IEEE Access

Multidisciplinary Rapid Review : Open Access Journal

Received April 12, 2022, accepted May 10, 2022, date of publication May 23, 2022, date of current version May 27, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3176865

Static Code Analysis Alarms Filtering Reloaded:
A New Real-World Dataset and
Its ML-Based Utilization

PETER HEGEDUS'’ AND RUDOLF FERENC

Software Engineering Department, University of Szeged, 6720 Szeged, Hungary
Corresponding author: Péter Hegedis (hpeter @inf.u-szeged.hu)

This work was supported in part by the Security Enhancing Technologies for the Internet of Things (SETIT) Project under Grant
2018-1.2.1-NKP-2018-00004, and in part by the Ministry of Innovation and Technology National Research, Development and Innovation
Office within the framework of the Artificial Intelligence National Laboratory Program under Grant RRF-2.3.1-21-2022-00004. The work
of Péter Hegediis was supported by the Bolyai Jdnos Scholarship of the Hungarian Academy of Sciences.

ABSTRACT Even though Static Code Analysis (SCA) tools are integrated into many modern software
building and testing pipelines, their practical impact is still seriously hindered by the excessive number of
false positive warnings they usually produce. To cope with this problem, researchers have proposed several
post-processing methods that aim to filter out false hits (or equivalently identify ‘“‘actionable” warnings)
after the SCA tool produced its results. However, we found that most of these approaches are targeted
(i.e., deal with only a few SCA warning types) and evaluated on synthetic benchmarks or small-scale
manually collected data sets (i.e., with typical sample sizes of several hundred). In this paper, we present
a dataset containing 224,484 real-world warning samples fixed (true positives) or explicitly ignored (false
positives) by the developers, which we collected from 9,958 different open-source Java projects from GitHub
using a data mining approach. Additionally, we utilize this rich dataset to train a code embedding-based
machine learning model for filtering false positive warnings produced by 160 different SonarQube rule
checks, one of the most widely adopted SCA tools today. This is the most extensive real-world public dataset
and study we know of in this area. Our method works with an accuracy of 91% (best F1-score of 81.3% and
AUC of 95.3%) for the classification of SonarQube warnings.

INDEX TERMS Static code analysis, filtering false positives, real-world dataset, code embedding, machine

learning.

I. INTRODUCTION
Static Code Analysis (SCA) tools became first-class citizens
of modern software development life cycles (SDLC). SCA
tools are relatively fast, cost-efficient, and easy to integrate
with continuous integration (CI) systems. They analyze the
source code of the software and can efficiently detect various
types of programming problems, like simple coding errors,
vulnerabilities, performance issues, or design mistakes.
Despite their many favorable properties, the efficient usage
of SCA tools in software development practice is still hin-
dered by the excessive number of false positive warnings they
usually produce. According to past studies, the ratio of false
positive reports can reach 30-60% [1], [2]. This amount of
false alarms (i.e., not actionable error reports) has a serious
negative effect on the application of SCA tools. They can

The associate editor coordinating the review of this manuscript and

approving it for publication was Chien-Ming Chen

55090

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

overwhelm the developers, thus shadowing real issues that
may become undiscovered at the “‘bottom of the pile”. Due
to this, developers often start to neglect most of the warnings
produced by the SCA tools and abandon them entirely in the
worst case [3], [4].

The core reasons for SCA tools producing such a high
number of false positives include the imperfect and shallow
static code analysis (mostly to keep a reasonable analysis
performance); applying an over-approximation in the detec-
tion strategy; the fact that some code patterns are considered
to be an issue in some contexts but not in the others, and
inherent limitations of static code analysis (i.e., handling
polymorphism, reflection, pointer analysis).

Several approaches are proposed in the literature to handle
this unwanted scenario by ranking SCA tool results, identify-
ing “actionable warnings” or filtering false positive reports.
Early methods started to appear in the late 2000s and mainly
used statistical approaches [2], [5], [6] to reduce the number

VOLUME 10, 2022

https://orcid.org/0000-0003-4592-6504
https://orcid.org/0000-0001-8897-7403
https://orcid.org/0000-0002-6502-472X

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

IEEE Access

of false reports. Later on, machine learning (ML) methods
became dominant [7]-[9], while most recent studies [10],
[11] focus on applying natural language processing (NLP)
techniques to represent the code context of warnings and
classify the SCA reports using ML models. This wide variety
of existing approaches to reduce false positive SCA reports
demonstrate the theoretical and practical importance of the
problem. Nonetheless, there are several common shortcom-
ings of the past studies, which leaves the problem of false
positive SCA warning reduction an open problem in general.

Koc et al. [10] already realized that even though the ini-
tial results of applying ML techniques to classify and fil-
ter false positive analysis reports have been promising, the
long-term potential and best practices for this line of research
are unclear due to the lack of detailed, large-scale empir-
ical evaluation. They also emphasize the need for larger,
real-world program datasets to validate the findings of prior
works, which were mostly conducted on synthetic bench-
marks. We made the same observations, which we can com-
plement as follows: we found that all the previous works
on false positive filtering are suffering from at least one of
the following limitations: i) the filtering algorithm is specific
to a limited subset of warnings (typically for 1-10 specific
types) produced by one or more SCA tools; ii) the filter-
ing approach is evaluated on synthetic benchmarks (like the
OWASP benchmark [12] or Juliet [13]) or a small manually
evaluated dataset (typically in the range of several hundreds
of warning samples); iii) the presented evaluation dataset is
company-specific and closed; therefore, the replication and
validation of the presented method are not possible.

In this paper, we try to bridge the identified gaps in previ-
ous studies by presenting a novel, open dataset of 224,484
real-world labeled SCA warnings (true and false positives
combined) in Java source code, produced by 160 different
rule checks of SonarQube [14], one of the most popular
SCA tools [15]-[17] today. We demonstrate the potential of
this rich dataset with an NLP and ML-based false positive
warning filtering approach. For collecting real-world data
of that magnitude, we took advantage of the popularity of
GitHub and the availability of millions of projects stored
there. We employed data mining techniques to create a train-
ing dataset that is one to three orders of magnitude larger
than any other existing dataset of real-world SCA reports we
know of (and typically 100x larger than publicly available
open-source datasets). We trained efficient ML models on
the dataset for identifying false reports using an NLP-based
code context representation (i.e., source code embedding with
word2vec [18]). We chose embedding to represent source
code as it eliminates the need for manual feature engineer-
ing and NLP-based code representation proved to be very
effective in other SE tasks as well [19], [20]. Additionally,
the method is computationally inexpensive compared to those
relying on symbolic execution [21], [22] or the calculation of
backward slices [9] for all the warnings to be classified.

Our method works with an accuracy of 91% (best F1-score
of 81.3% and AUC of 95.3%) for the classification of

VOLUME 10, 2022

SonarQube warnings. Recent works relying on NLP tech-
niques similar to ours [10], [11] are reporting promising
results as well; however, they were validated only for several
types of issues either on a small number of manually labeled
warnings (i.e., few hundreds) or a closed, proprietary dataset,
while our models are validated on a real-world dataset, con-
sisting of 224,484 labeled warning entries.

The main contributions of this work can be summarized as
follows:

o A real-world dataset' consisting of 47,015 true posi-

tive and 177,469 false positive SonarQube warnings of
160 distinct types, collected with data mining techniques
from 9,958 different open-source Java projects from
GitHub;

o A light-weight and general NLP based source code
embedding technique to represent the local context of
SCA warnings;

« ML models trained on the dataset to filter the false
positive warnings with high accuracy produced by one
of the most popular SCA tools today, SonarQube.

The paper is organized as follows. In Section II we list
the works related to ours. We present our data collection and
false positive filtering approach in Section III. The results
of the empirical evaluation of the methods are described in
Section IV. We list the possible threats to the validity of our
work in Section V and conclude the paper in Section VI.

Il. RELATED WORK

The realization that SCA tools tend to produce an excessive
amount of false positive alarms came soon after their inte-
gration into the daily development practices. It has triggered
a new line of research [23] starting from the early 2000s
that aimed to handle the situation by developing various
post-processing methods to reduce the amount of false posi-
tive warnings produced by the SCA tools.

Ayewabh et al. [6] manually classified the warnings pro-
duced by FindBugs’ on several open-source projects into
three classes: false positives, trivial bugs, and serious bugs.
Their goal was to evaluate the accuracy and value of the warn-
ings the tool reports. They argue that although developers are
willing to fix the reported issues, the false positives and trivial
bugs impact the practical applicability of the tool. As opposed
to this paper, we not just evaluate the accuracy of an SCA
tool but also propose a concrete ML-based technique to post-
process the results for removing false positive alarms.

Kremenek and Engler [2] proposed the so-called Z-ranking
technique, a statistical model (i.e., counts successful and
unsuccessful checks) to rank those error messages most likely
to be valid errors over those that are least likely. The authors
evaluated their method with three different warning types
produced by the MC C static checker tool (lock errors,
free errors, and format string errors) on the source code of
Linux and a proprietary system. They found that within the

1https://doi.org/10.528 1/zenodo.5885653
2http://findbugs.sourceforge.net/

55091

IEEE Access

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

first 10% of error report inspections, Z-ranking found
3-7 times more bugs than the average number of bugs found
by random ranking. In contrast to this work, we aim to
identify a wide range of false positive warnings, namely
160 different SonarQube alarm types in Java systems. Our
method is based on the structural context of the error reports,
which we capture by source code embedding.

Kim and Ernest [5] showed that the built-in prioritization of
warnings in SCA tools tends to be ineffective. They observed
the warnings from three bug-finding tools, FindBugs, JLint,
and PMD, for three subject programs, Columba, Lucene, and
Scarab. Only 6%, 9%, and 9% of warnings are removed by
bug fix changes during 1 to 4 years of software development;
the remaining approximately 90% of warnings are likely to
be false positives. They proposed an automated history-based
prioritization algorithm: if a warning instance from a warning
category is eliminated by a fixing change, they assume that
this warning category is important. Otherwise, the warning
is assumed to be false positive. Our data collection strategy
is similar to this; however, we mark a warning to be false
positive only if the developers explicitly ignore it. Addition-
ally, our filtering algorithm does not work at the level of
warning types but individual alarm reports, which means that
a warning might be valid in particular code contexts but false
in others. Finally, our data samples for training and evaluation
come from thousands of systems and not just three.

Hackman and Smith [24] proposed to rank alerts generated
from automated static analysis tools via an adaptive model
that predicts the probability of an alert being a true fault in
a system. The model is based upon a history of the actions
the software engineer has taken to either filter false positive
alerts or fix true faults. As a continuation of this research,
Heckman and Williams [7] proposed a process for build-
ing false positive mitigation models using machine learning
techniques based on 51 code characteristics (i.e., software
metrics, code history, code churn). They evaluated the mod-
els on the FAULTBENCH benchmark [25] and obtained
88-97% average accuracy. We have a similar goal in this
paper; however, we did not apply manual feature engineering
but employed source code embedding to represent source
code for ML models. Furthermore, we did not use the
FAULTBENCH benchmark for evaluation as it is outdated
(requires Java 1.5) and contains only small subject systems.
Instead, we created and published the largest real-world
dataset we currently know.

Tripp et al. [26] presented an interactive false positive fil-
tering method (Aletheia) that requires the user to manually
classify a subset of the warnings. Then, based on this small
sample, an automatically constructed statistical filter is run
over the remaining warnings, removing the ones classified as
false positives. Although the tool proved effective, it targets
JavaScript programs embedded into websites. Contrary to
this, we propose a fully automated method for filtering false
positive SonarQube warnings in Java programs.

None of the research efforts mentioned so far incorporate
detailed information about the structure of the actual code that

55092

is analyzed, which we think is essential to enhance current
false positive classifiers. Koc et al. [9], [10] were the first to
develop false positive filtering techniques that capture the
actual code context of the warning to be classified. In [9],
the authors train a Bayesian classifier and a Long Short-Term
Memories (LSTM) neural network to filter false positive
warnings in Java code produced by the FindSecBugs SCA
tool. The authors trained their models on bytecode instruc-
tions of the reduced code context (either the method body
containing the warning or the backward slice starting from the
warning line). They evaluated their models on the OWASP
benchmark [12], which contains synthetic security bugs
(2,371 data points altogether). The best result was achieved
by LSTM using the method body context (89.5% accuracy).
In [10] the authors extended the scope of their study and
evaluated further code representation and ML methods on
14 real-world programs with manually validated FindSecBug
reports (194 true positives and 206 false positives). The
authors pinpointed that the types of false positive security
issues are inherently different in the synthetic OWASP bench-
mark compared to the real-world dataset. Overall, their results
suggest that using ML models on source code embedding of
the warning context outperforms other methods. Despite the
similarities between these works and ours, there are several
significant differences. Koc et al. evaluated their method
on only six specific security-related FindSecBugs warnings,
while we focus on 160 different rule checks of SonarQube.
Our ML methods are trained on a dataset containing hun-
dreds of thousands of warnings from thousands of projects
as opposed to the 400 warnings from 14 programs used by
Koc et al., which is a clear improvement in the real-world
empirical evaluation aspect. Furthermore, we take a fixed set
of lines before and after the warning line as an embedding
code context, which is a refinement of their method consid-
ering the whole method body. It reduces the time required
for prediction while maintaining high accuracy (method body
context worked best for Koc et al. with LSTM). It also has the
advantage of omitting the need for costly code analysis, like
slicing or PDG construction (both used by Koc et al. [10]).

Ruthruff ef al. [27] observed code, churn, and history met-
rics to build a logistic regression model to filter out false pos-
itive FindBugs reports. They applied a quick screening test to
eliminate lots of these metrics and kept the ones that could
be calculated quickly and had appropriate prediction power.
In a study at Google involving 1,652 triaged warnings, the
authors found that the prediction accuracy of false positives
was 85%.

Seongmin et al. [11] presented an automated classifier
based on Convolutional Neural Networks (CNNs) for filter-
ing false positive reports. They trained the CNN model using
atotal of about 10K historical static analysis alarms generated
by six C/C++ static analysis checkers for over 27 million
LOC and their labels assigned by actual developers. The
authors applied a word2vec based token representation to
embed the source code. They achieved an average of 79.72%
precision across all six checkers.

VOLUME 10, 2022

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

IEEE Access

Yuksel and Sozer [8] built and compared various binary
classifiers using ML to distinguish between actionable and
unactionable SCA warnings. They used ten characteristics
(including the developers’ idea) of the alerts to determine
if they were actionable. The evaluation dataset consisted of
1,147 manually inspected alerts.

All of the above works are closely related to ours and
evaluate the methods on real-world datasets; however, they
all rely on proprietary and closed source subject systems and
datasets. Nonetheless, even the largest dataset these studies
use contains 10K samples, whereas our public dataset con-
sists of more than 200K warnings from almost 10K open-
source projects.

There are other, more formal methods for reducing
false positives of some specific warnings. For example,
Kim et al. [21], and Arzt et al. [22] apply symbolic execution
and SMT solvers for reducing the false positive BufferOver-
flow warnings and Android alerts, respectively.

Nguyen [28] combines static analysis and deductive ver-
ification to reduce false positive warnings reported by SEI
CERT C [29] compatibility checkers.

lll. APPROACH

We focus on filtering false positive warnings produced by
SonarQube in Java code. As outlined in Section I, lots of issue
reports might be false positives that degrade the practical
usefulness of an SCA tool. The problem of detecting and
eliminating false reports is complicated as the same type of
warnings might be valid in certain situations and code con-
texts, while false hits in others. In this section, we overview
SonarQube and its use in practice that we leverage for identi-
fying true positive and false positive reports. We describe how
we mined real-world samples for such true positive and false
positive warnings on GitHub. Finally, we outline our method
for representing source code contexts of SCA warnings and
an ML-based approach that demonstrates the potential lying
in the collected data for identifying false positive reports
based on these context embeddings.

A. SONARQUBE OVERVIEW

SonarQube® is an open-source platform for continuous
inspection of code quality to perform automatic reviews
with static analysis of code to detect bugs, code smells,
and security vulnerabilities in multiple programming lan-
guages. SonarQube is widely adopted by practitioners [30]
and attracts research focus [16], [31] as well.

Let us consider the code snippet shown in Listing 1. Sonar-
Qube will issue a warning report of type squid:S1643 to
line 3 of this snippet, which corresponds to the rule *“Strings
should not be concatenated using ’+’ in a loop”. This rule is
meant to detect performance issues both in terms of running
time and memory consumption.

The developers might react to this information in three
different ways:

3 https://www.sonarqube.org/

VOLUME 10, 2022

1 String str = "";

2 for(int i = 0; i < arrayOfStrings.length; i++) {

3 str = str + arrayOfStrings[i]; // <<< squid:
S1643

4 }

Listing 1. Sample Java code with a squid:S1643 warning.

—

StringBuilder bld = new StringBuilder();

2 for(int i = 0; i < arrayOfStrings.length; i++)
{

3 bld.append (arrayOfStrings[i]);

4 }

5 String str = bld.toString();

(a) Fix the SonarQube warning (developer action A2)

1 String str = "";

2 for(int i = 0; i < arrayOfStrings.length; i++)
{

3 str = str + arrayOfStrings[i]; //NOSONAR

4 }

(b) Explicitly ignore SonarQube warning (developer action A3)

Listing 2. Possible developer actions to a SonarQube warning.

Al. They do nothing. Either because they do not use Sonar-
Qube and the issue remains undiscovered, or they do
use it but simply ignore this warning.

A2. They explicitly change the implementation so that
SonarQube will not issue the warning in question to the
fixed version anymore (see the snippet on Listing 2a).

A3. They explicitly ignore this warning by placing a
“//NOSONAR” comment into line 3, which instructs
SonarQube not to issue a warning to that location any-
more (see the snippet on Listing 2b).

We exploit the developer actions A2 and A3 to identify
true and false positive code samples, respectively. The tech-
nical details of the data collection process are described in
Section III-B. A1 might be the sign of false positive reports
as well but it is not conclusive (we do not know for sure if
the warning stays in the code because developers consider it
false positive or if it simply remains undiscovered); therefore,
we do not deal with these cases. In contrast to action Al,
actions A2 and A3 are both explicit; the developers express
their opinions about the issue by deliberately fixing or ignor-
ing it, thus admitting it was a true or false positive warning.

B. DATASET

We focused on the warning reports issued by SonarQube in
this work. To build a real-world dataset suitable for building
false positive SCA warning filtering methods, we exploited
the observations of possible developer actions to an issued
SonarQube warning. To create the dataset, we mined the
history of Java projects on GitHub. To get as many samples as
possible, we did not apply any restrictions on the projects we
included. We started to explore all the Java projects by time
intervals and kept those having any indications of SonarQube
usage (see details below). We mined data back until the
year 2010, the time when SonarQube entries first appear in
code histories. We ended up having warning samples from
9,958 GitHub different Java projects.

55093

IEEE Access

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

True positive samples come from SonarQube issue reports
that have been fixed by the project development team (there
is a commit that removes the warning from the code base).
It is straightforward that if the developers explicitly fix a
SonarQube warning, they consider this report to be a valid
(i.e., true positive) hit (this corresponds to action A2
described in Section III-A). For collecting false positive
samples, we take advantage of the ignore mechanism pro-
vided by SonarQube (i.e., placing the particular comment
“//NOSONAR” into the code base). We exploit the fact that
if developers explicitly put these ignoring comments into
the source code, they consider the warnings on that location
to be false hits (this corresponds to action A3 described in
Section III-A). Since detecting developer actions A2 and A3
require different approaches, we took separate data mining
steps for collecting true positives and false positives. The
technical details on the mining process for true positive and
false positive SCA warning samples are detailed below (see
Sections III-B1 and III-B2, respectively).

1) MINING TRUE POSITIVE SAMPLES

To find true positive samples, i.e., SonarQube warnings that
have been fixed by the developers, we analyzed the code
history of Java project repositories back until 2010 to find
explicit SonarQube warning fix commits. We employed both
the REST [32] and GraphQL [33] APIs provided by GitHub
to perform the data analysis steps depicted in Figure 1.

The process starts with finding all the issues with
attached pull requests that contain the term ‘‘sonar” in their
title, description, or comments. This step is a very rough
pre-filtering of all the possible issues related to SonarQube
analysis. Then we collected all the related pull requests
attached to these issues and all the commits belonging to the
pull requests. For these first couple of mining steps, we used
the GraphQL API of GitHub.

Next, we processed the pull requests and the collected
commits with a Python script to select those that contain an
exact reference to one of the SonarQube rules. Specifically,
we kept only the commits that either had a commit message
or belonged to a pull request that matched with one of the
following regular expressions:

r’ (squid:s\d+)’
r’ (squid:\w+)’
r’ (squid
r’ (squid

Once we identified the warning fixing candidate commits,
we searched for their parent commits to get the previous
version of the source files modified by the commit. These
previous file versions were likely to contain the SonarQube
warnings that were removed by the fixing commit. We stored
these previous file versions and the commit diffs (i.e., fixing
patches). For these steps, we used the REST API of GitHub.

Finally, to verify that the heuristically identified warn-
ing removal commits do fix the SonarQube issues, we ran
SonarQube both on the previous and current file versions

55094

]
l search(TYPEISSUE, query:"is:pr sonar language java created:date”) |
J

(Collecting pull requests connected to issues J
GraphQL l
[Collecting commints connected to pull requests J

v

Filtering: commit message contains the word "squid”

!

Collecting files affected by selected commits

{

Finding previous file versions based on parent commits

|

Saving code diffs (patches)

{

[Running SonarScanneron parent files (that still contain the squid)]

[Check if the mentioned squid is found in the file within the patch regiﬂ

FIGURE 1. The data mining steps to identify true positive SonarQube
warnings.

and kept only those where the previous version contained the
matched “squid” (SonarQube warning) in the code region
of the fix patch, while the current version did not. These
previous file versions containing the later fixed SonarQube
warnings formed our set of true positive samples, 47,015
warnings in total from 19,653 different Java source files.

To deal with the excessive amount of data returned by the
queries and handle GitHub API limitations, we divided the
queries into time ranges. Therefore we applied a date param-
eter in each query and summarized the results afterward.

2) MINING FALSE POSITIVE SAMPLES

To locate false positive SonarQube reports (i.e., to identify
action A3 from developers), we had to perform a code search
in the Java project repositories on GitHub. Since code search
is unsupported in the GraphQL API, we performed all the
mining steps with the help of the classic REST API. Figure 2
depicts the whole process.

We started by performing a code search with the search
term NOSONAR. We then downloaded the sources of all the
matched source files, removed the ¢//NOSONAR” com-
ments from them, and ran SonarQube on these modified files.
The reported SonarQube warnings in the NOSONAR lines
formed our set of false positive samples, 177,469 warnings
in total from 18,333 different Java source files. It was not
uncommon to get multiple SonarQube warnings on the same
NOSONAR lines, in which cases we considered all these warn-
ings to be false positives.

3) POST-PROCESSING AND STATISTICS OF THE DATASET

During the data collection, we identified 337,438 warn-
ing instances from 492 different SonarQube issue types
across 11,269 Java projects (47,220 true positive warn-
ings from 175, while 290,218 false positive warnings from

VOLUME 10, 2022

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

IEEE Access

e s ey

search_code('NOSONAR language:java created:date’)

Finding //INOSONAR in the file and remove it

Rﬁfl_[< £ =3 .ﬁ\l- | _7,).7. 3

Running SonarQube on modified files

Collecting found squids in the /NOSONAR line

L=

FIGURE 2. The data mining steps to identify false positive SonarQube
warnings.

317 different SonarQube issue types). However, for building
proper ML models, we needed only the issue types having
samples both from the true positive and the false positive cat-
egory. Therefore, we performed a filtering step and removed
those SonarQube issue types for which we had only true
positive or false positive samples. After this filtering step,
we ended up with 160 warning types and 224,484 warning
samples in total coming from 9,958 different Java projects.
Figure 3 shows the distribution of true positive and false
positive samples within the top 10 SonarQube warning types
having the most instances in the dataset. The unique ids of
the SonarQube issue types (i.e., squid) can be seen on the
left side, while the total number of warning samples collected
from that issue type is displayed on the right side. For the
complete distribution of samples in all the 160 issue types,
see the replication data package.*

4) EXAMPLES OF THE MINED WARNINGS

To motivate our work and demonstrate that warnings
are indeed valid in one context but false positives in
others, we show an example from the mined dataset.
Listings 3a and 3b both show code snippets from two different
Java projects that contain a “Null should not be returned from
a “Boolean” method (squid:S2447)” SonarQube warning
(at line 5 in both cases). However, the warning in Listing 3a
is explicitly ignored using the *“//NOSONAR” comment,
thus considered to be a false positive. The developers of the
code even added an explanation why this warning should
be omitted: “null is used for further comparison™. In con-
trast, the code shown in Listing 3b is a fix patch, where the
developers changed the null returning line to an explicit
return Boolean.FALSE. Therefore, in this case, the
developers agreed with the warning and fixed the issue,
which is an example of a true positive report for the same
squid:S2447 warning.

This example nicely demonstrates that turning on and off
entire SonarQube rules will not solve the issue of false pos-
itives. Moreover, turning off an entire rule that sometimes
produces a false report will hide all the true warnings it might
have produced as well. Our idea (similar to [10], [11]) is
to use the code context of the issued warning (e.g., some
lines before and after the reported line) to capture differences

“4https://doi.org/10.5281/zenodo.5885653

VOLUME 10, 2022

mFP ™ 0% 20% 40% 60% 80% 100%

squid:52208 I 50909
squid:S00115 I 27048
squid:S00100 I 16015
squid:S1166 I | 13388
squid:S2293 N 11987
squid:UIC . o763
squid:S00116 I 9080
squid:S1214 I 6683
squid:S106 I 4907

squid:S1213 I 4163

FIGURE 3. The distribution of true positive (TP) and false positive (FP)
samples for the 10 most common SonarQube warning types.

private Boolean getBooleanValue (Row row) {
if (aggregation == Aggregation .MIN [I
aggregation == Aggregation .MAX) {
return row. getBool (BOOL_POS) ;
} else {
return null; //NOSONAR, null is used for
further comparison

o —

}
}

e Wb W

(a) Ignored (i.e., false positive) squid:S2447

1 @@ -152,7 +152,7 @@ public
JanusMediaConstraints getMedia () {

@Override
public Boolean getTrickle () {
- return null;
+ return Boolean.
FALSE;

AN AW

-

}

(b) Fixed (i.e., true positive) squid:S2447

Listing 3. Null should not be returned from a “Boolean” method
(squid:S2447) false and true positive samples.

in code structures where particular rules are more likely to
be true or false. For instance, in this particular case, one
difference might be the presence of the “‘else” keyword in
the context of the false positive report and its lack in the true
positive case. Since most of the SonarQube warning types
detect pretty localized issues, we hypothesize that a local
context of the warning might contain enough information to
distinguish between true and false reports. The details on
how we embed the source code context to extract feature
vectors for machine learning and how we train the models
are described in Section III-C.

C. METHOD FOR IDENTIFYING FALSE POSITIVE
WARNINGS

Built on the collected real-world warning samples, we want to
perform a binary classification task using ML models on the
code snippets containing a SonarQube warning report. The
input of the models is the vector representation (i.e., source
code embedding) of the code context containing the warning

55095

IEEE Access

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

report. The output of the models is a binary label whether the
particular SonarQube warning is a true or false report in the
given code context.

1) CODE CONTEXT REPRESENTATION

To represent the source code context of a SonarQube warning,
we used an NLP approach, word2vec [18], on the tokenized
form of the program. It means that we took the source code
line of the SonarQube warning and its preceding and fol-
lowing n lines. The exact value of n can be adjusted. Once
we have the code context snippet of a warning, we run the
javalang open-source Java lexer and parser tool.’

We replaced each line in the context with the sequences
of tokens (keywords like package, for or modifiers like
public or types like int, 1ong) produced by the lexer.
We extended the base tokens of javalang with three others
for single and multiline comments and javadoc comments.
We used the set of different tokens as our vocabulary for
word2vec and trained a language model for these words using
Gensim [34]. We ended up with 66 different tokens as our
final vocabulary size. For the corpus of Java projects needed
to train the word2vec model, we used the public dataset used
to create code2vec [35]. We employed the medium set with
0.5 million Java files.

Once we have the word2vec vectors for the individual Java
language tokens, we are ready to assemble the final feature
vectors for the code snippets that can be fed into the ML
training/prediction pipeline directly. The complete process is
depicted in Figure 4.

The size of the feature vector will be the following:

1604+ 2 x n+4 1) X wgize + 1,

where n is the number of lines we include in the context
before and after the warning line and wy;,, is the length
of word2vec vectors for the language tokens. The first
160 columns in the feature vector are the one-hot encoding of
the SonarQube warning type we observe in the corresponding
code snippet. Then, for each line in the source code context
(the preceding, succeeding, and warning lines), we calculate
the average of the word2vec vectors for the tokens represent-
ing this line and concatenate them. Lastly, the final column
stands for the class label we want to learn, namely, if the SCA
warning report is true or false positive in the code context.
Since we want to evaluate the ML models from the aspect
of false positive detection performance, we use class label 1
for false positive instances and class label O for true positive
instances.

2) ML MODELS FOR WARNING CLASSIFICATION
To solve the classification problem, we tested four differ-
ent algorithms on the feature vectors produced as described
in Section ITI-C1:
o Decision tree (DTree) — a classic decision tree algorithm
implemented in scikit-learn®

5 https://github.com/c2nes/javalang
6https:// scikit-learn.org/stable/

55096

« Naive Bayes (NBayes) — the Naive Bayes approach

implemented in scikit-learn

« Random forest (RForest) — a random forest algorithm

implemented in scikit-learn

o Neural Network (NeuralNet) — a Neural Network imple-

mented in tensorflow’

Besides these common algorithms for classification,
we experimented with SVM too, but the training was slow
while it produced initial results that were not better than the
others; therefore, we excluded it from the further evaluation.
We performed a hyper-parameter optimization using Hyper-
Opt,® a tool designed to automate the search for optimal
hyper-parameter configuration based on a Bayesian Opti-
mization and supported by the SMBO (Sequential Model-
Based Global Optimization) methodology.

To evaluate the models, we applied 10-fold cross-
validation by splitting the dataset in 80-10-10% ratio for train-
ing, hyper-parameter optimization, and testing. The method
of separation into folds requires some previous consider-
ations. We applied a stratified sampling per squid type,
which means we created the folds so that each warning type
(i.e., squid) is represented and the distribution of the true
and false positive instances within the warning types is
preserved.

Since the training data was imbalanced (we collected
3x times as many false positive samples as true positives),
we applied upsampling during the training phase. To have
the best possible effect, we did not perform the upsampling
for the whole training dataset, but rather upsampled the
instances within each SonarQube warning type. It means that
we selected instances for upsampling from each SonarQube
type until we achieved even distribution of true and false
positives within that warning type. It made sure that we
have balanced class labels not just at the global training set
level, but at the level of individual SonarQube warning types
as well. We achieved upsampling by adding some noise to
randomly selected instances from the minority class [36].
More specifically, we created new, synthetic training samples
so that for each randomly selected instance from a particular
warning type the 1% of the vocabulary average (i.e., the mean
of the word2vec vectors of each token in the vocabulary) has
been added.

IV. RESULTS

In this section, we detail the obtained results for the four ML
models trained for detecting false positive SonarQube warn-
ing reports. First, we describe the selected hyper-parameters
for the word embeddings and ML models that we found
by using the HyperOpt hyper-parameter search tool. Next,
we outline the prediction performances of the ML models
with these hyper-parameters. Finally, we demonstrate the
working of these predictions through a code sample.

7https://www.tensorfloonrg/
8http://hyperopt. github.io/hyperopt/

VOLUME 10, 2022

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

IEEE Access

e
— 14
- - 11

squia tokenize
®
— s1t1 S1t2 s1t3 "
Shaein; - Jeush.
M ignored 1 l
m fixed 0 ,,\\\“f:‘u-‘“'{t‘m“’“‘
et average [sivl

S oo
" SV .‘1\1“ G\..nﬂ“
o
B e [s3w1

ooh o
-.'!\“!_,y?“!b?‘u\i"’o‘

ity
e
L Sl 8
i St

Squid type: one hot encoded

Size: 160

FIGURE 4. The final embedding process.

A. BEST HYPER-PARAMETERS

In the context of ML-based prediction, finding optimal
hyper-parameters is a common task we need to solve. For
this, we used an automated tool called HyperOpt. All the
results presented later are obtained using the algorithms and
the parameters described here.

1) Word2vec EMBEDDINGS AND CODE CONTEXT

‘We found that the word2vec vectors of size 64 work best, with
a window size of 5. These values were obtained empirically
by performing a grid search over the parameters 32, 64, 128,
and 200 for vector size and 2, 5, 8, and 10 for window size.
For n, the number of lines we consider before and after the
warning line, we chose 2. It means that the code context we
work with is 5 lines long. It gave much better results than
selecting a context of 3 (n=1, 1 line before and after the
warning line). However, adding more lines to the context did
not improve the overall prediction performance significantly.
A context of 7 (n=3, 3 lines before and after the warning
line), for example, produced practically the same results as
the context of 5 in terms of performance measures (best F1
of 0.81 vs. 0.803 and best accuracy of 0.901 vs. 0.902 for
NeuralNet for contexts of 7 and 5 lines, respectively). Further-
more, we observed that models based on the larger context
had different confusion matrix characteristics. They produced
about 20% more cases on average where we misclassified
TP warnings to FP, which we consider the more dangerous
direction of error (i.e., developers might miss real warnings).
Therefore, we chose the smaller context.

2) NeuralNet
The input dimension of the NeuralNet is 480 (160 + 5 x 64).
We used three hidden dense layers with 800 neurons in each

VOLUME 10, 2022

— 52wl

R e W

\‘_‘______'/
: code2vec
tokenize
¢ corpus
s1t1 s1t2 5183, /“__'____\\
s2tl s2L2 23 ...

s3t1 s3t2 533 ..

M

s1v300]
52v300]
. $3v300]

Sy

line 1 line 2
Class

Size: embedding vector size Size: 1

and two dropout layers with a dropout rate of 0.2. The activa-
tion function at the hidden layers was ReLU, while we used
a sigmoid activation at the output layer. Further parameters
were binary cross-entropy loss function, Adam optimizer, and
alearning rate of 0.0001. The training ran for 100 epochs with
a batch size of 512.

3) DTree

For the decision tree model, we used the Gini criterion, a max
depth of 250, minimal samples in the leaves of 1, minimal
samples split of 10, and the best splitter strategy.

4) RForest

For the random forest algorithm, we used the entropy crite-
rion, a max depth of 100, maximal features of 480, minimal
samples in the leaves of 1, minimal sample split of 10, and
estimators of 250.

All the hyperparameters of the above ML algorithms
have been identified by HyperOpt, while the Naive
Bayes (NBayes) model does not require any hyper-
parameters.

B. ML PREDICTION PERFORMANCE RESULTS

Note that we used a class label of *1’ to denote false pos-
itive warnings and *0’ for true positive reports. Therefore
we present the standard performance measures for the false
positive class labels. Table 1 summarizes the best achieved
results for the four different ML models. These numbers are
the averages over the 10-fold cross-validation.

NeuralNet achieved the highest recall. Overall, RForest
performed the best; it made predictions with an accuracy
of 0.91. Its precision of 0.874 is also the best (however, all the
models performed well). It means that more than 87% of the
warnings that the RForest model classified as false positive

55097

IEEE Access

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

TABLE 1. ML performances using the best hyper-parameters.

Algorithm [Accuracy Fl-score Precision Recall MCC
DTree 0.872 0.750 0.755 0.745 0.664
RForest 0.910 0.813 0874 0.760 0.757
NBayes 0.870 0.727 0.789 0.675 0.646
NeuralNet 0.902 0.803 0.831 0.778 0.739

TABLE 2. Confusion matrix for the RForest algorithm.

Predicted
Actual False alarm True alarm
False alarm 846 (TP) 88 (FN)
True alarm 270 (FP) 3118 (TN)

reports were indeed false positives. It is favorable as we want
to filter out as few as possible true warnings. The recall of
0.76 means that the model can detect (and filter out) 76% of
all the false positives produced by SonarQube (in this aspect,
NeuralNet performed even better with 0.778). The best F1-
score is 0.813; the model performances are quite balanced in
terms of precision/recall.

Table 2 displays the confusion matrix of the RForest algo-
rithm on the test set. As can be seen, the number of false pos-
itives compared to the true negatives (i.e., the true-negative
rate) is low (8 %), meaning that the model filters out only a few
true SonarQube alarms, which is an essential property since
when our model falsely identifies a true positive warning as
a false hit, developers might not fix a real issue. Nonetheless,
our method can be converted to rank warnings instead of
filtering them, so we never lose any true positive warnings
but can still help developers focus their effort.

Similarly, the number of false negatives is low compared
to the true positives (i.e., recall is high). This property
(i.e., what portion of the false warnings can be filtered out
with our method) is important for the practical relevance of
the approach. Failing to identify a false positive warning will
result in developers having to deal with a false alarm. Even
though it causes no harm, it can be inconvenient; luckily, the
model detects 76% of such false alarms. In line with the high
accuracy measures, both the number of true positive and true
negative instances are high, meaning that the model is capable
of filtering out false alarms, but at the same time, it precisely
identifies the true (i.e., actionable) warnings.

Looking at the type-wise performance measures, we can
see that the models do not perform equally well for the
different warning types. The accuracy varies from 0% (for
squid:S1210, squid:S00114, and squid:S3864) to 100% (for
squid:S1067, squid:S2225, squid:S4201, and squid:S1215)
by SonarQube warning types with an average of 82.1%. Aver-
age precision, recall, and F1-scores for the 160 warning types
are 70.54%, 55.34%, and 70.73%, respectively. The complete
breakdown of accuracy and other performance measures to
the level of individual SonarQube warning types can be found
in the replication data package.

We did not perform a systematic evaluation of failed
cases (i.e., when a model misclassifies a warning); how-
ever, we investigated a small random sample manually.
We observed that the model fails mostly for warnings with a

55098

500

400

i
300 H
0.0 V]

Nr. of samples

200

100

il .

2 0.4 06 08 10
Prediction score

(a) Prediction scores for true positive warnings

500 -

2000

1500

Nr. of samples

1000

h--

500

00 02 04 06 08 10
Prediction score

(b) Prediction scores for false positive warnings

FIGURE 5. Distribution of NeuralNet prediction scores.

low number of instances in our training/test sets. These warn-
ings have different severity ranging from minor to blocker
according to SonarQube. Nonetheless, a deeper analysis is
required to formally investigate the phenomena.

To get a better picture of the class labels assigned to the
warnings, we performed a deeper analysis of the NeuralNet
results. We chose to evaluate NeuralNet over the best per-
forming RForest because the analysis required us to have a
continuous prediction value that comes naturally for Neural-
Net but not for the other algorithms. Additionally, NeuralNet
performs close to RForest in every aspect, and it produces
the highest recall. Therefore, we plotted the histograms of the
NeuralNet model output scores (a continuous value from the
[0,1] interval). Figure 5 shows the distribution of assigned
scores for the true and false positive samples in our test
dataset.

The histogram of the prediction output of the NeuralNet
model for the true positive instances in our dataset is dis-
played in Figure 5a. We use a threshold of 0.5 for the classifi-
cation, which means that each sample having a score lower
than 0.5 will get the class label O (i.e., true positive). The
vast majority of true positive SonarQube warning reports get
a prediction score between 0 and 0.1, thus will be classified
correctly with very high confidence. There are very few sam-
ples that get prediction scores higher than 0.5; therefore, get
misclassified by the predictor. It is a very favorable property
of the model because it will not filter out/reject true positive
warnings due to falsely labeling them to be false positives.

VOLUME 10, 2022

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

IEEE Access

1.0
0.8
0.6 -
ho
i
o
[l
0.4
0.2 = mean AUC - DTree :0.861+0.005
= mean AUC - RForest : 0.953x0.003
= mean AUC - NBayes :0.896+0.007
0.0 - —— mean AUC - NeuralNet : 0.926+0.005
T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
FP rate

FIGURE 6. 10-fold cross-validation average ROC curves and AUC values.

On the other hand, as displayed in Figure 5b, most of
the false positive instances get a prediction score above 0.8.
It means that the model will assign a class label of 1 (i.e., false
positive) to most of the false SonarQube reports with high
confidence. However, there is a non-negligible amount of
false positive instances that get a score close to 0. Not just that
the model misclassify some of the false positive instances, but
it does it with high confidence. However, this only means that
it will not filter out some false positives, which is still more
tolerable than filtering out true positives. Moreover, as we
summarized in Table 1, the model will filter out 77.8% of all
the false positives, which is already an improvement from a
practical perspective compared to the raw SonarQube results.

To evaluate how our models work concerning the true
positive/false positive rate trade-off, we calculated the aver-
age ROC curves and the corresponding area under the
curve (AUC) measures. Figure 6 shows the ROC curves and
AUC values calculated as the average of the 10-folds we
performed for the evaluation.

In general, all the ML models have a good performance
considering the AUC measure. RForest performs the best in
this respect too, with an AUC of 0.953 but NeuralNet is very
close with an AUC of 0.926. All the other models have an
AUC close to 0.9, too. Based on this, we conclude that the
models are efficient in distinguishing between true and false
SonarQube warnings.

C. ML PREDICTION SAMPLE

To demonstrate the working mechanism of the predic-
tion models, we show the prediction scores of the Neu-
ralNet model on a concrete example. We then remove
some of the tokens from the context and re-run the pre-
diction to observe their impact on the overall prediction.
Consider the true positive “Null pointers should not be
dereferenced (squid:S2259)” SonarQube warning instance
from our test dataset shown in Listing 4. The source code
snippet containing the SonarQube warning and its con-
text is displayed in Listing 4a. The variable bos is a

VOLUME 10, 2022

} // end catch:
finally {

try{ bos.close();} catch(Exception e){}
} // end finally

java.io.IOException

BN —

(a) A sample true positive squid:S2259 warning

Separator SingleLineComment

Keyword_finally Separator

Keyword_try Separator Identifier Separator
Identifier Separator Separator Separator
Separator Keyword_catch Separator
Identifier Identifier Separator Separator
Separator

4 Separator SingleLineComment

W N =

(b) Tokenized sample code with a ML prediction output of 0.03 (0
means valid warning)

1 Separator SingleLineComment

2 Keyword_finally Separator

3 Keyword_try Separator Identifier Separator
Identifier Separator Separator Separator
Separator Keyword_catch Separator
Identifier Identifier Separator Separator
Separator

4 Separator SingleLineComment

(c) Tokenized sample code leaving out the tokens “SingleLineCom-
ment” with a ML prediction output of 0.24

1 Separator SingleLineComment

2 Keyword_finally Separator

3 Keyword_try Separator Identifier Separator
Identifier Separator Separator Separator
Separator Keyword_catch Separator
Identifier Identifier Separator Separator
Separator

4 Separator SingleLineComment

(d) Tokenized sample code leaving out the keyword “finally” with a
ML prediction output of 0.54

Listing 4. Null pointers should not be dereferenced (squid:$2259)
predictions.

Base64.0OutputStream type object that is initialized to
null earlier; therefore, the possible null pointer dereference
warning is valid (the issue has been fixed by the developers).

Based on the tokenized form of this original code snip-
pet (see Listing 4b) and the feature vector created by the
word2vec embedding of these lines, the NeuralNet model
outputs a prediction score of 0.03, which corresponds to a
confident O class label (i.e., true positive instance). List-
ings 4c and 4d show the modified token sequences and the
model prediction scores after artificially removing some of
the tokens. For instance, if we remove the comments from
the code context (Listing 4c), the prediction score increases
to 0.24. It still corresponds to a class label of 0, but the
model’s confidence is much lower. In the case of removing
the finally keyword (see Listing 4d), however, the model
becomes entirely clueless. It predicts a score of 0.54 that
corresponds to total uncertainty and even yields a wrong class
label of 1. This example demonstrates how the model looks
for a particular set of tokens to identify patterns with which
the model can connect the code snippet to be classified to the
training samples it saw during the training phase to decide
if the warning is true or false positive (i.e., if the structure

55099

IEEE Access

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

resembles more to the code snippets with the class label
of Oor1l).

V. THREATS TO VALIDITY

Our data mining approach implies some threats to the validity
of the collected data. The presence of the “//NOSONAR”
comment in the source code might be temporal, applied
as a quick fix before eventually removing the issue. Code
generator created files might contain “/ /NOSONAR” in big
bulks, which does not necessarily mean the warnings are
false positives, just that they are irrelevant in generated code.
Nonetheless, if we extend the scope of our prediction model
so that we aim to identify and filter “‘unactionable” warnings
instead of strictly false alarms (similarly to related work),
both of the above cases yield correct data samples.

Regarding the source code embedding, we did not con-
sider other techniques than word2vec. Our goal was to keep
source code embedding as simple as possible and provide an
extensive evaluation of a real-world dataset on a scale never
done before in this area. As the context we embed is relatively
small, we do not expect the results to be much affected by the
chosen embedding method. Furthermore, we kept the sepa-
rator and identifier tokens during the word2vec tokenization,
which have excessive numbers. It is common in the literature
to remove these frequent tokens from the vocabulary, but we
have performed experiments with and without these tokens
and found that including them yields better results.

When mining false positive data samples, we omitted the
cases when developers do nothing with a SonarQube alarm
(i.e., the warning stays in the code for a long time). Even
though it might be the sign of developers ignoring the alarm
(i.e., a false positive alert), we cannot be sure as the warning
might have been simply undiscovered. Since we wanted to
minimize the number of incorrect samples in our training
dataset, we skipped these cases.

We applied stratified random sampling to split the data
for training and evaluating prediction models, which does
not take the chronology of code changes into account
(i.e., we might train models on warnings that appear in code
created later than the code on which we test the model). This
property might be crucial in particular domains, for example,
within-project defect prediction or malware detection. How-
ever, we treat warnings locally in isolation independent of
the containing project. Since there is no chronological depen-
dence between code contexts in which particular warnings get
fixed or omitted, our results are valid.

We evaluated our method only on SonarQube warn-
ings; therefore, its generalizability is hard to assess.
However, SonarQube includes many warning checks that
exist in other SCA tools as well (e.g. ‘“squid:S2384
Mutable members should not be stored or returned directly”
in SonarQube is very similar to “EIl: May expose internal
representation by returning a reference to a mutable object
(EI_EXPOSE_REP)” in SpotBugs). Moreover, considering
the similar, local nature of SCA warnings, we expect the
method to generalize well across various SCA tools.

55100

VI. CONCLUSION

The excessive amount of false positive warnings produced by
SCA tools is still one of the obstacles to their adoption in prac-
tice. Even though researchers have proposed several tech-
niques for reducing the number of false alarms or equivalently
identifying ““‘actionable’ alarms, the problem is still unsolved
in general. Most of these techniques focus on a specific subset
of SCA warnings (e.g., security-related alarms or memory
handling issues), and more importantly, they are evaluated on
small synthetic benchmarks (e.g., OWASP benchmark [12]
or Juliet [13]), manually validated small datasets (i.e., few
hundred samples) or closed corporate data.

In this work, we presented a dataset containing 224,484
SonarQube true positive and false positive warnings com-
bined that we mined from 9,958 Java GitHub projects. To the
best of our knowledge, this is by far the most complete public
real-world dataset in this area. To showcase its practical
benefit, we trained ML models built on top of the word2vec
representation of the code context using the dataset, provid-
ing a lightweight method for identifying and filtering false
positive SonarQube alarms. SonarQube is one of the most
widely used SCA tools today; our method with the best model
works with an accuracy of 91% (best F1-score of 81.3% and
AUC of 95.3%) for the classification of 160 different types
of SonarQube warnings and identifies 77.8% of all the false
positive alarms, while filters out (i.e., misclassifies) only 8%
of the true positive alarms on average. The technique relies
on an NLP-based source code embedding of the warning and
its context that Koc et al. [10] already demonstrated to be
efficient for this task. Based on the performance measures
reported in the literature, our method is among the best ones,
while most of the existing approaches are evaluated only
on small, synthetic benchmarks (like OWASP Benchmark
or Juliet). Nonetheless, we focused more on producing a
real-world warning dataset, underpinning its practical rele-
vance, and opening up new possibilities for evaluating, com-
paring, and assessing the practical feasibility of false alarm
filtering methods, rather than improving the state-of-the-art
algorithms per se.

Many modern CI/CD pipelines already include the Sonar-
Qube analysis into which our ML-based post-processing
solution could be easily integrated. The prediction model
does not need time-consuming deep analysis to get its input,
only the word2vec representation of the warning line and its
small context (i.e., two lines before and after) to be classi-
fied. These properties make the method ideal for practical
applications.

REFERENCES

[1] L. M. R. Velicheti, D. C. Feiock, M. Peiris, R. Raje, and J. H. Hill,
“Towards modeling the behavior of static code analysis tools,” in Proc.
9th Annu. Cyber Inf. Secur. Res. Conf. (CISR). New York, NY, USA: ACM,
2014, pp. 17-20, doi: 10.1145/2602087.2602101.

[2] T. Kremenek and D. Engler, “Z-ranking: Using statistical analysis
to counter the impact of static analysis approximations,” in Proc.
10th Annu. Int. Static Anal. Symp. Berlin, Germany: Springer, 2003,
pp. 295-315.

VOLUME 10, 2022

http://dx.doi.org/10.1145/2602087.2602101

P. Hegedois, R. Ferenc: SCA Alarms Filtering Reloaded: New Real-World Dataset and Its ML-Based Utilization

IEEE Access

[3]

[4]

[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

B. Johnson, Y. Song, E. Murphy-Hill, and R. Bowdidge, ‘“Why don’t
software developers use static analysis tools to find bugs?”” in Proc. 35th
Int. Conf. Softw. Eng. (ICSE), May 2013, pp. 672-681.

M. Beller, R. Bholanath, S. McIntosh, and A. Zaidman, “Analyzing the
state of static analysis: A large-scale evaluation in open source soft-
ware,” in Proc. IEEE 23rd Int. Conf. Softw. Anal., Evol., Reeng. (SANER),
Mar. 2016, pp. 470-481.

S. Kim and M. D. Ernst, “Which warnings should I fix first?”” in Proc.6th
Joint Meeting Eur. Softw. Eng. Conf. ACM SIGSOFT Symp. Found. Softw.
Eng., 2007, pp. 45-54.

N. Ayewah, W. Pugh, J. D. Morgenthaler, J. Penix, and Y. Zhou, “Eval-
uating static analysis defect warnings on production software,” in Proc.
7th ACM SIGPLAN-SIGSOFT Workshop Program Anal. Softw. Tools Eng.
(PASTE), 2007, pp. 1-8.

S. Heckman and L. Williams, “A model building process for identifying
actionable static analysis alerts,” in Proc. Int. Conf. Softw. Test. Verification
Validation, Apr. 2009, pp. 161-170.

U. Yuksel and H. Sozer, “Automated classification of static code analy-
sis alerts: A case study,” in Proc. IEEE Int. Conf. Softw. Maintenance,
Sep. 2013, pp. 532-535.

U. Koc, P. Saadatpanah, J. S. Foster, and A. A. Porter, “Learning a classifier
for false positive error reports emitted by static code analysis tools,” in
Proc. 1st ACM SIGPLAN Int. Workshop Mach. Learn. Program. Lang.,
Jun. 2017, pp. 35-42.

U. Koc, S. Wei, J. S. Foster, M. Carpuat, and A. A. Porter, “An empirical
assessment of machine learning approaches for Triaging reports of a Java
static analysis tool,” in Proc. 12th IEEE Conf. Softw. Test., Validation
Verification (ICST), Apr. 2019, pp. 288-299.

S. Lee, S. Hong, J. Yi, T. Kim, C.-J. Kim, and S. Yoo, “Classifying false
positive static checker alarms in continuous integration using convolutional
neural networks,” in Proc. 12th IEEE Conf. Softw. Test., Validation Verifi-
cation (ICST), Apr. 2019, pp. 391-401.

OWASP Benchmark Project. Accessed: Jul. 22, 2021. [Online]. Available:
https://owasp.org/www-project-benchmark/

T. Boland and P. E. Black, “Juliet 1.1 C/C++ and Java test suite,”
Computer, vol. 45, no. 10, pp. 88-90, Oct. 2012.

SonarQube Website. Accessed: Jul. 23, 2021. [Online]. Available:
https://www.sonarqube.org/

J. Garcia-Munoz, M. Garcia-Valls, and J. Escribano-Barreno, “Improved
metrics handling in SonarQube for software quality monitoring,” in Proc.
13t Int. Conf. Distrib. Comput. Artif. Intell. Cham, Switzerland: Springer,
2016, pp. 463-470.

V. Lenarduzzi, F. Lomio, H. Huttunen, and D. Taibi, “Are SonarQube rules
inducing bugs?” in Proc. IEEE 27th Int. Conf. Softw. Anal., Evol. Reeng.
(SANER), Feb. 2020, pp. 501-511.

M. T. Baldassarre, V. Lenarduzzi, S. Romano, and N. Saarimiki,
“On the diffuseness of technical debt items and accuracy of remediation
time when using SonarQube,” Inf. Softw. Technol., vol. 128, Dec. 2020,
Art. no. 106377.

T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of
word representations in vector space,” 2013, arXiv:1301.3781.

S. Wang, T. Liu, and L. Tan, ““Automatically learning semantic features for
defect prediction,” in Proc. 38th Int. Conf. Softw. Eng. (ICSE), May 2016,
pp. 297-308.

J. Wang, S. Wang, and Q. Wang, “Is there a ‘golden’ feature set for
static warning identification? An experimental evaluation,” in Proc. 12th
ACM/IEEE Int. Symp. Empirical Softw. Eng. Meas., Oct. 2018, pp. 1-10.
Y. Kim, J. Lee, H. Han, and K.-M. Choe, “Filtering false alarms
of buffer overflow analysis using SMT solvers,” Inf. Softw. Tech-
nol., vol. 52, no. 2, pp.210-219, Feb. 2010. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S095058490900175X
S. Arzt, S. Rasthofer, R. Hahn, and E. Bodden, “Using targeted symbolic
execution for reducing false-positives in dataflow analysis,” in Proc. 4th
ACM SIGPLAN Int. Workshop State Art Program Anal., Jun. 2015, pp. 1-6.
S. Heckman and L. Williams, “A systematic literature review of actionable
alert identification techniques for automated static code analysis,” Inf.
Softw. Technol., vol. 53, no. 4, pp. 363-387, Apr. 2011.

S. S. Heckman, “Adaptive probabilistic model for ranking code-based
static analysis alerts,” in Proc. 29th Int. Conf. Softw. Eng. (ICSE Com-
panion), May 2007, pp. 89-90.

S. Heckman and L. Williams, “On establishing a benchmark for evalu-
ating static analysis alert prioritization and classification techniques,” in
Proc. 2nd ACM-IEEE Int. Symp. Empirical Softw. Eng. Meas. (ESEM),
Oct. 2008, pp. 41-50.

VOLUME 10, 2022

(26]

(27]

(28]

(29]
(30]

(31]

(32]
(33]

(34]

(35]

(36]

O. Tripp, S. Guarnieri, M. Pistoia, and A. Aravkin, “ALETHEIA: Improv-
ing the usability of static security analysis,” in Proc. ACM SIGSAC Conf.
Comput. Commun. Secur., Nov. 2014, pp. 762-774.

J. R. Ruthruff, J. Penix, J. D. Morgenthaler, S. Elbaum, and G. Rothermel,
“Predicting accurate and actionable static analysis warnings,” in Proc.
13th Int. Conf. Softw. Eng. (ICSE), 2008, pp. 341-350.

T. T. Nguyen, P. Maleehuan, T. Aoki, T. Tomita, and I. Yamada, “‘Reducing
false positives of static analysis for SEI CERT C coding standard,” in
Proc. IEEE/ACM Joint 7th Int. Workshop Conducting Empirical Stud. Ind.
(CESI) 6th Int. Workshop Softw. Eng. Res. Ind. Pract. (SER IP), May 2019,
pp. 41-48.

SEI CERT, CERT Coding Standards, Softw. Eng. Inst., Carnegie Mellon
Univ., Pittsburgh, PA, USA, 2016.

SonarQube Customers. Accessed: Aug. 30, 2021. [Online]. Available:
https://discovery.hgdata.com/product/sonarqube

N. Saarimaki, M. T. Baldassarre, V. Lenarduzzi, and S. Romano, “On the
accuracy of SonarQube technical debt remediation time,” in Proc. 45th
Euromicro Conf. Softw. Eng. Adv. Appl. (SEAA), Aug. 2019, pp. 317-324.
GitHub REST API. Accessed: Aug. 30, 2021. [Online]. Available:
https://docs.github.com/en/rest

GitHub GraphQL API. Accessed: Aug. 30, 2021. [Online]. Available:
https://docs.github.com/en/graphgl

R. Rehiifek and P. Sojka, “Software framework for topic modelling with
large corpora,” in Proc. LREC Workshop New Challenges NLP Frame-
works. Valletta, Malta: ELRA, May 2010, pp. 45-50. [Online]. Available:
http://is.muni.cz/publication/884893/en

U. Alon, M. Zilberstein, O. Levy, and E. Yahav, “code2vec: Learning
distributed representations of code,” in Proc. Program. Lang. (ACM),
vol. 3, Jan. 2019, pp. 1-29.

R. Mohammed, J. Rawashdeh, and M. Abdullah, ‘“Machine learning with
oversampling and undersampling techniques: Overview study and exper-
imental results,” in Proc. 11th Int. Conf. Inf. Commun. Syst. (ICICS),
Apr. 2020, pp. 243-248.

PETER HEGEDUS received the Ph.D. degree in
computer science from the University of Szeged,
in 2015.

He currently works as an Assistant Professor at
the Software Engineering Department, University
of Szeged, and as a Researcher at FrontEndART
Ltd. Besides teaching and research involvement,
he also takes part in various software develop-
ment projects as a Project Manager and a Lead
Developer. His publication record consists of over

50 papers that appeared in top conferences and high-impact journals. His
research interests include software maintainability models, deep learning
applications, source code analysis, and vulnerability detection and predic-
tion. He was a PC Member of the CSMR, MSR, ICCSA, and SQM confer-
ences, and also holds a Bolyai Janos Research Scholarship.

RUDOLF FERENC received the Ph.D. degree in
computer science from the University of Szeged,
in 2005, and the Habilitation degree, in 2015.

He is currently an Associate Professor and act-
ing as the Head of the Department of Software
Engineering, University of Szeged. He leads the
Static Code Analysis Group, which develops tools
for analyzing the source code of various languages.
These tools calculate code metrics, and detect cod-
ing issues and duplications. He has more than

100 publications in these fields with over 2000 citations. He is leading several
research and development projects, which are related to quality assessment,
improvement and architecture reconstruction of software systems for major
banks and software development companies in Hungary. His research inter-
ests include static code analysis, metrics, quality assurance, design pattern
and antipattern mining, and bug detection. He has been serving as a Program
Co-Chair and a Program Committee Member for the major conferences
in this field, such as ICSE, ICSME, ESEC/FSE, SANER, CSMR, WCRE,
ICPC, SCAM, and FASE, since 2005.

55101

