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vision. The corneal epithelium, a thin stratified squamous 
non-keratinizing epithelium, is continuously subjected to 
physical, chemical and biological insults (Yu et al. 2010). 
Corneal epithelium responds to insults with a rapid wound 
healing, which is essential for maintaining vision. In the 
area of injury, keratinocytes undergo apoptosis, and prolif-
eration of new cells occurs from the border of the wound. 
The proper balance of apoptotic and proliferation-stimu-
lating pathways is critical for normal wound healing (Lju-
bimov and Saghizadeh 2015; Lu 2006; Netto et al. 2005). 
Several growth factors, transcription factors and cytokines 
have been identified in this process (Baldwin and Marshall 
2002; Lyu and Joo 2005; Saika et al. 2004; Yu et al. 2010). 
On the other hand, impaired corneal wound healing and/or 
excessive apoptosis are known in numerous pathological 
conditions, including diabetes, contact lens-induced injuries 
and complications of refractive surgery (Netto et al. 2005; 
Wilson et al. 2007; Zagon et al. 2006).

Pituitary adenylate cyclase activating polypeptide 
(PACAP), originally isolated from the hypothalamus, has a 
diverse array of effects in various organs (May et al. 2021; 
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Abstract
Corneal epithelium responds to insults with a rapid wound healing, which is essential for maintaining vision. The proper 
balance of apoptotic and proliferation-stimulating pathways is critical for normal regeneration. Pituitary adenylate cyclase 
activating polypeptide (PACAP) is an important growth factor during the development of the nervous system and exerts 
cytoprotective effects in injuries. The aim of the present study was to investigate the effects of PACAP on corneal epi-
thelial wound healing in rats and on two important protective signaling molecules, Akt and ERK1/2, both of which have 
been reported to play important roles during cell survival and regeneration, including corneal wound healing. Wistar rats 
received PACAP treatment in form of eyedrops, containing 1, 5 and 10 µg PACAP27, immediately and every two hours 
after corneal abrasion. Corneas were stained with fluorescein dye and further processed for histological staining or West-
ern blot analysis for Akt and ERK1/2 expression. Our results showed that topical PACAP application enhanced corneal 
wound healing, as the area of injury was significantly less in PACAP-treated groups. Furthermore, both ERK1/2 and Akt 
signaling was induced upon PACAP administration in both injured and intact corneas. In summary, the present results 
show that PACAP enhances corneal wound healing in a rat model of corneal abrasion.
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ganglion cells. Similar results have been obtained with a 
recombinant PACAP-N terminal agrin domain protein (Wu 
et al. 2015). The aim of the present study was to investi-
gate the effects of PACAP on epithelial wound healing in 
another species, in rats, and on two important protective 
signaling molecules, Akt and ERK1/2, both of which have 
been reported to play important roles during cell survival 
and regeneration, including corneal wound healing (He et 
al. 2006; Mester et al. 2009; Yin and Yu 2009).

Materials and methods

Corneal abrasion

Male Wistar rats (weighing 250–300 gr, n = 36) were used 
in the experiments. Animals were housed under standard 
laboratory conditions, under approved protocols (No: 
BA02/2000-20/2006). Animals were anesthetized with 
50  mg/kg pentobarbital and eyes were examined under 
dissecting microscope. A corneal trepan was used to mark 
a 2-mm diameter circular area in the center of the cornea 
(Zagon et al. 2006), and the encircled corneal epithelium 
was then removed using microsurgical forceps on both eyes 
of the animals. Care was taken not to injure the underlying 
corneal stroma. The whole procedure was performed under 
the dissecting microscope.

PACAP treatment

PACAP27 (20, 100 and 200  µg) was dissolved in 800  µl 
distilled water. Eyes were treated immediately after surgery 
and every two hours with these eyedrops, with each drop 
containing 1, 5 or 10 µg PACAP27 in 40 µl vehicle (n = 7 
for each group). Only one eye was treated with PACAP27 
in each animal, the other eye received distilled water treat-
ment at the same time intervals, serving as control injured 
eyes. Normal, intact corneas were removed from 2 ani-
mals. According to preliminary studies and other descrip-
tions, eyes were examined 6 h after injury, when significant 
wound healing was already present (Nakamura et al. 2003).

Fluorescein and histological staining

Rats were sacrificed under anesthesia and eyes were stained 
with fluorescein dye (Haag-Streit, Switzerland). Eyes were 
removed and placed in a cup filled with soft modeling clay, 
ensuring a central positioning. Photographs were taken 
using a Nikon FXA photomicroscope attached to a digital 
camera (Spot RT Color camera). The injured area was then 
calculated using Spot advance software. Statistical analy-
sis was performed using ANOVA test, and differences were 

Vaudry et al. 2009). PACAP is an important growth fac-
tor during the development of the nervous system and has 
also cytoprotective effects in injuries (Cherait et al. 2021; 
Li et al. 2021; Martinez-Rojas et al. 2021; Reglodi et al. 
2018; Toth et al. 2020; Van et al. 2021; Vaudry et al. 2009; 
Waschek 2002). PACAP has two biologically active forms: 
PACAP27 and PACAP38, with 27 and 38 amino acid resi-
dues, respectively. PACAP and its receptors occur in ocular 
tissues, and the peptide has several biological effects in the 
eye (Nilsson et al. 1994; Seki et al. 2000; Shioda et al. 2016; 
Wang et al. 1995). The most intensively studied effects of 
PACAP in the eye are its retinal effects: PACAP is a well-
established retinoprotective peptide and is an important 
modulator in the retinohypothalamic pathway (Atlasz et al. 
2010, 2016; D’Amico et al. 2021; Fahrenkrug et al. 2005; 
Hannibal and Fahrenkrug 2004; Shioda et al. 2016). How-
ever, PACAP has several other functions in the non-retinal 
parts of the eye. For example, PACAP enhances the sphinc-
ter muscle response to stimulation and relaxes the dilator 
muscle (Yamaji et al. 2005; Yoshitomi et al. 2002). PACAP 
receptors have been described in the non-retinal ocular ele-
ments and PACAP decreases uveal vascular resistance and 
increases choroideal blood flow (Nilsson 1994; Nilsson et 
al. 1994). PACAP is also suggested as a sensory and inflam-
matory neuropeptide in the eye (Wang et al. 1995). Sys-
temic injection of PACAP has been shown to modify certain 
protein components of the rat tear film (Gaal et al. 2008). 
Subsequently, PACAP was shown to stimulate tear secre-
tion and suppress corneal keratinization (Nakamachi et al. 
2016). Mice lacking endogenous PACAP, on the other hand, 
display reduced tear secretion and dry eye symptoms that 
can be attenuated by PACAP eyedrops (Hirabayashi et al. 
2022; Nakamachi et al. 2016). Not only the water secretion 
was induced involving aquaporin 5 channel (Nakamachi et 
al. 2016) but the secretion of lactoferrin, an important tear 
protein, was also stimulated by PACAP (Nakajima et al. 
2013).

Less is known about the effects of PACAP in the cornea. 
The presence of PACAP and its receptors have been shown 
in the cornea (Maugeri et al. 2022a; Wang et al. 1995). In an 
earlier study, PACAP eyedrops induced growth of neuronal 
processes and accelerated recovery of corneal sensitivity in 
rabbits (Fukiage et al. 2007). Although focusing only on the 
neuronal recovery, this study has drawn the attention to the 
possibility that PACAP, in form of eyedrops, could enhance 
corneal recovery. Subsequently, a series of studies have pro-
vided evidence for the protective effects of PACAP in cor-
neal epithelial and endothelial cells (Ma et al. 2015; Maugeri 
et al. 2018, 2019, 2020; Wang et al. 2019; Wu et al. 2015) 
demonstrated that PACAP27, and more potently, a recom-
binant PACAP-derived peptide, MPAPO, facilitated corneal 
wound closure in mice and synapse growth in trigeminal 
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below 0.05 were considered as significant. Experimental 
design is summarized in Fig. 1.

Results

Corneal wound healing

Six hours after corneal abrasion, the healing process was 
clearly visible in fluorescein-stained eyes in all animals. In 
control, vehicle-treated corneas, wound healing occurred in 
a concentric manner, from the edges of the original injury 
site (Fig.  2. A, B). The area of injury, as calculated with 
Spot advance program, was significantly smaller in corneas 
treated with 5 or 10 µg PACAP27 than in control, vehicle-
treated eyes (Fig. 2. C, D and Fig. 3.) indicating an increased 
epithelial recolonisation of the injured area in PACAP 

considered significant when p < 0.05 between control and 
PACAP-treated corneas. After the fluorescein-stained pho-
tographs were taken, corneas were also further processed 
for routine histological staining. Following fixation in 4% 
paraformaldehyde, serial, 10 μm thick sections were made 
and stained with haematoxylin-eosin (Sigma, Hungary). 
Photographs were taken using a Nikon FXA photomicro-
scope attached to a digital camera (Spot RT Color camera). 
Routine histology was performed in order to demonstrate 
the injured cornea.

Western blotting

For Western blot studies, corneal abrasion was performed 
as detailed above. PACAP treatment was performed imme-
diately after the lesion and after two hours. Eyedrops con-
tained 10  µg PACAP27 in 40  µl vehicle. Corneas were 
removed after 4 h in order to investigate protective signal-
ing pathways during wound healing in corneal injury (n = 7). 
Normal, intact corneas were also removed from 4 animals in 
order to investigate the baseline phosphorylation of Akt and 
ERK1/2. Samples were processed for Western blot analysis 
as described earlier (Racz et al. 2007a), using 15 µg/ml pro-
tein/sample. Membranes were probed overnight at 4 oC with 
the following primary antibodies: phospho-specific anti-
Akt-1 Ser473 (1:1000 dilution; R&D Systems, Budapest, 
Hungary), phospho-specific anti-ERK1/2 Thr202/Tyr204 
(1:1000 dilution; R&D Systems, Budapest, Hungary) and 
anti-aktin (1:5000 dilution; Sigma-Aldrich Chemical Co., 
Budapest, Hungary). Membranes were washed six times 
for 5 min in Tris buffered saline (pH = 7.5) containing 0.2% 
Tween prior to addition of goat anti-rabbit horseradish per-
oxidase-conjugated secondary antibody (1:3,000; BioRad, 
Budapest, Hungary). The antibody-antigen complexes were 
visualized by means of enhanced chemiluminescence. After 
scanning, results were quantified by means of NIH ImageJ 
program. All experiments were performed at least four 
times. All data were expressed as mean ± SEM. Statistical 
comparisons were made using the ANOVA test followed by 
Bonferroni’s post hoc analysis. Differences with p values 

Fig. 2  (A-D): Representative photographs of fluorescein-stained cor-
neas. Picture of intact eye, showing only the site of the abrasion (A), 
6 h after injury in control, vehicle-treated eye (B), 6 h after injury in 
an animal treated with 5 µg PACAP27 (C) and 6 h after injury in an 
animal treated with 10 µg PACAP27 (D). Dotted lines mark the origi-
nal site of abrasion and filled lines outline remaining unhealed corneal 
areas (E,F): Representative microphotographs of haematoxylin-eosin 
stained corneas showing the epithelial injury 6 h after abrasion in con-
trol (E) and 5 µg PACAP27-treated (F) corneas. The outlined areas are 
shown with higher magnification in the inlets. Scale bars: 50 μm

 

Fig. 1  Schematic representation 
of the experimental design
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against thapsigargin-induced photoreceptor cell death and 
anisomycin-induced cell death in the neuroblastic layer (Sil-
veira et al. 2002). PACAP-treated turtle eyecup preparations 
survive and show electrical activity for a significantly longer 
time (Rabl et al. 2002). In vivo, PACAP has been shown to 
be protective against optic nerve transection, glutamate- and 
kainate-induced excitotoxic injury and ischemic degenera-
tion (Atlasz et al. 2007, 2008, 2009, 2010; Babai et al. 2005; 
Racz et al. 2007a, b; Seki et al. 2006, 2008). Recent studies 
have proven the protective effects in models of glaucoma, 
diabetic retinopathy and retinopathy of prematurity (Kvarik 
et al. 2016, 2021; Szabo et al. 2021). In the background of 
this retinoprotective effect several metabolomics changes 
have been identified in addition to the antiapoptotic and 
antioxidant effects (D’Alessandro et al. 2014). Our research 
group has shown that PACAP, given in form of eyedrops, 
can pass the ocular barriers and reach the retina, where it 
can exert protective effects (Kovacs et al. 2021; Werling et 
al. 2016). This opens ways for novel therapeutic strategies 
to avoid invasive intraocular treatments and have retinopro-
tective effects in form of eyedrops. PACAP administered in 
eyedrops can have local effects on the cornea, which has 
drawn less attention, but recent results point to the possible 
therapeutic potential of PACAP on corneal injuries.

Corneal epithelial cells respond rapidly to environmental 
stressors, and the balance of regulating pathways leading to 
fast wound healing is essential to visual acuity. A previous 
study has described that application of PACAP solution on 
the surface of the cornea induced trigeminal nerve regenera-
tion important for corneal sensitivity (Fukiage et al. 2007). 
The main finding of the present study is that topical appli-
cation of PACAP27 in form of eyedrops enhanced corneal 
regeneration in rats similarly to earlier findings in mice (Ma 
et al. 2015; Wang et al. 2019; Wu et al. 2015).

A series of recent studies have proven that PACAP is 
also protective on corneal endothelial cells, which face 
the anterior chamber. Maugeri et al. showed that PACAP 
and all of its 3 receptors (PAC1, VPAC1, VPAC2) can be 
found in the human corneal endothelial cells (Maugeri et 
al. 2018, 2019) and PACAP increased cellular viability in 
growth factor-deprived cells (Maugeri et al. 2018). PACAP 
also increased the endothelial barrier functions shown by 
the increased electrical resistance, the restored expression of 
tight junction-related proteins (ZO-1 and claudin-1) and the 
expression of integrin alpha3 and Na/K ATPase (Maugeri 
et al. 2018, 2019). The authors performed a wound heal-
ing assay on endothelial cells and found that PACAP was 
able to restore the migration of endothelial cells (Maugeri 
et al. 2018, 2019). A subsequent study has demonstrated 
that this protective effect is via the PAC1 receptor and trans-
activation of the epidermal growth factor receptor through 
which it stimulates MAPK/ERK1/2 signaling (Maugeri et 

treated corneas. This difference was approximately 20% 
(p < 0.05) and 25% (p < 0.01) in the corneas treated with 5 or 
10 µg PACAP27, respectively. The lowest dose of PACAP 
(1 µg) also led to a faster epithelial regrowth (approximately 
15% smaller injured area compared to vehicle treated), 
however, difference between PACAP- and vehicle-treated 
corneas was not statistically significant. These results were 
confirmed by routine histological staining, where the dif-
ferences between PACAP- and vehicle-treated corneas, 
although not quantified, were clearly visible (Fig. 2. E, F).

Phosphorylation of ERK1/2 and Akt

Even loading was confirmed by actin expression (Fig. 4. A). 
Both Akt and ERK1/2 phosphorylation was detected at low 
levels in normal corneas (Fig. 4. B, C). ERK1/2 phosphory-
lation was significantly induced after the corneal abrasion. 
Phosphorylation was significantly stimulated by PACAP27 
in both uninjured corneas and after abrasion (Fig. 4. B). Akt 
phosphorylation was not induced by the injury alone. How-
ever, PACAP27 stimulated Akt phosphorylation in both 
intact and in injured corneas, and it was significant after the 
injury (Fig. 4. B).

Discussion

The present study showed that topical PACAP applica-
tion enhanced corneal wound healing in rats and induced 
ERK1/2 and Akt signaling in the injured cornea.

Based on numerous studies, PACAP, mainly via its PAC1 
receptor, exerts cytoprotective effects in a number of cells/
tissues (Dejda et al. 2008; Nonaka et al. 2020; Shioda et al. 
2019; Somogyvari-Vigh and Reglodi 2004; Toth et al. 2020; 
Vaudry et al. 2009). In the eye, the retinoprotective effects of 
PACAP are well-established and have been reviewed several 
times (Atlasz et al. 2010, 2016; Gabriel et al. 2019; Postyeni 
et al. 2021). PACAP is protective against glutamate toxicity 
in retinal neurons (Gabriel et al. 2019; Shoge et al. 1999). 
In retinal explants, PACAP has been shown to be protective 

Fig. 3  Graphs showing the area of corneal epithelial injury 6 h after 
abrasion in control, vehicle-treated corneas and in corneas treated 
with different concentrations of PACAP27. Data are given as mean 
µm2 ± SEM. *P < 0.05, **P < 0.01 compared to control, vehicle-treated 
corneas
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confirmed similar effects in corneal endothelial cells against 
UV light-induced damage (Maugeri et al. 2020), similarly 
to activity-dependent protein, a protective peptide stimu-
lated by PACAP (Maugeri et al. 2022b). PACAP treatment 
counteracted the UV-induced apoptotic death of the endo-
thelial cells and restored the barrier functions, similarly to 
the effects against growth factor deprivation-induced dam-
age (Maugeri et al. 2020).

The cAMP-induced pathways are important in corneal 
functions such as wound healing and homeostasis (Grueb 
et al. 2008; Nakamura and Nishida 2003). cAMP can also 
potentiate the effects of growth factors, such as it has been 
described for epidermal growth factor during corneal epi-
thelial migration (Nakamura and Nishida 2003). Several 
growth factors have been shown to play important roles 
during corneal wound healing (Baldwin and Marshall 
2002; Kamil and Mohan 2021; Lyu and Joo 2005; Saika 
et al. 2004; Yu et al. 2010). Phosphatidyl-inositol-3-kinase 
(PI3K)-Akt pathways and the mitogen activated protein 
kinase (MAPK) family are major pathways governing cor-
neal epithelial healing (He et al. 2006). The involvement 
of Akt activity has been described in the action of several 
growth factors, such as insulin-like growth factor 1 and 2, 
epidermal growth factor and hepatocyte growth factor, dur-
ing corneal mitosis, migration and wound healing (Kakazu 
et al. 2004; Yanai et al. 2006). Similarly, MAPKs, including 
ERK1/2, play important roles in these processes. It has been 
described that glial cell-derived neurotrophic factor induces 
ERK1/2 in corneal epithelial cells (You et al. 2001). The 
effects of PACAP, a strong stimulator of cAMP, have been 
reported earlier on these signaling molecules in other cells/
tissues. For example, the stimulating effect of PACAP on 
ERK phosphorylation has been described in the retina (Racz 
et al. 2006), in endothelial cells (Racz et al. 2007b), in astro-
cytes (Hashimoto et al. 2003), cortical neurons (Stumm et 
al. 2007) and in cerebellar granule cells (Vaudry et al. 2002). 
Similarly, the effects of PACAP on Akt phosphorylation 
have been reported in cardiomyocytes (Racz et al. 2008), 
monocytes (El Zein et al. 2007), Schwann cells (Castorina 
et al. 2015) and in sympathetic neuronal cells (May et al. 
2010). Both Akt and ERK activation have been shown in the 
background of PACAP-induced neurite outgrowth (Shibato 
et al. 2021). Our present results show that these pathways 
are stimulated by PACAP in the cornea and they may play 
important roles during corneal epithelial wound healing in 
rats, similarly to earlier findings in mice (Ma et al. 2015; 
Wang et al. 2019).

Several other factors have been shown to be involved in 
PACAP-induced wound healing. Ma et al. (2015) showed 
that expression of nerve growth factor, transforming growth 
factor beta and fibronectin were higher in PACAP27- and 
MPAPO-treated corneas (Ma et al. 2015). In contrast, factors al. 2019). A recent study from the same research group has 

Fig. 4  Effect of corneal injury and PACAP treatment on Akt and ERK 
activation in the cornea. Activation of Akt and ERK was demonstrated 
by their phosphorylation detected by immunoblotting utilizing phos-
phorylation-specific primary antibodies. Representative blots of three 
experiments as well as quantitative evaluation of the pixel densities are 
shown. Values are given as mean ± SEM. Actin was used as a loading 
control. ***P < 0.001 versus control corneas, ###P < 0.001 versus injured 
corneas
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involved in pathological inflammation-related angiogenesis 
(vascular endothelial growth factor and intercellular cell 
adhesion molecule 1) were decreased after these treatments. 
The involvement of cyclin D1 has also been shown in the 
PACAP-induced corneal epithelial cell proliferation (Wang 
et al. 2019). Recently, we have demonstrated the presence 
of PACAP and its specific PAC1 receptor in the human eye 
(Patko et al. 2022). As results obtained in rats are similar to 
those previously shown in mice, it seems that these protec-
tive effects are not species-specific, but more general. The 
occurrence of PACAP and its receptors in the human eye 
therefore imply that the results from these animal studies 
have translational value and most probably are also present 
in the human eye that could have a therapeutic potential.
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