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Abstract: Breast cancer is the most frequent cancer with a high fatality rate amongst women world-
wide. Diagnosing at an early stage is challenging, and due to the limitations of the currently used
techniques, including mammography and imaging diagnostics, it still remains unascertained. Serum
biomarkers can be a solution for this as they can be isolated in a less painful, more cost-effective, and
minimally invasive manner. In this study, we shed light on the relevant role of multiple microRNAs
(miRNAs) as potential biomarkers in breast cancer diagnosis. We monitored the expressional changes
of 15 pre-selected miRNAs in a large cohort, including 65 patients with breast cancer and 42 healthy
individuals. We performed thorough statistical analyses on the cohort sample set and determined the
diagnostic accuracy of individual and multiple miRNAs. Our study reveals a potential improvement
in diagnostics by implicating the monitoring of miR-15a+miR-16+miR-221 expression in breast cancer
management.

Keywords: miRNA; biomarker; serum; breast cancer

1. Introduction

Breast cancer is the most prevalent cancer worldwide. Based on the World Health Or-
ganization (WHO) data, in 2020, 2.3 million women were diagnosed with breast cancer, and
685,000 died of the disease. Early diagnosis is indispensable for increasing the survival rate
and efficacy of the treatment. Nowadays, although tumor detection during mammography
screenings may diminish the number of fatalities by 20%, in most cases, the recognition of
a tumor in its early stage is challenging [1]. The most frequently used method for tumor
confirmation is the biopsy, which is a painful and inconvenient procedure for the patient.
Apart from tissue sampling, imaging diagnostics is also required, of which the resolution
is often not enough to recognize the early-stage tumors; therefore, certain tumor types
(e.g., lobular carcinoma) can mainly be detected in their late stages when they have already
metastasized. Moreover, upon imaging screening, iodine-based or gadolinium contrast
may have toxic side effects [2]. In breast cancer hormone therapy—if the patient is not
suffering from triple-negative breast cancer (TNBC)—estrogen receptor (ER), progesterone
receptor (PR), and human epidermal growth factor receptor 2 (HER2) are proven to be
potential targets, and several biomarkers are successfully used for revealing their presence
or absence in a given tumor [3]. Currently, there is no available early detection method
that can be used for tumor prevention before the above-mentioned technologies may need
to be applied. Serum biomarkers have the potential to recognize the tumor even in its
very early stage—tumor extension is 10–15 mm without any metastases—when it can be
treated with a high prevalence and without a possible recurrence [4,5]. This assumption has
been supported by a recently published article about monitoring circulating tumor DNA
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(ctDNA) from plasma and highlighting the importance of this technology in pre-indicative
breast cancer management [6].

microRNAs (miRNAs) are present in extracellular body fluids, including blood serum,
blood plasma, saliva, and urine [7–10]. These circulating miRNAs are extremely stable
due to their vesicle-associated subcellular location [11]. They can be found in exosomes,
apoptotic bodies, or bound to Argonaute proteins [12]. Being stable, they can be easily
detected by minimally invasive techniques, such as blood taking, then subsequent miRNA
isolation and reverse-transcription quantitative real-time PCR (RT-qPCR) [4,5]. Hence, they
are prospective biomarkers for tumor prognosis, early diagnosis, or potential therapeutic
approaches.

According to the miRBase database, more than 2600 human miRNAs have been hith-
erto discovered [13]. They can post-transcriptionally regulate the expression of several
genes, including cancer-related genes, through either mRNA degradation or translational
blocking [2]. miRNAs are between 18 and 25 nucleotides long, small non-coding RNAs
whose roles have been described in several processes, including physiological (e.g., devel-
opment) and pathological conditions (e.g., neurodegenerative disorders). Apart from these,
miRNAs have been demonstrated to play an important role in tumor progression [14]. It
can be partially due to the fact that they are frequently encoded in the close proximity
of cancer-associated genomic regions (such as common fragile sites), which may lead to
chromosome disorders. According to their progression- or suppression-promoting func-
tion, miRNAs can act as either oncogenes (referred to as oncomiRs) or tumor suppressors,
respectively [2]. Although our knowledge is continuously expanding about their role in
various tumor types, their application as biomarkers in cancer prognosis, diagnosis, or
therapy has yet to be elucidated.

Based on literature data, in this study, 15 miRNAs (miR-7, miR-15a, miR-16, miR-21,
miR-125b, miR-135b, miR-136, miR-155, miR-181a, miR-200a, miR-200c, miR-210, miR-221,
miR-519d, and miR-613) were selected to measure their expression in blood sera from
healthy female volunteers (n = 42) and BC patients (n = 65) [15]. Regarding their previously
characterized properties in tumor tissues, they can act either as tumor suppressors (miR-7,
miR-15a, miR-16, miR-125b, miR-136, miR-200a, miR-200c, miR-519d, and miR-613) or
oncogenes (miR-21, miR-135b, miR-155, miR-210, and miR-221) [16]. Intriguingly, miR-181a
can act both as a tumor suppressor and an oncomiR, depending on its current target in
the cells [17]. Furthermore, many of them, including miR-7, miR-15a, miR-16, miR-155,
miR-181a, and miR-210, were found to be implicated in DNA repair circuits, supporting
their regulatory role in cancer development [18–21].

Overall, the above-mentioned 15 miRNAs were selected based on the following
criteria: (I) previously showed altered expression in breast cancer samples, (II) possess
measurable expression in blood sera, (III) approximately half of them are supposed to be
tumor suppressors and the other half are reported as oncogenes, (IV) some of them have
been implicated in DNA repair pathways, (V) the number of the chosen miRNA popula-
tion should be manageable and give us the chance to get enough miRNAs with altered
expression in BC patients (Table 1). Moreover, we statistically analyzed and clustered
those miRNAs which presumably have diagnostic relevancy. Based on these analyses, we
hereby demonstrate the use of multiple circulating miRNAs, highlighting the most relevant
combination of miR-15a+miR-16+miR-221, as potential combinatorial biomarkers in breast
cancer management.
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Table 1. Confirmed roles of the selected tumor suppressor and oncogene miRNAs in breast cancer.
BC = breast cancer, Ref = Reference.

Potential Biomarker Candidates in Breast Cancer Management

Tumor Suppressor miRNAs OncomiRs

miRNAs Particular Role(s) in BC Ref(s) miRNAs Particular Role(s) in BC Ref(s)

miR-7 Suppression of mobility and
invasiveness. Regulation of DNA repair. [22,23] miR-21 Promoting cell invasion. [24]

miR-15a P53-mediated expression.
Involved in DNA repair. [21,25] miR-135b Cell growth stimulation

and cell cycle disruption. [26]

miR-16 Cell cycle arrest
and regulation of DNA repair. [21,27] miR-155 Promoting cell migration and

invasiveness. Regulation of DNA repair. [18]

miR-125b Prevention of HER-2 overexpression.
Suppression of cell proliferation. [28,29] miR-181a Suppression of DNA damage response. [19]

miR-136 Suppression of cell migration
and invasion. [30] miR-210 Increasing cell invasiveness

and DNA repair regulation. [31]

miR-181a Prevention of cancer metastasis. [32] miR-221 Promoting cell migration and invasion. [33]

miR-200a EMT inhibition. [34]

miR-200c EMT inhibition. [34]

miR-519d Suppression of cancer metastasis
by targeting MMP-3. [35]

miR-613 Suppression of cell migration and
invasion by targeting Daam1. [36]

2. Materials and Methods
2.1. Cohort Characteristics

To begin, 42 healthy female volunteers with an average age of 39 (ranging from 23 to
56) and 65 BC patients with an average age of 63 (ranging from 35 to 88) were enrolled in our
cohort study. Written informed consent was obtained from each participant. BC patients
were classified according to their histological subtype (invasive ductal carcinoma, invasive
lobular carcinoma, mixed ductal and lobular, special type carcinoma, intraductal papilloma,
and other mixed type BCs), tumor grade (I–III), hormone receptor status (estrogen (ER),
progesterone (PR), and human epidermal growth factor receptor 2 (HER2)), molecular
subtypes (luminal A, luminal B, HER2-enriched, and triple-negative breast cancer (TNBC)),
and tumor size (in situ, pT1–pT3). Of the patients, 66% were diagnosed with invasive
ductal carcinoma, 17% of them with invasive lobular carcinoma, and the remaining patients
were almost equally distributed among the other histological subtypes. Most of the patients
were diagnosed with grade II and III tumors, indicating that the fast-growing appearance
of breast cancer is more frequent. According to the hormone receptor status, most of the
patients were positive for ER and PR, while negative for HER2 (Figure 1).

2.2. Hematoxylin and Eosin Staining of Tissue Specimens

Hematoxylin and eosin staining was performed based on the same protocol we pub-
lished previously in Ördög et al. [37].

2.3. Preparation of Blood Sera

Blood sampling was carried out on BC patients, prior to the surgical intervention.
For sera preparation, blood collection tubes with separation gel were used. Following
blood taking, tubes were placed and incubated on ice from 30 to 60 min to preserve the
integrity of miRNA molecules. Next, tubes were centrifuged at 2000 RPM for 10 min at
4 ◦C. The upper phase, which contained the blood serum, was carefully transferred (to
avoid cross-contamination of the sera and the formed elements) and aliquoted to centrifuge
tubes and stored at −80 ◦C. Hemolysis in each specimen was measured at 414 nm using
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a NanoDrop spectrophotometer. According to Michaela B. Kirschner et al., less than
0.2 cut-off values were determined to be non-hemolyzed [38]. If a sample had a ≥ 0.2 cut-off
value, it was excluded from further analyses.
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metastasis (M) obtained from BC patients from core biopsies. (B) Heat map visualization of histo-
logical subtype, age, grade, tumor size (T), lymph node (N), and metastasis (M) obtained from BC 
patients during surgical resection. (C) Hematoxylin and eosin staining of specimens belonging to 
invasive breast carcinoma (NST) (upper left), invasive lobular carcinoma (upper right), special type 
carcinoma (lower left), and other mixed type histological subtype (lower right). (D) Representation 
of physiological and pathological characteristics of the enrolled individuals. Asterisk indicates that 
a patient had both pT1 and pT2 tumors which are separately depicted in the table; NR = not rec-
orded. 
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Figure 1. Physiological and pathological parameters of the individuals recruited for the study.
(A) Heat map visualization of histological subtype, age, grade, tumor size (T), lymph node (N),
and metastasis (M) obtained from BC patients from core biopsies. (B) Heat map visualization of
histological subtype, age, grade, tumor size (T), lymph node (N), and metastasis (M) obtained from
BC patients during surgical resection. (C) Hematoxylin and eosin staining of specimens belonging to
invasive breast carcinoma (NST) (upper left), invasive lobular carcinoma (upper right), special type
carcinoma (lower left), and other mixed type histological subtype (lower right). (D) Representation
of physiological and pathological characteristics of the enrolled individuals. Asterisk indicates that a
patient had both pT1 and pT2 tumors which are separately depicted in the table; NR = not recorded.

2.4. miRNA Isolation, Reverse Transcription, and qPCR

miRNAs were isolated from 200 µL of blood serum with the ReliaPrep™ miRNA Cell
and Tissue Miniprep System (Promega) according to the manufacturer’s instruction. Then,
a two-step reverse transcription (poly(A) tailing reaction and first-strand cDNA synthesis
reaction) was assessed with MystiCq® microRNA cDNA Synthesis Mix (Sigma-Aldrich,
Darmstadt, Germany) based on the manufacturer’s protocol. As a reverse primer, MystiCq®

Universal PCR Primer (Sigma-Aldrich) was used for each qPCR reaction. Sequences of
miRNAs were downloaded from the miRBase database. Forward primers were designed
with miRprimer software [39] (Table S1). U6 primer was used as the endogenous control of
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the qPCR experiment; therefore, each relative expressional value was normalized to that of
U6. GoTaq® qPCR Master Mix (Promega, Madison, WI, USA) was used for qPCR detection.
qPCRs were performed in duplicates.

2.5. Statistical Analyses

Expressional differences of miRNAs between BC and healthy individuals were as-
sessed using the independent samples t-test (Table S2). Ascertaining the diagnostic accuracy
of miRNAs, a receiver operating characteristic (ROC) curve was generated. The miRNA
enrichment analysis and annotation tool (miEAA) 2.0 was used to assess the involvement
of the desired miRNAs in breast cancer (Table S3). Box-plots were generated in SigmaPlot
12.5 software. Independent t-tests and ROC curve analyses were accomplished in IBM
SPSS Statistics 28.0.

Determining the correlation between miRNAs, Pearson correlation coefficient (R) was
conducted with stats package in R (version 4.1.1) using the ‘pairwise.complete.obs’ method
for computing covariances [40]. The heatmaply R package with default settings was applied
for visualizing the correlation results [41]. ColorRampPalette was used from the grDevices
package by which colors were set with hexacodes [40].

The PCAtools R package (version 4.1.1) was used for the PCA analysis and PCA
plots [42]. For the Principal Component Analysis, z-score normalized miRNA expressional
data were used with the ‘scale=TRUE’ setting argument. For calculating the optimal number
of clusters and creating PAM clustering on the z-score normalized miRNA expressional
data, the factoextra R package was applied with default settings [43].

For calculating the accuracy, sensitivity, specificity, and prevalence values based on
the confusion matrix in R, the confusion matrix argument was used from the caret package
with default settings [44].

3. Results
3.1. Circulating miRNA Expression Level Changes between Patients with Breast Cancer and
Healthy Volunteers

Expression level of 15 miRNAs (miR-7, miR-15a, miR-16, miR-21, miR-125b, miR-135b,
miR-136, miR-155, miR-181a, miR-200a, miR-200c, miR-210, miR-221, miR-519d, and
miR-613) was measured in blood sera from healthy female volunteers (n = 42) and BC
patients (n = 65). Regarding the unequal distribution of patients within each pathological
characteristic, we included all the BC patients in a single group and did not sort them into
further subgroups.

To reveal which of the above-listed miRNAs appear to be promising biomarkers in
breast cancer management, we isolated miRNAs from the blood sera of BC patients and
healthy volunteers (previously verified that no hemolysis occurred), and then performed
a reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Differences
between BC patients and healthy controls were represented in fold changes (log2) and
statistically analyzed with independent t-tests. Results showed that, 7 miRNAs (miR-15a,
miR-16, miR-200a, miR-21, miR-613, miR-221, and miR-125b) showed alterations with a
high significance (p < 0.001) between BC patients and healthy candidates. Among them,
6 miRNAs (miR-15a, miR-16, miR-200a, miR-21, miR-221, and miR-125b) were upregulated,
while miR-613 was downregulated in BC patients compared with healthy individuals
(Figure 2A). These 7 significant miRNAs were further supported to be implicated in breast
cancer by the miRNA enrichment analysis and annotation tool (miEAA) (Table S3) [45];
although we detected a less significant difference (p < 0.01 and p < 0.05) in the expression of
the following miRNAs: miR-200c, miR-519d, miR-136, and miR-135b (Figure 2B). In the case
of miR-155, miR-7, miR-181a, and miR-210 no significant difference was shown between BC
patients and healthy volunteers (Figure S1A). Further studying the discrimination of the
relevant miRNA candidates between BC patients and healthy individuals, we can establish
a circulating miRNA profiling attributed to breast cancer.
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Figure 2. Fold change (log2) of miRNAs expression with significant alterations in BC patients (BC)
compared with healthy individuals (Control). (A) Expressional analyses of miRNAs (miR-15a, miR-16,
miR-200a, miR-21, miR-613, miR-221, and miR-125b) with a highly significant difference *** p < 0.001;
(B) Expressional analyses of miRNAs (miR-200c, miR-519d, miR-136, and miR-135b) with a lower
significant difference ** p < 0.01, and * p < 0.05. Error bars represent the standard deviation of each
miRNA measured on either the group of BC patients (BC) or healthy individuals (Control).

3.2. Diagnostic Accuracy of Individual miRNAs

ROC curve analysis was performed to determine the diagnostic accuracy of the miRNA
candidates isolated from blood sera. The discriminatory power between BC patients and
healthy volunteers was represented by the area under the receiver operating characteristic
curve (AUC) (Figure 3and Figure S1B). miRNAs with AUC > 0.7 were accepted to possess
potential diagnostic relevancies. Based on this restriction, miR-15a, miR-16, miR-200a,
miR-613, and miR-125b seemed to have promising diagnostic potential (Figure 3A). High-
lighting the most relevant miRNAs: miR-16 with an AUC of 0.934 and miR-15a with an
AUC of 0.899 (Figure 3A). Although both have been described as tumor suppressor miR-
NAs, we found a significant increase in their level in BC patients compared with healthy
controls (Figure 2A). As these miRNAs are important candidates for controlling cell prolif-
eration, upon tumorigenesis, their tissue expression becomes lower (based on previously
published data [46]), while their expression in sera increases, presumably due to their
continuous secretion from the tissue into the blood where they cannot inhibit tumor growth.
As assumed, those miRNAs which did not present significant differences between BC
patients and healthy controls, neither had diagnostic potential (AUC < 0.65) (Figure S1B).

Based on the ROC curve analysis, we also determined the cut-off value, sensitivity, and
specificity of the miRNA candidates. Emphasizing also in this case the two most relevant
miRNAs with the highest specificity and sensitivity: miR-16 with 95.4% sensitivity and
81% specificity, and miR-15a with 87.7% sensitivity and 83.3% specificity (Table 2).
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Figure 3. ROC curve analysis of individual miRNAs for validating their diagnostic accuracy.
(A) ROC curves and the related AUC (area under the receiver operating characteristic curve) values
of miRNAs (miR-15a, miR-16, miR-200a, miR-21, miR-613, miR-221, and miR-125b) with a highly
significant difference; (B) ROC curves and the related AUC values of miRNAs (miR-200c, miR-519d,
miR-136, and miR-135b) with a lower significant difference. Blue line represents the ROC curve, and
the diagonal line depicts the line of no-discrimination.

3.3. Correlation between the Desired miRNAs

Unveiling the possible associations between the desired miRNAs, we used the Pearson
correlation method illustrated as a heat map (Figure 4). The degree of correlation is
determined based on the correlation coefficient (R): R > 0.7, strong correlation; 0.3 < R < 0.7,
moderate correlation; R < 0.3, weak correlation. The most highly correlated miRNAs are
miR-15a+miR-16 with R = 0.921 and miR-21+miR-221 with R = 0.805. We also verified the
correlation between cross-groups (miR-15a+miR-21, miR-15a+miR-221, miR-16+miR-21,
and miR-16+miR-221) of these four miRNAs. Although we found moderate correlation
based on our strict ‘R-grouping’, these groups represented the highest correlations among
others: (I) miR-15a+miR-21: 0.626, (II) miR-15a+miR-221: 0.647, (III) miR-16+miR-21:
0.548, and (IV) miR-16+miR-221: 0.548 (Figure 4 and Figure S2). R values of all possible
miRNA correlation analyses and scatterplots (displaying the strength, direction, and form
of relationship between the two variables) of miR-15a, miR-16, miR-21, and miR-221 are
represented in Figure S3. Moreover, Pearson correlation and the related scatterplot analysis
were conducted between miR-15a+miR-16 and miR-213miR-221 with R = 0.606 (Figure S3).
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Next, hierarchical cluster analysis (HCA), visualized by dendrograms, was assessed to sort
the miRNAs into specific clusters and subclusters based on their correlations (Figure 4).

Table 2. Representation of AUC values, cut-off values, sensitivity, specificity, standard error, asymp-
totic significance, and asymptotic 95% confidence interval (CI) of individual miRNAs based on the
ROC curve analyses displayed in Figure 3.

AUC Cut-Off Value Sensitivity Specificity St. Error a Asymptotic Sign. b Asymptotic 95% CI
Lower Bound Upper Bound

miR-16 0.934 4.270 95.40% 81.00% 0.025 0.000 0.885 0.982
miR-15a 0.899 3.055 87.70% 83.30% 0.033 0.000 0.833 0.965

miR-125b 0.806 −0.670 72.70% 80.60% 0.046 0.000 0.717 0.896
miR-200a 0.794 −9.405 84.60% 63.20% 0.047 0.000 0.702 0.887
miR-613 0.727 −1.49 60.50% 81.50% 0.050 0.000 0.629 0.825
miR-136 0.699 −2.665 88.10% 49.20% 0.052 0.001 0.597 0.800
miR-200c 0.693 −9.94 92.30% 42.90% 0.053 0.001 0.589 0.796
miR-221 0.684 1.210 75.40% 61.00% 0.055 0.001 0.576 0.792

miR-135b 0.682 −9.940 90.80% 40.50% 0.053 0.001 0.578 0.787
miR-21 0.655 1.240 88.90% 35.70% 0.054 0.007 0.548 0.761
miR-7 0.64 −9.590 87.00% 50.00% 0.063 0.021 0.517 0.762

miR-519d 0.619 9.190 41.15% 88.10% 0.054 0.039 0.512 0.725
miR-210 0.614 −9.970 94.90% 35.00% 0.060 0.055 0.496 0.732
miR-181a 0.602 −0.855 81.70% 48.80% 0.060 0.083 0.485 0.719
miR-155 0.591 −9.580 88.70% 38.50% 0.061 0.127 0.471 0.710

a Under the nonparametric assumption; b Null hypothesis: true area = 0.5.
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Figure 4. Pearson correlation coupled with agglomerative hierarchical cluster analysis (HCA) per-
formed on all the desired miRNAs.

3.4. Expressional Changes and Diagnostic Accuracy of Multiple miRNAs

Based on the correlation analysis and HCA, we accomplished combined expres-
sional ROC curve analyses on the cohort data to validate which combinations of the
correlated miRNAs are supposed to be the most suitable for further diagnostics. We tested
the combination of two miRNAs that presented the highest R values: miR-15a+miR-16
(AUC = 0.884) and miR-21+miR-221 (AUC = 0.67) (Figure 5A). Then, we investigated the re-
sults upon combining three correlated miRNAs: miR-15a+miR-16+miR-221 (AUC = 0.779),
miR-15a+miR-16+miR-200a (AUC = 0.707), miR-21+miR-181a+miR-221 (AUC = 0.635), and
miR-135b+miR-200a+miR-200c (AUC = 0.733) (Figure 5B). Finally, we examined the differ-
ence between BC patients and healthy individuals by the combination of four miRNAs:
miR-15a+miR-16+miR-21+miR-125b (AUC = 0.703) and miR-15a+miR-16+miR-21+miR-221
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(AUC = 0.75) (Figure 5C). Although miR-21+miR-221 showed the second strongest cor-
relation value (Figure 4), based on the ROC curve analysis (AUC = 0.67), combining just
the two of them did not seem to be a favorable biomarker combination. The most promis-
ing combinations of miRNAs are as follows: miR-15a+miR-16 with AUC = 0.884 (92.2%
sensitivity and 72.6% specificity), miR-15a+miR-16+miR-221 with AUC = 0.779 (71.8%
sensitivity and 76.2% specificity), and miR-15a+miR-16+miR-21+miR-221 with AUC = 0.75
(62.2% sensitivity and 78.6% specificity) (Figure 5 and Table 3). Apart from the valu-
able diagnostic accuracy, these combinations represented a normal distribution of the
cohort data and a limited number of outliers, supporting their prosperous implication in
breast cancer management. Albeit among these three combinations, miR-15a+miR-16 has
the highest AUC value, in diagnostics, applying more than two biomarkers would have
a greater therapeutic concern. Further supporting this, additional statistical analyses were
conducted.
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Figure 5. Fold change (log2) and ROC curve analysis of multiple miRNAs expression in BC patients
(BC) compared with healthy individuals (Control). Combined expressional and ROC curve anal-
yses of A) two correlated miRNAs, B) three correlated miRNAs, and C) four correlated miRNAs,
*** p < 0.001. Error bars represent the standard deviation of each miRNA measured on either the
group of BC patients (BC) or healthy individuals (Control). Blue line represents the ROC curve, and
the diagonal line depicts the line of no-discrimination.
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Table 3. Representation of AUC values, cut-off values, sensitivity, specificity, standard error, asymp-
totic significance, and asymptotic 95% confidence interval (CI) of multiple miRNAs based on the
ROC curve analyses displayed in Figure 5.

AUC Cut-Off
Value

Sensitivity Specificity St.
Error a

Asymptotic
Sign. b

Asymptotic 95% CI

Lower Bound Upper Bound

miR-15a+miR-16 0.884 3.305 92.20% 72.60% 0.024 0.000 0.838 0.930

miR-16+miR-15a+miR-221 0.779 2.323 71.80% 76.20% 0.025 0.000 0.729 0.829

miR-16+miR-15a+miR-21+miR-221 0.750 3.355 62.20% 78.60% 0.023 0.000 0.704 0.795

miR-135b+miR-200a+miR-200c 0.733 −9.975 92.80% 46.80% 0.029 0.000 0.677 0.79

miR-15a+miR-16+miR-200a 0.707 3.305 61.50% 81.70% 0.029 0.000 0.651 0.763

miR-15a+miR-16+miR-21+miR-125b 0.703 3.265 56.50% 81.40% 0.025 0.000 0.654 0.751

miR-21+miR-221 0.670 1.220 82.20% 48.80% 0.038 0.000 0.595 0.745

miR-21+miR-181a+miR-221 0.635 1.220 63.20% 58.70% 0.032 0.000 0.572 0.698

a Under the nonparametric assumption; b Null hypothesis: true area = 0.5.

Principal component analysis (PCA) was performed to determine whether healthy
individuals can be distinguished from BC patients based on the fold change values of
the clustered miRNAs (all miRNAs (Figure S4A), the 7 significant miRNAs (Figure 6A),
miR-15a+miR-16+miR-21+miR-221 (Figure S4C), miR-15a+miR-16+miR-221 (Figure 6C),
and miR-15a+miR-16 (Figure 6E)). Eigenvalues (PCA scores of the samples displayed with
colored dots) represent the specimens, and eigenvectors refer to the desired miRNAs in each
PCA plot (Figure 6 and Figure S4). The summarized values of the first two principal compo-
nents (PC1 and PC2) represent the total point variability as follows: (I) all miRNAs: 45.08%
(Figure S4A); (II) 7 significant miRNAs: 63.63% (Figure 6A); (III) miR-15a+miR-16+miR-
21+miR-221: 90.65% (Figure S4C); (IV) miR-15a+miR-16+miR-221: 98.34% (Figure 6C); and
(V) miR-15a+miR-16: 100% (Figure 6E). By decreasing the number of miRNAs included
in the certain clusters used to distinguish the BC and healthy categories, the total point
variability is simultaneously getting increased. Those miRNAs whose related eigenvectors
are the farthest from 0 mostly characterize the corresponding PC. Distance between the
eigenvectors is consistent with the strength of correlation between the corresponding miR-
NAs (the less the distance between the eigenvectors, the stronger the correlation between
the miRNAs). Eigenvectors point towards the eigenvalues corresponding to the PCA scores
of BC patients, which support the potential involvement of these miRNAs in breast cancer.
Based on the PCA analysis, BC and healthy clusters are well separated; therefore, we
studied how these two categories can be distinguished with PAM clustering. The optimal
cluster number turned out to be 2, determined by the Silhouette method (Figure S4E).

Further evaluating the performance metrics (accuracy, sensitivity, specificity, preva-
lence, etc.), based on PAM clustering, a confusion matrix (also known as error matrix)
was constructed from the fold change values of all miRNAs (Figure S4B), the 7 signifi-
cant miRNAs (Figure 6B), miR-15a+miR-16+miR-21+miR-221 (Figure S4D), miR-15a+miR-
16+miR-221 (Figure 6D), and miR-15a+miR-16 (Figure 6F). Based on this matrix, we can
determine the number of true positive (TP; outcome where the model correctly predicts the
BC patients), true negative (TN; outcome where the model correctly predicts the healthy
individuals), false positive (FP; outcome where the model incorrectly predicts the BC
patients when they are actually healthy individuals), and false negative (FN; outcome
where the model incorrectly predicts the healthy individuals when they are actually BC
patients) prediction values which are as follows: (I) all miRNAs: 55 TP, 10 FP, 32 TN, and
10 FN (accuracy: 0.81, sensitivity: 0.85, specificity: 0.76, prevalence: 0.61) (Figure S4B);
(II) the 7 most significant miRNAs: 57 TP, 8 FP, 32 TN, and 10 FN (accuracy: 0.83, sensitivity:
0.88, specificity: 0.76, prevalence: 0.61) (Figure 6B); (III) miR-15a+miR-16+miR-21+miR-221:
36 TP, 29 FP, 35 TN, and 7 FN (accuracy: 0.66, sensitivity: 0.55, specificity: 0.83, prevalence:
0.61) (Figure S4D); (IV) miR-15a+miR-16+miR-221: 62 TP, 3 FP, 29 TN, and 13 FN (accuracy:
0.85, sensitivity: 0.95, specificity: 0.69, prevalence: 0.61) (Figure 6D); (V) miR-15a+miR-16:
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58 TP, 7 FP, 33 TN, and 9 FN (accuracy: 0.85, sensitivity: 0.89, specificity: 0.79, prevalence:
0.61) (Figure 6F).
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Figure 6. Principal component analysis (PCA) and confusion matrix of data derived from BC patients
(BC) and healthy individuals (Control). (A), (C), and (E) PCA plots display the clustering data of
(A) the 7 most significant miRNAs, (C) miR-15a+miR16+miR221, and (E) miR-15a+miR16, concerning
the first two principal components (PC1 and PC2). The following eigenvalue clustering was applied:
true positive (TP), true negative (TN), false positive (FP), and false negative (FN). (B,D,F), confusion
matrixes represent the number of TP, TN, FP, and FN prediction values of (B) the 7 most significant
miRNAs, (D) miR-15a+miR16+miR221, and (F) miR-15a+miR16. TP, TN, FP, and FN refer to the
following outcomes, respectively: where the model (I) correctly predicts the BC patients; (II) correctly
predicts the healthy individuals; (III) incorrectly predicts the BC patients when they are actually
healthy individuals; and (IV) incorrectly predicts the healthy individuals when they are actually
BC patients.
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According to the above-described analyses, miR-15a+miR-16+miR-221 multiple miR-
NAs turned out to be the most prominent biomarker combinations for further diagnostic
validations in breast cancer management.

4. Discussion

In this study, we reveal a prosperous approach to breast cancer detection from blood
sera. We emphasize the importance of recognizing breast cancer in the early stage, which
may help increase the survival rate of BC patients. Being a minimally invasive technology,
in contrast to the formally applied imaging technologies and biopsies, blood sampling is
less painful and more cost-effective.

Mammography is the most commonly applied technology in breast cancer detec-
tion; however, it has many limitations, including providing either false positive or false
negative results. Women with fatty or dense breasts have a higher chance of getting false
results [47]. An advanced screening, digital breast tomosynthesis (DBT, also known as three-
dimensional mammography), has been recently developed to resolve these constraints [48];
although DBT is not available in all breast imaging centers and requires a preliminary
mammography screening, which is inconvenient and quite costly. Unlike mammography
which uses X-rays for detection, magnetic resonance imaging (MRI) uses magnets and radio
waves by which radiation exposure can be avoided and it can produce high-resolution im-
ages; nonetheless, its cost is even higher than that of the above-mentioned technologies [49].
An additional issue is that after being diagnosed with breast cancer, regular follow-ups are
essential, which are accompanied by undergoing other rounds of inconvenient procedures
that sometimes need to be repeated. A potential, but yet to be elucidated solution can be
the involvement of miRNA profiling in personalized breast cancer management.

Being encapsulated in exosomes or bound with Argonaute proteins, circulating miR-
NAs are particularly stable; therefore, their implication for the development of novel
biomarkers can be beneficial in targeted breast cancer therapy [12]. miRNAs are valuable
candidates for establishing the diagnosis, monitoring the progression, and predicting the
possible outcomes of the disease [50]. Moreover, they can even overcome drug resistance,
indicating that they have the potential to get targeted during inhibitor targeted therapy,
which may increase the therapeutic efficacy [51]. In our study, we revealed 7 significant
individual miRNAs, and 5 of them are supposed to play a potential diagnostic role in breast
cancer detection. Intriguingly, 6 miRNAs (miR-15a, miR-16, miR-200a, miR-21, miR-221,
and miR-125b) were upregulated in BC patients regardless of their tumor suppressor or
oncogenic role. The reason that the expressional changes of the desired miRNAs are not in
concert with their tissue expression demonstrated by others could be that we measured
the level of circulating miRNAs (and not their expression within the tissue) that had been
secreted to the blood sera. These data support that the expression of miRNAs is regulated
by different molecular mechanisms in tumor tissue and serum [46].

It is important to note that, generally, an individual miRNA can be characteristic of
more than one tumor type; hence, to establish a breast cancer-specific miRNA profiling, the
proper miRNA combinations should be determined. Accordingly, we generated different
miRNA clusters, including various numbers of correlated miRNAs (n = 2–4), and monitored
which ones seemed to be the most suitable for discriminating the healthy individuals from
BC patients. To further validate the stratifying efficiency of the desired miRNA clusters,
additional statistical analyses were conducted. These analyses underlined the promiscuous
relevance of miR-15a+miR-16 and miR-15a+miR-16+miR-221 clusters in recognizing breast
cancer with high prevalence and specificity. Although miR-15a+miR-16 demonstrated the
highest specificity, these two candidates have already been shown to be involved in chronic
lymphocytic leukemia [52]. Our aim was to reveal a miRNA cluster that tends to be specific
to breast cancer; therefore, we included more than two strongly correlated miRNAs. Based
on our statistical analyses, we determined the miR-15a+miR-16+miR-221 cluster as the
most promising biomarker combination which is capable of discriminating the healthy
volunteers from BC patients with a high probability. However, the miR-221 role is not
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restricted to breast cancer, its dysregulation has also been shown in hepatocellular carci-
noma, pancreatic, and lung cancer [53–55]. In our cohort, the miR-15a+miR-16+miR-221
combination turned out to be the most promising multiple miRNAs, which may be suit-
able for further diagnostic purposes related to breast cancer. However, it is important
to emphasize that in most cases, we examined the blood sera of BC patients with grade
II and III, and unfortunately, regular follow-ups could not be performed due to the pa-
tients’ disastrously high and sudden mortality rate. In the future, the combination of these
three biomarkers has to be further tested and monitored on a regular basis in a population
possessing early-stage breast cancer. According to our data, we believe that if future vali-
dation studies supported our data, clinical implementation of miR-15a+miR-16+miR-221
would be of great importance in ameliorating the progression and recurrence of breast
cancer.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cells11172721/s1, Figure S1: Fold change (log2) and ROC curve
analysis of non-significant individual miRNAs expression in BC patients (BC) compared with healthy
individuals (control) Figure S2: Pearson correlation analysis performed on all the desired miRNAs;
Figure S3: Pearson correlation analysis and the related scatter plot performed on miR-15a+miR-16
and miR-21+miR-221; Figure S4: Principal component analysis (PCA) and confusion matrix of data
derived from BC patients and healthy individuals; Table S1: Primer sequences of miRNAs used for
qPCR reactions; Table S2: n-, p-, and t-values as well as degrees of freedom (df) of independent t-tests
executed on individual or multiple miRNAs; Table S3: miRNAs shown to be involved in breast cancer
based on the miRNA enrichment analysis and annotation tool (miEAA).
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