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In this paper, we introduce VPNet, a novel model-driven neural network architecture based on variable
projection (VP). Applying VP operators to neural networks results in learnable features, interpretable
parameters, and compact network structures. This paper discusses the motivation and mathematical
background of VPNet and presents experiments. The VPNet approach was evaluated in the context
of signal processing, where we classified a synthetic dataset and real electrocardiogram (ECG) signals.
Compared to fully connected and one-dimensional convolutional networks, VPNet offers fast learning
ability and good accuracy at a low computational cost of both training and inference. Based on these
advantages and the promising results obtained, we anticipate a profound impact on the broader field of
signal processing, in particular on classification, regression and clustering problems.
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1. Introduction

Until recently, signal processing was dominated by
conventional model-based algorithms, which rely on
mathematical and physical models of the real world.
They are inherently interpretable and often incorpo-
rate domain knowledge such as statistical assump-
tions, smoothness, structure of the model space,
and origin of the noise. However, this approach

can become mathematically intractable if problems
are complex. Machine learning (ML) provides an
alternative approach to this challenge by building
data-driven mathematical models. Neural networks
(NNs) and supervised learning in particular offer a
proper framework for various signal-processing prob-
lems.1 Below, we briefly review a few recent trends
that served as motivation for developing the pro-
posed variable projection network (VPNet).
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A traditional ML approach is to decompose the
problem into separate feature extraction and learn-
ing steps.2 In this case, the data is preprocessed in
order to extract static features based on the given
domain knowledge. These features are inputs to con-
ventional ML algorithms. Although the dimension of
the original data is significantly reduced in the first
step, these handcrafted features are usually subop-
timal with respect to the whole learning process.3

Deep learning provides alternatives to the tradi-
tional approach, overcoming some of its drawbacks.1

Learned features of NNs can be used as input for non-
NN methods, like discriminant correlation filters, as
well.4 Reference 5 combined traditional kernel-based
Support Vector Machines (SVMs) with deep learn-
ing approaches. Another common method would be
to use the features as input for one or multiple other
NN for multi-target prediction.6–9

Using more hidden layers in deep neural net-
works (DNNs) increased the learning abilities of
NNs.10 This enables DNNs to use the first layers
for feature extraction and further layers for per-
forming operations on the features learned. Convo-
lutional neural networks (CNNs) are special, option-
ally deep architectures and are the leading ML
approaches in 2D and 3D image processing and com-
puter vision.11–16 Here, the built-in feature extrac-
tion layers perform multiple convolutional filtering
and dimension-reduction (pooling) steps. Despite
their advantages, DNNs and CNNs continue to raise
several concerns. Their improved efficiency comes
at the cost of higher computational complexity and
numerical difficulties in the training process (see, e.g.
overfitting and divergence). Due to the large number
of nonlinear connections between the model param-
eters, DNN and CNN approaches can be considered
as black-box methods, where the parameters have no
or little physical meaning and are difficult or impos-
sible to interpret. Additionally, training these net-
works requires vast amounts of labeled data, which
is problematic to collect in many applications, such
as telecommunications,17 and biomedical engineer-
ing.18,19 Although data augmentation, transfer learn-
ing, outlier removal, and ensemble methods can mit-
igate this problem, reducing the data hunger of deep
learning approaches is still a major challenge in this
field.

Despite the popularity of deep learning, tradi-
tional ML algorithms continue to dominate in many

1D signal-processing tasks,20 especially in biomed-
ical signal classification, for example, of electroen-
cephalograms (EEGs), electromyograms (EMGs),
and ECGs. The main reason for this lies in the nature
of clinical applications, where both accuracy and
explainability are important. These cannot be guar-
anteed by the previously mentioned NN approaches,
since they do not extract medically interpretable fea-
tures. VPNet, however, breaks this impasse by har-
nessing the theory of variable projection (VP) to pro-
vide a framework for solving nonlinear least-squares
problems, whose parameters can be separated into
linear and nonlinear ones. In many fields of sig-
nal processing, there are a large number of linear
parameters, which are driven by a smaller num-
ber of nonlinear variables (see Eq. (3)). For exam-
ple, signal compression, representation, and feature-
extraction algorithms are often based on linear
coefficients of some transformation, such as Fourier
and wavelet transforms, which can be parameter-
ized via properties of the window function, mother
wavelet, etc.

The VPNet was designed to merge the
expert knowledge used by traditional model-based
approaches with the learning abilities of NNs. The
proposed architecture is inspired by the so-called
model-driven NN concept, which is an emerging
trend in signal processing. In Sec. 2, we review
the existing literature on incorporating model-based
information into machine learning. The theoreti-
cal background, the general formulation of VPNet,
and the corresponding forward and backpropagation
algorithm are discussed in Sec. 3. Section 4 describes
multiple experiments we performed to evaluate and
compare the performance of VPNet to that of other
NNs. Finally, Sec. 5 presents conclusions and the
expected broader impact of our research.

2. Related Works

Approximation theory gives a general framework to
approach the fundamental task in machine learning
that is to learn a good representation of the data.3

Classical methods in approximation theory build up
complicated functions by using linear combinations
of elementary functions, whereas neural networks
use compositions of simple functions. The structure
of these compositions constrains the feasible region
where we search for the solution of the corresponding
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ML task. The model-driven NN concept implements
these constraints such that the design of the NN
architecture resembles the solution to well under-
stood mathematical problems, such as ordinary or
partial differential equations21,22 (ODE, PDE), sig-
nal23–25 and image26–28 processing, optimization,29

and control.30–32

ODE- and PDE-constrained learning strategies
belong to a family of model-driven ML techniques
that relates the rigorous mathematical background of
differential equations to deep learning problems. On
the one hand, numerical solvers provide various ways
to derive and to interpret the output of NN architec-
tures, such as residual neural networks,21 Hamilto-
nian networks,22 based on the discretization scheme
of the corresponding ODE and PDE. On the other
hand, deep learning can incorporate domain knowl-
edge automatically which would otherwise require
a significant human effort,4,26,28 e.g. good insights
into the problem, and mathematical formulation
of a priori information. Although this approach
does not necessarily reduce the number of trainable
weights, it helps to design reversible architectures
that allow for memory-efficient implementations.33

Another branch of model-driven NNs, such as
deep unfolding23 or Wiener-,32 and Hammerstein-
type25 NNs, originates from signal processing prob-
lems. The former approach unfolds the iterations
of classical model-based algorithms into layer-wise
NN structures whose parameters are optimized based
on the training data. This way the resulting NN
retains the powerful learning ability of DNNs, inher-
its expert knowledge, and reduces the size of the
training data.17 Wiener-32 and Hammerstein-type25

NNs are alternatives that combine the advantages
of model-based methods and deep learning tech-
niques. These networks comprise cascades of static
nonlinear elements and dynamic linear blocks that
represent NNs and linear time-invariant (LTI) sys-
tems, respectively. Recently, these methods have
shown great potential in many fields, for instance,
in system identification,25 control engineering,32

sparse approximation theory,34,35 and telecommuni-
cation.36,37

The motivation behind integrating optimiza-
tion problems into DNN architectures is similar
to the ODE/PDE-driven networks, namely, design-
ing optimization problems to real-world processes
is a labor-intensive work which also needs expert

knowledge. To date, several new NN architectures
have been proposed in order to learn these opti-
mization problems automatically from data. Solv-
ing ill-posed inverse problems is a typical example
for such neural networks. In this case, each layer
is constrained by a penalized linear least-squares
problem where the parameters of the regulariza-
tion term, such as threshold values, linear kernels,
weights of the shrinkage functions, constitute the
trainable weights.27,38,39 OptNet29 gives the most
general framework in this family, where the layers
encode convex quadratic programming (QP) prob-
lems. The Hessian matrix of the QP’s objective
function along with its equality and inequality con-
straints are learnable parameters. The representa-
tion power of an OptNet layer is higher than that
of the two-layer ReLU networks, which can reduce
the overall depth of DNN architectures (see Theo-
rems 2 and 3 in Ref. 29). Besides its advantages,
the forward/backward passes of an OptNet layer are
much more computationally expensive than a linear
or convolutional layer. This is due to the fact that
constrained QP problems have no closed form solu-
tion in general, thus the forward pass requires the
use of iterative numerical solvers in each layer for
each update. We acknowledge that there are many
other model-based40 and model-free approaches.41–45

Especially, for time series data there are methods
based on spiking neural networks46,47 including their
variations48,49 which are beyond the scope of this
paper.

To the best of our knowledge, this is the first time
that the VP operators have been exploited in the
context of learning end-to-end systems. However, we
note that the proposed VPNet can be considered a
special case of OptNet. Indeed, a VP layer forwards
the solution of an unconstrained separable nonlin-
ear least-squares (SNLLS) problem to the next layer
(cf. Eq. (1) in Ref. 29). The corresponding nonlin-
ear parameters are the trainable weights of the VP
layer, and the linear ones are the extracted features,
which are forwarded to the next layer. In contrast
to a general OptNet layer, both the solution and the
gradients of a VP layer can be calculated analyti-
cally that is provided by the theoretical framework
of variable projection.50 This speeds up the training
and the inference, which can be further improved by
the use of orthogonal and discrete orthogonal func-
tion systems (see, e.g. Sec. 3.3).
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3. Variable Projection Networks

3.1. Variable projections

VP50 provides a framework for addressing nonlinear
modeling problems of the form

x ≈ x̂ =
n−1∑
k=0

ckΦk(θ) = Φ(θ)c, (1)

where x ∈ R
m and Φk ∈ R

m denote the input data
to be approximated and a parametric function sys-
tem, respectively. The symbol Φ(θ) refers to both the
function system itself and a matrix of size R

m×n.
The linear parameters c ∈ R

n and the nonlinear
parameters θ ∈ R

p of the function system Φ are sep-
arated. The least-squares fit of this problem means
minimization of the nonlinear functional

r(c, θ) := ‖x − Φ(θ)c‖2
2.

Without nonlinear parameters (i.e. if θ is fixed), the
model is linear in the coefficients c. The minimization
of r with respect to c leads to the well-known linear
least-squares approximation. Note that it is in fact
the best approximation problem in Hilbert spaces.
The optimal solution can be expressed by means of
Fourier coefficients and orthogonal projection oper-
ators PΦ(θ):

c = Φ+(θ)x, x̂ = PΦ(θ)x = Φ(θ)Φ+(θ)x, (2)

where Φ+(θ) denotes the Moore–Penrose pseudoin-
verse of matrix Φ(θ). The concept is closely related
to mathematical transformation methods, such as
Fourier and wavelet transforms, that can be inter-
preted as orthogonal projections by a given function
system with a predefined θ. From a practical point of
view, the coefficients c can be interpreted as features
extracted by VP, and x̂ is a result of low-pass filter-
ing and dimension reduction. The minimization of r

in the general case can be decomposed into the min-
imization by the nonlinear parameters θ, while the
linear parameters c are computed by the orthogonal
projection. Thus, according to the work of Golub and
Pereyra,50 minimizing r is equivalent to minimizing
the following VP functional:

r2(θ) := ‖x − Φ(θ)Φ+(θ)x‖2
2. (3)

In Ref. 51, a robust gradient-based Matlab imple-
mentation was provided for the numerical optimiza-
tion of r2. Mathematically, VP is a formalization

for adaptive orthogonal transformations that allows
filtering and feature extraction by means of para-
metric function systems. If a nonlinear optimization
problem can be separated into linear and nonlinear
parameters, VP may also act as a solver, which opens
up other possible applications.52,53

In the ML context, VP can be used as a fea-
ture extraction method and as a modeling technique
for the training procedure.54 Pereyra et al. proposed
VP as an optimization method for a given class of
feedforward NNs. They modeled the whole network
with VP and used the VP optimization method from
Ref. 50 as an alternative to stochastic gradient meth-
ods. This methodology is, however, limited to NNs
with only one hidden layer. Approaching VP from
a different and novel direction, based on its feature
extraction ability, we introduce VPNet.

Previous results have shown that several biomed-
ical signal-processing problems can be addressed
efficiently with variable projection by means of
adaptive rational and Hermite functions as well
as B-splines.55,56 VP features have been used in
particular for ECG and EEG representation, com-
pression, classification, and segmentation.57–65 The
results show that VP provides a very compact, yet
morphologically accurate, representation of signals
with respect to the target problem. Additionally, the
nonlinear parameters themselves carry direct mor-
phological information about the signals, and they
are usually human-interpretable.

3.2. VPNet architecture

The key idea of this architecture is to create a net-
work that combines the representation abilities of
VP and the prediction abilities of NNs in the form
of a composite model. The basic VPNet architec-
ture is a feedforward NN, where the first layer(s)
applies a VP operator that is forwarded to a fully
connected, potentially deep NN (see Fig. 1). The con-
struction is similar to that of CNNs in the sense that
the first layer(s) of the network can be interpreted
as a built-in feature extraction method. Note that
more complex VPNet architectures are also possible,
for instance, based on the models of U-Net14 and
AutoEncoder,66 which will be investigated as part of
our future work.

Depending on its target application, the VP layer
we propose has two possible behaviors. It either
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Fig. 1. VPNet architecture.

performs a filtering of the form

f (vp)(x) := Φ(θ)Φ+(θ)x = x̂ (x ∈ R
m), (4)

or a feature extraction of the form

f (vp)(x) := Φ+(θ)x = c (x ∈ R
m), (5)

where θ ∈ R
p denotes the nonlinear system parame-

ters of the given function system Φ, as defined above.
These VP operators refer to the orthogonal projec-
tion and the general Fourier coefficients of the input
x by means of the parametric system Φ(θ), as in
Eq. (2). The filter method may be better suited to
regression problems, while the feature extraction is
suitable for classification problems. The nonlinear
system parameter vector θ comprises the learnable
parameters of the VP layer. Note that many inverse
problems52 can be viewed as SNLLS data fitting
problems including a small set of adjustable nonlin-
ear parameters θ with direct physical interpretations.
For instance, the function system Φk(t; τk, λk) =
cos(λkt + τk) can be used in frequency estimation
and in EEG, where the network would learn domi-
nant frequencies λk and phases τk that characterize
a certain class of signals, such as seizures in EEG
recordings.67–69 MRI imaging is another setting,70

where Φk(t; λk) = exp(−λkt) with λk ∈ R
+ yields

information about the tissue type. The previously
mentioned properties and advantages of the VP oper-
ator are implicitly built into VPNet:

• Role: A novel model-driven network architecture
for 1D signal-processing problems.

• Generality: VPNet can be built from arbitrary
parameterized function systems, which allows the

direct incorporation of domain knowledge into the
network.

• Interpretability: The VP layer can be explained
as a built-in feature-extraction method. Further,
the layer parameters are the nonlinear VP system
parameters, which have an interpretable meaning.
They are usually directly connected to morpholog-
ical properties of the input data (see, e.g. Sec. 4.2).

• Simplicity: Since the VP layer is usually driven by
only a few system parameters, VPNet may provide
a compact alternative to CNNs and DNNs. In fact,
the VP layer can significantly decrease the number
of parameters in a DNN.

3.3. VP forward propagation

In order to calculate the forward pass of the VP layer,
a linear least-squares (LLS) problem has to be solved
for a certain value of θ in each training iteration
(see Eqs. (4) and (5)). Several numerical methods
exist to solve such problems, among which QR fac-
torization and singular value decomposition (SVD)
are the most common techniques. The QR method
(requires ∼ 2mn2 − 2n3/3 flops) is fast and reliable
for well-conditioned problems, but may fail when
Φ(θ) ∈ R

m×n is nearly rank-deficient. Therefore,
in our implementation, we utilize the SVD (requires
∼ 2mn2 + 11n3 flops) that is the most stable way to
solve unconstrained LLS problems.71 Although it is
computationally more demanding than the QR fac-
torization in cases when m ∼ n, their complexity is
approximately the same if m � n. Note that the
latter inequality usually holds in practice, since in
VPNet m stands for the length of the input signal,
which is much greater than the number of extracted
features n.

The low computational complexity is based on
the fact that the nonlinearity is precomputed and
stored in the matrix Φ. As a consequence, during
evaluation, the VP layer just performs a matrix mul-
tiplication. Further, since the number of features
computed by the VP layer is typically very low, the
following layers can have lower complexity as well.
The weight matrix of a fully connected layer, follow-
ing the VP layer, is element of R

n×l instead of R
m×l

without the VP layer, with n is the number of coef-
ficients, m is the length of the input signal and l is
the number of neuron in the fully connected layer.
Since n is usually by far smaller than m, the weight
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matrix is significantly smaller for a fixed number or
neuron l.

For shallow neural networks, when only a few hid-
den layers are connected to the VP layer, solving the
corresponding LLS problem in each training iteration
is obviously the bottleneck of VPNet that influences
both the computational complexity and the numer-
ical accuracy. In the following, we provide a realiza-
tion of the VP layer with Hermite functions, and we
demonstrate how the choice of the function system
and its parametrization influence the conditionality
of Φ(θ).

3.3.1. Adaptive Hermite system

In order to alleviate the computational burden of the
VP layer, a straightforward option is to parametrize
orthogonal function systems. As a case study, let us
consider Hermite polynomials,72 which are defined
by the three-term recurrence relation:

Hk+1(t) = 2tHk(t) − 2kHk−1(t) (k ∈ N
+, t ∈ R),

where H0(t) = 1 and H1(t) = 2t. These classical
orthogonal polynomials can be parametrized via dila-
tion and translation:

Φk(t; τ, λ) =
√

λΦk(λ(t − τ)), (6)

where

Φk(t) = Hk(t)e−t2/2/
√

π1/22kk! (k ∈ N
+). (7)

The functions Φk(t; τ, λ) are the translated and
dilated variations of the well-known Hermite func-
tions, thus we refer to them as “adaptive Hermite
functions”.

The forward propagation of the corresponding
Hermite-VP layer can be defined by the matrix Φ(θ)
in Eq. (3). For a given parameter value θ = (τ, λ), the
kth column of Φ(θ) is equal to the values of the kth
adaptive Hermite function evaluated at some pre-
defined points t0, t1, . . . , tm−1 ⊆ [a; b], where [a; b]
stands for the sampling interval. In the case of
proper discretization,73 the columns of Φ(θ) are pair-
wise orthogonal and unit vectors for all θ; therefore,
Φ+(θ) = ΦT (θ), which speeds up the computation of
both the forward and the backward passes.

There are two strategies for choosing the dis-
cretization points: nonuniform and uniform sam-
pling. The former relies on the Gauss–Hermite
quadrature rules, which associates the points

t0, t1, . . . , tm−1 ⊆ [a; b] with the roots of Hermite
polynomials.74 This approach is the most accu-
rate way to define discrete orthogonal systems,
but it requires both the precomputation of the
roots and the resampling of the input signals at
these nonequidistant points. Therefore, we consider
the computationally simpler uniform discretization
instead. This sampling scheme, although less accu-
rate, satisfies discrete orthogonality, and thus the
identity Φ+(θ) = ΦT (θ) holds, provided that the
number of sampling points m is large enough, and
θ ∈ Γ, where

Γ =
{

(τ, λ) ∈ R × R+ : τ +
3
λ
≤ b, τ − 3

λ
≥ a

}
.

If θ /∈ Γ, it can happen that the adaptive Hermite
functions Φk(t, τ, λ) are not discrete orthogonal any-
more. In the worst-case scenario, they can be linearly
dependent, which results in a rank deficient matrix
Φ(θ). In Fig. 2, we demonstrate this phenomenon by
evaluating the condition number of Φ(θ) ∈ R

m×n for
m = 1000, n = 3, and for a range of parameters
θ = (τ, λ) ∈ [500, 1100]× [0.05, 0.012]. It can be seen
that the condition number diverges from the ideal
case (green dashed line) as we change τ and λ irre-
spective of Γ. This can be avoided if we choose the
parameters from the feasible region Γ. The rationale
behind this behavior is given in Appendix A.

Fig. 2. Relationship between the parameters τ, λ and
the condition number of the matrix Φ(τ, λ).
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3.4. VP backpropagation

Let us discuss the training of a general feedforward
NN in a supervised manner. Let

(xi, yi) (i = 1, 2, . . . , N)

be the annotated input-target pairs of the training
data, where the input vector xi ∈ R

m and the target
vector yi ∈ R

s (in the case of regression) or the target
label yi ∈ N or probabilities yi ∈ [0, 1]c (in the case
of classification). A general feedforward NN can be
expressed as the composition of layer functions of the
form

NNθ(x) =
(
f

(L)

θ(L) ◦ · · · ◦ f
(�)

θ(�) ◦ · · · ◦ f
(2)

θ(2) ◦ f
(1)

θ(1)

)
(x),

where x ∈ R
m stands for the input samples, f

(�)

θ(�)

and θ(�) denote the function and the parameters of
layer �, respectively. The symbol θ refers to the set
of parameters θ(�). The layer functions f (�) may refer
to linear mappings, convolutional filters, nonlinear
activations, pooling, VP operators, etc. Let

ŷi := NNθ(xi) (i = 1, 2, . . . , N)

denote the predicted values for each input. The train-
ing of the network can be addressed as a minimiza-
tion problem, involving a proper loss (i.e. cost) func-
tion J that evaluates the error between predicted and
target values. Common loss functions are the Mean
Squared Error (MSE), that is, the least-squares cost
function (regression problems, yi ∈ R

s), and the
Binary Cross Entropy (BCE) loss (binary classifica-
tion, yk ∈ {0, 1}):

JMSE(θ) :=
1
N

N∑
i=1

‖yi − ŷi‖2
2,

JBCE(θ) := − 1
N

N∑
i=1

(yi log ŷi

+ (1 − yi) log(1 − ŷi)).

In our experiments, we used the Cross Entropy loss
JCE, which is the multi-class extension of BCE (clas-
sification, yk ∈ N); see also, Sec. 4.

The state-of-the-art method for training feedfor-
ward networks is backpropagation,75 where J is mini-
mized by means of a stochastic gradient-descent opti-
mization (see, e.g. Adam,76 Adagrad,77 RMSprop78).
There are multiple implementation of the propaga-
tion algorithm for different programming languages,
target hardware platforms and machine learning

frameworks.79–82 The gradient descent update for-
mula for each layer parameter is

θ(�) := θ(�) − η
∂J

∂θ(�)
,

where η > 0 is called the learning rate. Briefly, back-
propagation provides a recursive way of computing
the gradients above based on the chain rule:

∂J

∂f (�−1)
=

∂J

∂f (�)
· ∂f (�)

∂f (�−1)
,

∂J

∂θ(�)
=

∂J

∂f (�)
· ∂f (�)

∂θ(�)
.

This way, only the partial derivatives of the layer
function f (�) with respect to its input (∂f (�)/∂f (�−1))
and to its parameters (∂f (�)/∂θ(�)) must be calcu-
lated. These derivatives are usually well known for
the common layer types and can also be directly
calculated for the VP layers. Based on Ref. 50, the
partial derivatives of the VP operators with respect
to their input and nonlinear parameters can be
expressed as follows. In the case of a filtering-type
VP layer (see Eq. (4)):

f (vp)(x) = Φ(θ)Φ+(θ)x,
∂f (vp)

∂x
= [Φ(θ)Φ+(θ)]T ,

∂f (vp)

∂θj
=

∂[Φ(θ)Φ+(θ)]
∂θj

x,

where

∂[Φ(θ)Φ+(θ)] = (I − ΦΦ+)∂ΦΦ+

+ [(I − ΦΦ+)∂ΦΦ+]T .

In the case of a feature-extraction-type VP layer (see
Eq. (5)):

f (vp)(x) = Φ+(θ)x,
∂f (vp)

∂x
= [Φ+(θ)]T ,

∂f (vp)

∂θj
=

∂Φ+

∂θj
x,

where

∂Φ+ = −Φ+∂ΦΦ+ + Φ+[Φ+]T ∂ΦT (I − ΦΦ+)

+ (I − Φ+Φ)∂ΦT [Φ+]T Φ+.

The naive implementation of the backpropaga-
tion, particularly in the case of DNNs, can lead
to numerical issues, such as divergence and overfit-
ting. In order to avoid this, a regularization term
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in the form of an �2 penalty on the weight parame-
ters is added to the loss.66 Here, we introduce a per-
cent root-mean-square difference (PRD) regulariza-
tion that can be applied to a single feature-extraction
VP layer in the case of a classification problem. The
modified loss function we propose is

JVP(θ) := JCE(θ) +
α

N

NX

i=1

r2(xi; θ
(vp))

‖xi‖2
2

= JCE(θ) +
α

N

NX

i=1

‖xi − Φ(θ(vp))Φ+(θ(vp))xi‖2
2

‖xi‖2
2

,

where α ≥ 0 controls the penalty effect. The moti-
vation behind this regularization is twofold: First,
it is based on the previous results that incorporate
VP as feature extraction, which show that the pre-
cise VP approximation may lead to “good” features
and therefore to high classification accuracy. Second,
we expect that the optimal VPNet classifier extracts
the main characteristics of the input signals, which
means that we presume “good” approximation. This
penalty term seemingly breaks the formulation of the
backpropagation, but the original method can easily
be extended by a bypass step that is applied to the
VP layer only. The gradient with respect to the VP
parameters is modified as follows:

∂JVP

∂θ(vp)
=

∂JCE

∂θ(vp)
+

α

N

N∑
i=1

1
‖xi‖2

2

· ∂r2

∂θ(vp)
,

where

∂r2 = −2xT
i (I − ΦΦ+)∂ΦΦ+xi.

We just developed the formulas for attaining the
necessary gradient information for training VPNet
via backpropagation. This allows us to train VPNets
in the same way as convolutional and fully con-
nected NNs.

4. Experiments

Using supervised classification problems inspired by
particular biomedical signal-processing applications,
we evaluated VPNet and compared it to fully con-
nected and 1D convolutional networks. We present
the details of the experiments, specifically about the
network architectures, the VP system of choice, and
the synthetic and real datasets.

4.1. Network architecture

Here, we provide details about the networks we com-
pared, the learning methods, and the network param-
eters. The networks were feedforward, consisting of
the following layers:

• VPNet : a VP layer, a fully connected (FC) layer
with ReLU activation, an FC layer with SoftMax
activation.

• Fully connected NN : one or two FC layers with
ReLU, an FC layer with SoftMax.

• CNN : a 1D convolutional and pooling layer, an FC
layer with ReLU, an FC layer with SoftMax.

For signal-classification tasks, the inputs were R
m

samples and the outputs were interpreted as a proba-
bility distribution over predicted output classes. The
FC layers performed linear mappings with nonlinear
activation (ReLU or SoftMax). The VP layer was
of the feature-extraction type (see Eq. (5)), and the
CNN implemented 1D convolution and mean or max-
imum pooling as in Ref. 18.

Based on cross entropy loss with VP regular-
ization (see Sec. 3.4), offline backpropagation with
Adam optimizer76 was applied for learning. The
hyperparameters and the parameter selection strate-
gies were as follows:

• Learning parameters : learning rate, VP penalty
(VPNet only), batch size, and the number of
epochs. The last two were fixed (512 and 10–100,
respectively). The optimal learning rate and
penalty can be found by a grid search.

• Network parameters : number of layers, number of
neurons, VP dimension n (VPNet only), convolu-
tional and pooling kernel sizes (CNN only). Here,
we either used fixed dimensions so that the three
architectures are comparable or evaluated possible
configurations by a grid search.

• Layer parameters : linear weights and biases,
nonlinear VP parameters (VPNet only), kernel
weights and biases (CNN only). These parameters
were optimized by backpropagation. Initialization
was random for the linear and kernel parameters.
However, the VP parameters have interpretable
meaning, which may lead to special initialization.
We investigated two options: a grid search on the
intervals of possible values and initialization by
means of pretraining the VP layer to reconstruct
input data (i.e. minimizing r2 in Eq. (3)). The
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latter approach is especially useful in the case of
complex waveforms which possibly need more VP
parameters to learn.

4.2. VP system of choice

Although Hermite functions have shown great poten-
tial in many fields, such as molecular biology,83 com-
puter tomography,84 radar,85 and physical optics,86

their main application area is 1D biomedical signal
processing. The shape features of Hermite functions
are well suited to producing models of compactly
supported waveforms such as spikes,87–91 which is
why we used them in ECG heartbeat classification.

The nonlinear parameters τ and λ in Eq. (6) rep-
resent the time shift and the width of the modeled
waveforms, respectively. Thus, the network learns
the positions and the shapes of those waves/spikes
which separate one class from another. For instance,
in electrocardiography, a heartbeat signal comprises
three individual waveforms (i.e. the QRS, T, and
P waves), which represent different phases of the
cardiac cycle, and their properties are directly used
by medical experts for diagnosis. These features are
learned by the VP layer: The amplitude and shape
information is extracted by the linear coefficients ck,
while position and width of the waves are represented
by τ and λ (see Fig. 3). This approach is essen-
tially different from CNN-based methods, where no
direct connections exist between learned and medical
descriptors.

4.3. Synthetic data

Our goal was, on the one hand, to synthesize a
dataset where we know the actual structure of the

data depending on the generator parameters. On
the other hand, the dataset had to have practical
relevance (i.e. be related to actual signal-processing
problems). The generator system of choice was the
adaptive Hermite system, which seemed to fulfill
these expectations due to its applications in signal
processing (see Sec. 4.2). The principles we followed
to generate the dataset are discussed in what follows.

Let us consider a general signal model by means
of a linear combination of adaptive Hermite functions
of the form

xi = Φ(τi, λi) · c(i) =
n−1∑
k=0

c
(i)
k Φk(τi, λi),

where (τi, λi) and c(i) (i = 1, 2, . . . , M) refer to
the sample-specific nonlinear parameters and coef-
ficients, respectively. Based on the completeness of
the Hermite system in L2(R), this formula provides
a general approximation for arbitrary signals. How-
ever, the signal-processing applications of VP and
the Hermite system show that proper selection of the
nonlinear parameters may lead to accurate low-order
approximations. Further investigation into this topic
revealed that the nonlinear parameters correspond
to coarse changes in the signal morphologies, while
the coefficients reflect fine details.92 For instance, we
refer to Ref. 56, where the nonlinear parameters were
utilized as global, patient-specific and the coefficients
as heartbeat-specific descriptors. Motivated by these
aspects, we sought to construct a dataset where the
nonlinear parameters are close to each other and the
coefficients form noticeably separable classes.

More precisely, we considered five coefficients (i.e.
c(i) ∈ R

5) so that the points (c(i)
1 , c

(i)
2 , c

(i)
3 ) ∈ R

3

Fig. 3. VPNet architecture for QRS classification: the VP layer takes the whole signal as input, decomposes the QRS
complexes into linear combinations of adaptive Hermite functions, and then forwards the coefficients of the Hermite
components to the next fully connected layer.
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(a) Coefficients. (b) System parameters. (c) Samples.

Fig. 4. Synthetic dataset: first, the coefficients (a) and the parameters of the Hermite functions (b) are generated; which
are then used to compute the input samples (c).

formed three separable spherical shells that corre-
spond to the target class labels (see Fig. 4(a)). The
motivation behind spherical shells was twofold. They
are simple enough for human interpretation, but suf-
ficiently complex to require complex networks. The
last two coefficients, c

(i)
4 and c

(i)
5 , served as random

factors and for amplitude normalization. Their effect
is to mislead the classifier, but at the same time
to decrease the chance of overfitting. The nonlinear
parameters τi and λi are similar for each sample up
to a random factor, and the sample-specific parame-
ter values are generated randomly with given mean
and variance (see Fig. 4(b)). This random factor sim-
ulates the nonlinear noise in the measurement. Fig-
ure 4(c) presents the samples. We conclude that the
simulation met our expectations: the resulting sam-
ples were difficult to separate, but the underlying
structure was easy to interpret. Note that this is a
standard process to generate synthetic data which
was utilized by other authors as well.93

In the actual implementation, 5000 samples per
class were generated for both the training and test
sets. We evaluated a total of more than 8000 possible

hyperparameter configurations of the three network
architectures. A range of numbers of neurons in the
hidden layer, various numbers of VP dimensions,
and various CNN kernel and pooling sizes, learn-
ing rates and VP initializations were considered. The
VP penalty was initially fixed to 0.1. The simula-
tions showed that the VP regularization can not
only increase the learning speed, but also ensure
convergence of an otherwise divergent configuration.
In this regard, 0.1 was found to be a good choice.
The aggregated results are presented in Figs. 5(a)
and 5(b). Therefore, the configurations are grouped
into six categories: VPNets of dimension n = 7 and
n = 9 in Eq. (1), fully connected NNs (FCNN), and
CNNs with kernel sizes of 5, 15, and 25. Figure 5(a)
shows the training accuracy curves corresponding to
the best hyperparameter combination in each cate-
gory. In Figs. 5(b) and 5(c), the best test accura-
cies are plotted against the number of neurons in
the hidden layer and the total number of learnable
network parameters, respectively, for each category.
We note that the y-axis of Fig. 5(b) is restricted
to the interval between 95% and 100% for better

(a) Best training curves. (b) Best test accuracies. (c) Best test accuracies.

Fig. 5. Evaluation on synthetic data.
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visual interpretability. In the following, we compare
the performance of VPNet with respect to different
network complexities.

The results demonstrate the efficiency and poten-
tial capabilities of VPNet. Figure 5(a) indicates its
fast learning ability. In fact, VPNet may converge
faster than the other network architectures. Fig-
ures 5(b) and 5(c) show that VPNet can potentially
outperform FCNNs and CNNs in terms of the best
accuracies on the test set. Although all architectures
achieved accuracies close to 100%, VPNet achieved
this with low structural complexity, which refers not
only to the number of neurons, but also to the total
number of network parameters (see Fig. 5(c)). In this
regard, VPNet is superior, because with FCNNs and
CNNs of the same effective receptive field, the num-
ber of parameters (i.e. the linear and kernel weights
and biases) grows linearly with sample size and num-
ber of neurons. With VPNet, in contrast, the num-
ber of nonlinear parameters (p = 2) is independent
of sample size and output dimension. For the sake of
clarity, we remark that the kernel size or the number
of convolutional layers in a CNN do not necessar-
ily depend on the input size. Although, in order to
detect global morphologic behavior of signals (e.g.
heartbeats), the CNN is expected to have a large
enough effective receptive field, that requires larger
kernels or multiple layers stacked together in a linear
scale. See also Ref. 94.

In addition to Fig. 5(c), the best test accuracies
depending on the number of learnable parameters
are given in Table 1. Here, the number of param-
eters is grouped into bins for easier interpretation.
The results show that the VPNet outperforms the
CNNs and FCNNs for each bin, and reaches peak
performance earlier than the other two. Besides the
numerical comparison, statistical hypothesis testing
were also performed for each bin, if applicable. The
differences between the best performing VPNets and
CNNs are statistically significant by both paired-
sample t-tests and McNemar’s tests with significance
level 5%.

4.4. Real ECG data

We sought to prove the relevance of VPNet not only
in simulation, but also using real signal-processing
data. We chose a particular ECG signal-processing
problem: classification of heartbeat arrhythmia (see

Table 1. Evaluation on synthetic data: best
test accuracies versus number of parameters.

# VPNet CNN FCNN

30–39 85.86%
40–49 99.41%
50–59 99.57%
60–69 99.64% 71.65%
70–79 99.87% 84.32%
80–89 99.85% 93.33%
90–99 99.94% 97.71%
100–119 99.97% 98.86%
120–139 99.98% 99.41% 81.14%
140–159 99.97% 99.77%
160–179 99.96% 99.92% 97.01%
180–199 99.90%
200–239 99.85% 98.34%
240–279 99.89% 99.47%
280–319 99.86% 99.65%
320–359 99.68%
360–399 99.77%
400–479 99.67%
480 99.91%

Ref. 95). The state of the art is supervised ML by tra-
ditional approaches (see Refs. 19, 96, 97 and Sec. 2),
including VP-based static feature extraction.56,63,65

Here, we focused on a related subproblem, where we
could compare the performance of the selected net-
work configurations.

In detail, we investigated the separation of the
two largest arrhythmia classes: normal and ventric-
ular ectopic beats (VEBs). The source of the data
is the benchmark MIT-BIH Arrhythmia Database,98

available from PhysioNet.99 The database is split
into sets DS1 and DS2 according to Ref. 100,
for training and inference, respectively. The whole
database contains more than 100,000 annotated
heartbeats, but it is heavily biased towards the nor-
mal class, that usually distorts the performance eval-
uation. Here, we investigated two cases for data
acquisition. First, a balanced subset was extracted:
all VEBs and the same number of normal beats
from each record. This yielded 4260 plus 4260 heart-
beat signals for training (set DS1), and 3220 plus
3220 signals for testing (set DS2). This balanced
subset is expected to provide undistorted evalua-
tion and fair comparison of the NN architectures.
The second, unbalanced subset consists of all nor-
mal beats and VEBs of the whole database, yield-
ing around 50,000 heartbeats for both training and
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testing. This unbalanced subset represents a more
realistic scenario, and supports partial comparabil-
ity to the state-of-the-art. Note that the DS1 and
DS2 heartbeats come from different patients, which
means that there is no data leakage in either cases.
We used the preprocessing and heartbeat extraction
methods discussed in Ref. 63, but chose a window
size of 100 samples (∼0.28 s) around the R peak
annotations. This window was expected to cover the
whole QRS complex and potentially the PR and ST
segments of each heartbeat. Example heartbeats of
the two classes are displayed in Fig. 6.

To demonstrate the interpretability of the results,
we depicted the response of a trained VP layer to
three input QRS complexes in Fig. 7. It can be seen
that the Hermite-VP layer learned in fact the posi-
tion τ and the width λ of the QRS complexes such
that it gives an approximation (red) to the mean-
ingful part of the original (blue) curves. In addition
to the QRS complex, the input data window may
include irrelevant information, such as baseline wan-
der, noise, part of the P and the T waves. However,
these irrelevant information are discarded due to the

(a) Normal. (b) VEB.

Fig. 6. Example heartbeats of the training set.

optimization of τ and λ, and thus only the meaning-
ful part of the input signal is approximated at the
end of the training. Consequently, the VP layer is
likely to be more tolerant to noise as well. In fact, the
Hermite-VP representation of ECG recordings can
simultaneously cope with various noise sources such
as baseline wander, and power-line interference.92

The layer can also retain diagnostically important
morphological information via the extracted coeffi-
cients. In Fig. 7, the red curve is equal to the linear
combination of the Hermite functions, whose coef-
ficients are the output of the VP layer. The magni-
tude of these coefficients indicate the presence of each
elementary components in the signal. For instance,
Fig. 7(b) shows an asymmetric QRS complex, which
is reflected in a high coefficient c2 that corresponds to
an odd Hermite function. In contrast, Fig. 7(c) plots
a highly symmetric QRS complex, which resembles
to a Gaussian function indicated by the high value
of c1. Therefore, both the parameters τ, λ and the
output ci’s of the VP layer are interpretable. Note
that the level of interpretability tends to decrease
as we connect more and more hidden layers to the
network. The reason behind is that the whole net-
work does not seek to reconstruct the parameters
with which the data where constructed but it rather
searches for the parameters that maximize the dis-
tinctness of the classes. Since the term presented in
Sec. 3.4 penalizes the model for not reconstructing
the original signal, a larger value for α mitigates
the decreased interpretability. However, the VP layer
provides a fully transparent feature extractor, which
directly influences the output of the network due to
the least-squares penalty in the modified loss func-
tion JVP. Therefore, a trained VP layer can be used
to improve the generalization properties of DNNs

(a) Normal beat. (b) Abnormal beat. (c) Abnormal beat.

Fig. 7. Output of a trained VP layer: for a normal beat (a) and two abnormal beats (b), (c).
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(a) Balanced subset.

(b) Unbalanced subset.

Fig. 8. Evaluation on real data, best test accuracies.

by synthesizing more realistic data samples in the
learned feature space.101,102

The performance of VPNet was measured in a
similar way as in the synthetic case, with more
than 3500 possible hyperparameter configurations
examined. The aggregated results are presented in
Figs. 8(a) and 8(b), for the balanced and unbal-
anced case, respectively. Here, the FCNN and CNN
cases were restricted so that the output dimensions
of the first layer were similar to the VP dimen-
sions, and only the number of neurons in the hidden

layer were varied. Note that VPNet again required
a remarkably low number of network parameters.
We also evaluated another, larger FCNN configu-
ration (FCNN++), where the number of neurons
in the first layer was not restricted to that of the
VP dimension n, but had the same number as in
the second, hidden layer. The structure and distri-
bution of training and test data were more com-
plex than in the synthetic case, which clearly made
the classification task more difficult for all network
architectures. Again, we conclude that VPNet can
outperform FCNNs and CNNs for low-complexity
networks. Note that VPNet reaches peak perfor-
mance at low network complexity (at low number of
hidden neurons, i.e. at low number of system param-
eters), and the performance starts to decrease early if
we increase the complexity. This behavior is slightly
different for CNNs and FCNNs. A possible reason
behind is that the first layer of the VPNet acts as a
model-based feature extraction, i.e. provides a low-
dimensional sparse representation of the input (4 or
8 features for 100 samples). Increasing the complex-
ity of the fully-connected layers of VPNet without
increasing the VP parameters or features will lead
to over-parametrization and overfitting.

In addition to the total accuracies, the usual
performance metrics are also provided in Table 2.
Namely, sensitivity/precision (Se) and positive
predictivity/recall (+P ) was evaluated for each
classes, as

Se =
TP

TP + FN
and +P =

TP
TP + FP

, (8)

where TP, FP and FN are the true positive, false
positive, and false negative matches, respectively.

Table 2. Performance evaluation on real data.

Normal VEB
Total

Case/method accuracy Se +P Se +P

Balanced
VPNet 96.65% 99.38% 94.23% 93.91% 99.34%
FCNN 94.38% 93.79% 94.91% 94.97% 93.86%
CNN 96.34% 97.76% 95.05% 94.91% 97.70%

Unbalanced
VPNet 98.45% 99.57% 98.78% 83.07% 93.37%
FCNN 97.49% 98.50% 98.81% 83.70% 80.21%
CNN 98.35% 99.39% 98.85% 84.07% 90.93%

State-of-the-art19 N/A 80–99% 85–99% 77–96% 63–99%
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Reference intervals of the state-of-the-art are also
given according to the survey Ref. 19. We note that
the direct comparison is not always possible, since
most of these results refer to a 3 or 5 class classifica-
tion of the database.

5. Conclusion

We developed a novel model-driven NN which incor-
porates expert knowledge via variable projections.
The VP layer is a generic, learnable feature extrac-
tor or filtering method that can be adjusted to sev-
eral 1D signal-processing problems by choosing an
application-specific function system. The proposed
architecture is simple, which means it has only a few,
interpretable parameters. Our case studies showed
that VPNet can achieve similar or slightly better
classification accuracy than its fully connected and
CNN counterparts while using a smaller number
of parameters. In our tests, the convergence of the
VPNet was slightly better than that of the CNN
and the FCNN counterparts. However, the VP layer
required only two parameters for learning in all cases,
whereas the number of weights and biases for the
FCNN and CNN grew linearly with the length of
the input signals. These results show that VPNet
can be applied effectively to various problems in 1D
signal processing including classification, regression,
and clustering, which we will investigate as part of
future work.

Broader Impact

We have proposed a new compact and interpretable
neural network architecture that can have a broader
impact in mainly two fields: machine learning and
signal processing. The key idea is to create a net-
work that combines the representation abilities of
variable projections and the prediction abilities of
NNs in the form of a composite model. This concept
can be generalized to other machine learning algo-
rithms. For instance, VP-SVM, and other combined
VP methods, such as VP-K-means and VP-C-means,
can extend the potential areas of application, includ-
ing classification, regression, and clustering prob-
lems. Since the nonlinear parameters of the VP layer
are interpretable, they can also be used in feature-
space augmentation, where new data is generated

from existing one in order to improve the general-
ization properties of DNNs.101,102

Signal-processing aspects of VPNet were dis-
cussed in the ECG heartbeat classification case
study. Additionally, VPNet may have great potential
in a wide range of applications especially where VP
has proven to be an efficient estimation method (cf.
Sec. 4.2). Note that many already existing adaptive
signal models have been reformulated as VP prob-
lems52,53; however, parameterized wavelets103 have
not yet been studied in this context. Therefore, we
encourage researchers to study this class of wavelets
in the framework of VPNet.

Model-driven neural network solutions can have a
great impact in biomedical engineering and health-
care informatics, where medical data classification
alone is usually not enough, as physiological inter-
pretation and explainability of the results are also
important. However, special care should be taken
to avoid automation bias when these approaches
are applied to real-world problems.104 These clin-
ical decision-support systems are difficult to vali-
date, since this requires medical expertise and vast
amounts of data. The latter is naturally unbalanced
in the sense that one class of signals (e.g. from
healthy patients), is overrepresented compared to the
others. In order to address these potential biases,
VPNet should be tested in various scenarios that
include, for instance, noisy and incomplete measure-
ments, or unbalanced data.
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The data and code that support the findings of
this study are available at Ref. 105.

Appendix A

Let us consider the Hilbert space L2(R) endowed
with the usual scalar product and norm:

〈f, g〉 =
∫ ∞

−∞
f(t)g(t)dt, ‖f‖2 =

√
〈f, f〉,

where f, g ∈ L2(R). It is well-known that the Her-
mite functions Φk (k ∈ N) in Eq. (7) are pairwise
orthogonal, i.e. δkj = 〈Φk, Φj〉, where δkj stands for
the Kronecker delta symbol.

Another useful property of the Hermite functions
Φk is that they converge rapidly to zero as t → ±∞.
Therefore, in practice, we can assume that each Φk

has a compact support. This can be used to satisfy
the approximate orthogonality relation:

δkj = 〈Φk, Φj〉 ≈
∫ b

a

Φk(t)Φj(t)dt,

provided that the supports of both Φk and Φj are
embedded in a finite interval [a; b]. Note that the
first Hermite function Φ0(t) is equal, up to a con-
stant factor, to the probability density function of the
standard normal distribution N (0, 1). Therefore, the
three-sigma rule applies, which means that around
68%, 95%, 99% of the overall integral of Φ0(t) lies
within the intervals [−�; �] for � = 1, 2, 3, respec-
tively. Therefore, in the case of k = 0, we choose the
sampling interval such that [−3; 3] ⊆ [a; b] holds. For
larger indices k > 0, a heuristic empirical relation
supp(Φk) ∼ 1.05k · [−3; 3] ⊆ [a; b] can be applied.

In practice, we typically use only the first few
Hermite functions to model compactly supported
waveforms (see Sec. 4), therefore the condition
[−3; 3] ⊆ [a; b] is sufficient. The same reasoning
applies to the scalar product of the adaptive Her-
mite functions:

〈Φk(·; τ, λ), Φj(·; τ, λ)〉 ≈
∫ λ(b−τ)

λ(a−τ)

Φk(s)Φj(s)ds,

where we simplified the integral on the right-hand
side by substitution s = λ(t − τ). In order to
satisfy the approximate orthogonality relation, the

Fig. A.1. Ideal and extreme cases for cond(Φ(τ, λ)).

condition [−3; 3] ⊆ [λ(a−τ); λ(b−τ)] must hold, i.e.:

−3 ≥ λ(a − τ), and λ(b − τ) ≥ 3,

which implies the feasible set Γ in Sec. 3.3.1.
In Fig. A.1, we show four realizations of the first

three adaptive Hermite functions sampled at m =
1000 number of equidistant points. The top figures
demonstrate ideal cases when (τ, λ) ∈ Γ, whereas the
bottom figures show extreme examples with too large
translation τ and too small dilation λ.
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learning for heartbeat classification using adap-
tive orthogonal transformations, Computer Aided
Systems Theory–EUROCAST 2019: Part II , Lec-
ture Notes in Computer Science, eds. R. Moreno-
Dı́az et al., Vol. 12014 (Springer, Cham, 2020),
pp. 355–363.
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