo.5785239

can be found in its README.md file located in the repli-
cation package.

BugIntroducerMiner is a simple Java program,
which iterates over the directory structure of a
project-KB like database and for each entry it runs
the bug introducer finder script from the SZZ Un-
leashed implementation. SZZ Unleashed is basi-
cally a toolchain, using a number of Python and
Java programs that, among other things, mine com-
mits from issue trackers, filter the results or perform
the bug introducing commit search. We use one of
these programs, the szz_find_bug_introducers-
<version_number>.jar file that searches for bug in-
troducing commits.

For each invocation of the jar file, BugIntro-
ducerMiner prepares the necessary inputs (for de-
tails, see the SZZ Unleashed repository (szz, c 14)),
for example, it clones the repository containing the
vulnerability and its fix. After running the pro-
gram, we get the results in a JSON file called
fix_and_bug_introducing_pairs.json. Note
that this file contains the results for a single run of
SZZ Unleashed but we need to run SZZ Unleashed on
the whole set of VFCs and aggregate its results with
BugIntroducerMiner. An example output for this pro-
cess is represented in Figure 2 (the complete output
might contain multiple instances of such structure).

5.2 FilterBugIntroducer

To perform the second phase of our method (see Sec-
tion 4.2), we developed the tool FilterBugIntroducer,
a Python program with the aim to calculate the rele-
vance scores introduced in Section 4, rank the com-
mits based on this score, and output the final VIC
database. As with this other tool, information regard-
ing the setup can be found in its README.md file.

The tool iterates over every CVE entry in the in-
put VFC database and calculates the relevance scores
for all the candidate VICs. To this end, for each
VFC it starts iterating over the corresponding VICs.
For each VIC, it calculates the similarity score for
the files that are also present in the VFC. To get in-
formation about the commit and their files, the tool
uses the GitHub API and some URL specific mecha-
nisms to overcome some limitations of the API, like
the limitation on commit files. The tool then aggre-
gates the data according to the method described in
Section 4.2 to calculate the overall relevance score.
If the relevance score is greater than zero, the com-
mit is considered relevant. It is important to note that
for each VFC we only consider the first m relevant
VIC, where m can be set by the optional parameter
--introducing-commit-limit (default is 30). This



is to prevent entries with big number of VICs to run
unexpectedly long.

After calculating the relevance scores, the tool se-
lects the top n VICs with the highest scores, where n
can be set by the optional parameter --n (default is 2).
The final result will be stored in the structure shown
in Figure 6 and will be saved to a YAML file named
filtered-results.yaml by default. The example
in the figure is extracted by running the tool with the
top n parameter set to 2 (i.e. at most 2 commits with
highest relevance scores are kept).

CVE−2008 −1728:
c o m m i t s W i t h I n t r o d u c e r s :

c9cd1e521673e f0cccb8795b78d3cbae fb8a576a :
− 6088 e21ca06 fb62790d9ea02 fa f8c884302e0cd9

repo : h t t p s : / / g i t h u b . com / i g n i t e r e a l t i m e / O p e n f i r e
CVE−2008 −6505:

c o m m i t s W i t h I n t r o d u c e r s :
04 f c e f a 4 4 b a e 1 2 6 3 c 7 c a d 6 9 8 6 a 9 d a f e d 6 7 f 0 1 6 4 f :
− e05d71ba329337ba63784555fbbe9bb8e0290543
− 78 e853bcb32ea91b84a070b3d2dc03ab14bc6b23

repo : h t t p s : / / g i t h u b . com / apache / s t r u t s
. . .

Figure 6: The resulting VIC dataset structure (a YAML file)

Some notes regarding the usage of FilterBugIntro-
ducer:

• Caching: The program generates heavy HTTP
traffic (for the project-KB database it accesses
over 130,000 HTTP URLs) mainly in the GitHub
domain. To avoid unnecessary traffic and to en-
able multiple runs of the tool, we implemented
a caching mechanism. If caching is enabled (as
is by default), the tool can be re-run with differ-
ent parameters without generating additional traf-
fic (for example, to extract a new dataset with dif-
ferent VIC limit). However, the cache might take
up considerable hard disk space (for project-KP, it
takes up 1̃3 GB).

• Documenting: By setting the --document argu-
ment to a path on the file system, the tool will
output the relevance and contribution scores while
calculating them for the VICs. An excerpt of
such a file can be seen in Figure 3, where we see
the scores generated for the VFC linked to CVE-
2016-3674.

5.3 Vulnerability Introducing Commit
Database from project-KB

Our final contribution is a VIC dataset extracted from
the project-KB VFC database with the tools imple-
menting our proposed method on. The VIC dataset
follows the structure shown in Figure 6 containing
564 VFC entries with at most two but at least one
VIC assigned to it, while the unfiletered SZZ gener-

ated dataset had VIC entries ranging from 1 to nearly
700 for each VFC. While generating the dataset, more
than 110.000 files were considered (corresponding
to fixing and introducing commits) from 198 open
source projects.

To demonstrate our approach, we present two
hand-picked examples to highlight the method’s ef-
fectiveness:

• CVE-2016-3674: This vulnerability is already
described in Section 3, however, here we elabo-
rate further on the impact of our filtering on the
SZZ extracted VIC list. Recall that the fix to this
vulnerability can be seen in Figure 1. We also
mentioned that SZZ Unleashed generated 17 can-
didate commits, two of them are shown in Fig-
ure 7. As it can be seen, in commits deec... and
3adb... the changes are clearly unrelated to the
vulnerability and as such their relevance scores
are lower than the selected commits with high rel-
evanace ( deec... has a relevance score of 0.055,
3adb... has 0.014). Moreover, in these commits
only one file was changed from the 7 files that are
part of the vulnerability.
Our method choose commit 4fd3... with the
highest relevance score (see Figure 3). Figure 8
shows that it is indeed the commit that introduced
the vulnerability in the StaxDriver.java file by
instantiating an object without setting the appro-
priate flag. Furthermore, in this commit, two other
files are also changed that contributed to the vul-
nerability in relevant places.

• CVE-2016-2141: This vulnerability is fixed in a
commit (cve, c 14b) that spans through a large
number of files (77) with some of them not be-
ing Java source codes (since projekt-KB is a Java
vulnerability dataset, non-Java files should not be
considered). Running SZZ Unleashed on this fix
(as part of running BugIntroducerMiner) gener-
ates 634 candidate introducing commits. This
high number of VICs is unacceptable for most of
the applications, so filtering is essential. Using
our method, we can conclude that the most rele-
vant VIC has the SHA of e2453...4 with a rel-
evance score of 0.23, which indeed seems to be
a good pick as it is associated with 12 vulnerable
files mostly with changes that are present in the
fixing commit (usually because these files are cre-
ated here and the vulnerable parts have never been
changed since).

4https://github.com/belaban/JGroups/commit/
e24538a4590684d910dbdac8762c85881f519dd5



deec01beaa1bd878f7acda9f035a39238a217ae9
++− x s t r e a m / s r c / . . . / i o / xml / S t a x D r i v e r . j a v a

− p r i v a t e boolean r e p a i r i n g N a m e s p a c e = f a l s e ;

+ / * *
+ * @deprecated s i n c e 1 . 2 , use an e x p l i c i t c a l l t o {

@link # s e t R e p a i r i n g N a m e s p a c e ( boo lean ) }
+ * /
p u b l i c S t a x D r i v e r (QNameMap qnameMap , boolean

r e p a i r i n g N a m e s p a c e ) {
− t h i s ( qnameMap , r e p a i r i n g N a m e s p a c e , new

X m l F r i e n d l y R e p l a c e r ( ) ) ;
+ t h i s ( qnameMap , new X m l F r i e n d l y R e p l a c e r ( ) ) ;
+ s e t R e p a i r i n g N a m e s p a c e ( r e p a i r i n g N a m e s p a c e ) ;
. . .

3adb51d6c3a1a20adf88f091b200dde676d10352
++− x s t r e a m / s r c / . . . / i o / xml / S t a x D r i v e r . j a v a

+ import com . t h o u g h t w o r k s . x s t r e a m . i o .
H i e r a r c h i c a l S t r e a m D r i v e r ;

import com . t h o u g h t w o r k s . x s t r e a m . i o .
H i e r a r c h i c a l S t r e a m R e a d e r ;

+ import j a v a . i o . I n p u t S t r e a m ;
+ import j a v a . i o . Ou tpu tS t r eam ;

p u b l i c H i e r a r c h i c a l S t r e a m R e a d e r c r e a t e R e a d e r ( Reader
xml ) {

+ l o a d L i b r a r y ( ) ;
+ t r y {

+ re turn new S t a x R e a d e r ( qnameMap , c r e a t e P a r s e r (
xml ) ) ;

+ }
. . .

Figure 7: Parts of two commits falsely identified as vulner-
ability introducing by SZZUnleashed for CVE-2016-3674.

4fd39f2f2616d4ea9e1d25d30dc78931be01dfb0
++− x s t r e a m / s r c / . . . / i o / xml / S t a x D r i v e r . j a v a

+ p r o t e c t e d XMLInputFactory c r e a t e I n p u t F a c t o r y ( ) {
+ re turn XMLInputFactory . n e w I n s t a n c e ( ) ;
+ }

Figure 8: Part of an introducing commit to CVE-2016-3674
which is selected with highest relveance score.

6 THREATS TO VALIDITY

The provided vulnerability introducing dataset has
not been validated manually, therefore we cannot rule
out the possibility of including false positive vulner-
ability introducing commits. To mitigate this threat,
we performed manual validation on a small random
sample, which confirmed that all the included intro-
ducing commits are correct. Nonetheless, a complete
manual validation is among our future plans.

The dataset contains at most two vulnerability in-
troducing commits for each vulnerability fix. There is
a chance that there are more valid introducing com-
mits that we omit from the dataset. However, we pro-
vide the dataset extraction tools as well with which
the dataset can be re-generated with adjusted number
of introducing commits.

As the published vulnerability introducing dataset

is extracted from the project-KB database, it’s quality
and accuracy influences our dataset. However, such
problems in project-KB are highly unlikely as it is a
manually curated dataset, therefore this threat has a
very low probability.

7 CONCLUSIONS AND FUTURE
WORK

In our work, we focused on source code-related vul-
nerability datasets, which are fundamental building
blocks of vulnerability scanning and detection meth-
ods. Although datasets containing fixing patches for
some vulnerabilities already exist for various pro-
gramming languages, there is a lack of so-called vul-
nerability introducing commit datasets, which would
be essential for creating and validating just-in-time
vulnerability detection approaches.

To address this issue, we proposed a novel method
that maps vulnerability fixing commits (VFCs) to a
set of vulnerability introducing commits (VICs) using
a recent implementation of the well-known SZZ al-
gorithm. Empirical results show that applying SZZ in
itself introduces a lot of false-positive commits; there-
fore, we extended the algorithm with an additional fil-
tering phase. We defined a so-called relevance score
for each commit that quantifies the level of connection
between a fixing and an introducing commit in terms
of common files and source code they affect. With
this relevance score, we were able to rank introduc-
ing commits reliably and perform filtering by keeping
only the highest-ranked elements.

We implemented our approach and published it as
two tools (implementing the two phases) described in
detail. To demonstrate the usage of these tools, we ran
them on a VFC database called project-KB and as our
main contribution, we extracted and published a new
vulnerability introducing dataset based on project-
KB. We manually inspected a sample of the produced
results and concluded that our method: i) correctly
assigns the highest scores to commits that introduce
vulnerable code parts, and ii) commits ranked at the
bottom are irrelevant for introducing the vulnerable
behavior.

Despite the encouraging first results, there are
some possible directions that we would like to address
in future work:

• We choose a simple approach to measure simi-
larity between texts. Investigating other ways for
quantifying similarity between source codes could
probably increase the accuracy of the method.

• Taking inspiration from the work of Tan et al. (Tan



et al., 2021), the ranking could be performed
with the use of machine learning models such as
RankNet. It would probably increase the resource
usage in exchange for a possibly more robust and
accurate method.

• Manually validating all the extracted VICs would
improve the confidence in the dataset quality and
further strengthen the validity of our proposed
method.

• Building efficient just-in-time vulnerability detec-
tion algorithms based on machine learning models
trained on the extracted VICs dataset.
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