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Abstract: Antiviral type I interferons (IFN) produced in the early phase of viral infections effectively
inhibit viral replication, prevent virus-mediated tissue damages and promote innate and adaptive
immune responses that are all essential to the successful elimination of viruses. As professional type
I IFN producing cells, plasmacytoid dendritic cells (pDC) have the ability to rapidly produce waste
amounts of type I IFNs. Therefore, their low frequency, dysfunction or decreased capacity to produce
type I IFNs might increase the risk of severe viral infections. In accordance with that, declined pDC
numbers and delayed or inadequate type I IFN responses could be observed in patients with severe
coronavirus disease (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2), as compared to individuals with mild or no symptoms. Thus, besides chronic diseases,
all those conditions, which negatively affect the antiviral IFN responses lengthen the list of risk
factors for severe COVID-19. In the current review, we would like to briefly discuss the role and
dysregulation of pDC/type I IFN axis in COVID-19, and introduce those type I IFN-dependent
factors, which account for an increased risk of COVID-19 severity and thus are responsible for the
different magnitude of individual immune responses to SARS-CoV-2.

Keywords: plasmacytoid dendritic cell 1; type I interferon; COVID-19; SARS-CoV-2; antiviral
response; risk factor; IFN signature

1. Introduction

Coronavirus disease (COVID-19) caused by a single-stranded RNA virus, the severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) came from the Chinese city of
Wuhan in 2019, and caused pandemic around the world [1]. Since the beginning of the
pandemic, more infectious novel virus variants have emerged and led to newer waves of
the pandemic [2].

The symptoms of COVID-19 can range from asymptomatic to mild and to severe symp-
toms in humans indicating that the individual’s immunological state greatly influences the
course and outcome of the disease [3].

In general, the course of COVID-19 can be divided into 3 distinct stages based on the
clinical manifestation and recommended therapy [4]. The first stage is the early phase of
infection, which begins immediately after infection and includes an incubation period. This
stage is usually asymptomatic or is associated with mild and often non-specific symptoms
such as malaise, fever and dry cough. In patients in whom COVID-19 is restricted to this
stage, the prognosis is excellent. The second stage is already associated with pulmonary
involvement, which can occur without or with hypoxia. Patients develop viral pneumonia
with cough, fever, and possibly hypoxia. At this stage, most patients with COVID-19 require
hospitalization for close monitoring or treatment. The severe third stage of the disease
manifests as an extrapulmonary, systemic inflammation resulting in a cytokine storm. At
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this stage, lymphopenia may develop and a decrease in helper, regulatory, and memory T
cell counts [5], an increase in neutrophil counts and a significant increase in inflammatory
cytokines and biomarkers can be observed [5,6]. In patients with this advanced stage of the
disease, a cytokine profile resembling secondary haemophagocytic lymphohistiocytosis
may be observed, which is characterized by elevated levels of IL-2, IL-7, granulocyte colony
stimulating factor (G-CSF), IFN-γ inducible protein 10 (IP-10), monocyte chemoattractant
protein 1 (MCP-1), macrophage inflammatory protein-1α (MIP-1α) and tumor necrosis
factor-α (TNF-α) [7]. Furthermore, septic shock, vasoplegia, acute respiratory distress
syndrome, cardiopulmonary collapse, as well as systemic organ involvement or even
myocarditis may occur at this stage [4]. Overall, the prognosis in this phase of the disease
is rather poor, with only a few patients recovering from the critical stage of the disease.

Besides the well-known respiratory pathology, various extrapulmonary manifestations
of COVID-19 have already been reported highlighting the involvement of cardiovascular,
genitourinary, gastrointestinal and central nervous system as well as the skin [8]. The
multi-organ involvement can be manifested by various symptoms including thrombotic
complications, myocardial dysfunction, arrhythmia, acute coronary syndrome, acute kid-
ney injury, gastrointestinal symptoms, hepatocellular injury, hyperglycemia and ketosis,
neurologic illnesses, ocular symptoms, dermatologic complications, preeclampsia and
fertility problems [8–13].

In addition, those patients who recovered from COVID-19 may suffer from post-
COVID-19 syndrome, which negatively affects their quality of life for months after recovery.
The post-COVID-19 syndrome is characterized by a wide variety of clinical symptoms
including pulmonary embolism, deep vein thrombosis, acute myocardial infarction, de-
pression, anxiety, myalgia, dyspnea, fatigue, defects in memory and concentration and a
variety of neuropsychiatric syndromes [14–17].

In general the incidence of post-COVID-19 syndrome is about 10–35%; however, this
rate can reach up to 85% for those patients who required hospitalization during acute
SARS-CoV-2 infection [15].The severity and mortality of COVID-19 is higher in patients
with chronic conditions such as diabetes, hypertension, and cardiovascular diseases [18]. A
growing body of evidence indicates that individuals with disturbed antiviral interferon
(IFN) response are more likely to develop severe COVID-19 symptoms. So far, it seems that
mortality rates are higher in seniors, men, pregnant women, and obese patients [19–22]
that might be explained by the impaired or dysregulated type I IFN response, which is
a vital component of antiviral immunity. In addition, the pandemic does not spare the
young with no underlying medical conditions either that might be related to genetic defects
in the IFN signaling pathways or autoantibodies generated against type I IFNs, which
neutralize the direct inhibitory effect of type I IFNs on viral replication [23]. Therefore,
the individual’s type I IFN signature greatly contributes to the variability of COVID-19
outcome, and conditions associated with decreased type I IFN production indicate poorer
prognosis. The main sources of type I IFNs upon viral infections are plasmacytoid dendritic
cells (pDCs), which are specialized for the recognition of viral nucleic acids and subsequent
release of huge amount of type I IFNs [24]. pDCs and pDC-derived IFNs are central players
in the antiviral immune responses against SARS-CoV-2, thus a number of excellent papers
have already reviewed the importance of antiviral IFNs [25] and pDCs [26] in COVID-19.

Therefore, in this review, we aimed to briefly summarize the role of IFNs and pDCs
in COVID-19 based on the newest available data on this field. Nevertheless, we want to
give a deep insight into those risk factors for COVID-19 severity, which are associated with
impaired type I IFN responses and reduced pDC number to highlight that low type I IFN
signature of individuals due to different inborn or acquired conditions predicts a more
severe disease outcome.
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2. The Role of Antiviral IFNs in COVID-19

SARS-CoV-2 is a positive-stranded RNA virus, which mainly infects via the respiratory
tract. The first targets of the virus are the most permissive ciliated airway epithelial cells in
the nasal mucosa. The virus uses the angiotensin-converting enzyme 2 (ACE-2) receptor
and the transmembrane serine protease 2 (TMPRSS2) to enter the cells [27]. It is important
to note that receptors for SARS-CoV-2 are also extensively expressed in the gastrointestinal
tract, thus the alimentary system was also identified as an alternative transmission route of
the virus [28–30].

The respiratory epithelium is equipped with cytosolic viral sensors and thus upon
viral infection and active viral replication epithelial cells induce the production of antiviral
IFNs, dominantly type III IFNs and to a lesser extent type I IFNs [31].

Type III IFNs differ from type IFNs in many aspects. Type I IFNs are produced by all
nucleated cell types, and their receptor is ubiquitously expressed. In contrast, the main
source of type III IFNs are epithelial cells but macrophages, monocytes and dendritic
cells are also capable of producing them. The heterodimeric receptor of type III IFNs
composed of IFN-λ receptor 1 (IFNLR1) and IL-10 receptor subunit-β (IL-10RB) is mainly
expressed on epithelial cells and on some immune cells including pDCs, monocyte-derived
DCs, monocytes, macrophages, neutrophils and B cells in humans that leads to more cell
type specific immune responses. Despite the fact that type III IFNs use the same signaling
pathway as type I IFNs [32,33], there are some differences in the antiviral responses induced
by these cytokines. Type III IFN-mediated interferon-stimulated gene (ISG) expression is
long-lasting, but lower in amplitude compared to the strong and rapid type I IFN induced
ISG expression. Moreover, in contrast to the systemic type I IFN response, type III IFNs
are less inflammatory and limit viral transmission and dissemination mainly at mucosal
surfaces [32,33].

According to the newest data SARS-CoV-2 can easily overcome the first line of defense
of the immune system provided by the airway epithelium. Due to the highly effective
immune evasion strategies of SARS-CoV-2 the virus induced type I and type III IFN
responses are delayed in the nasal epithelium compared to other respiratory viruses [34].
SARS-CoV-2 is able to counteract IFN signaling via several mechanisms. The virus can
conceal pathogen-associated molecular patterns (PAMPs), disrupt the signaling cascade of
IFN induction, suppress IFN action and interfere with IFN synthesis [35,36]. The emerging
variants of SARS-CoV-2 also show increased resistance to IFNs that is the consequence of
new non-structural protein (NSP) mutations of the virus [37].

If a virus passes through the first line of the defense, it has to face the innate immune
response provided by macrophages and dendritic cells. Compared to the epithelium, these
cells dominantly produce type I IFNs such as IFNα and IFNβ. Type I IFNs are more
pleiotropic cytokines compared to type III IFNs. Besides inducing an antiviral state, type I
IFNs also enhance antigen presentation, support natural killer (NK) cell functions, regulate
B and T cell responses [33,38]. Furthermore, it is important to note that type I IFNs also
control physiological processes such as the maintenance of synaptic plasticity of the central
nervous system, the regulation of hematopoietic stem cell niche function, bone remodeling
and microbiota-driven optimal antiviral responses [24]. The latest IFN-mediated process
is extremely important in maintaining a baseline IFN production in the body that also
supports an optimal IFN signature of the individuals [39–41].

The IFNα subtype is mainly produced by pDCs via activation of viral nucleic acid
sensing endosomal Toll-like receptors (TLRs), while IFNβ is preferentially secreted by
macrophages and myeloid DCs through stimulation of cytosolic retinoic acid-inducible
gene (RIG)-I-like helicases (RLRs). Based on their unique capability to produce huge
amounts of type I IFNs, pDCs are referred to as “professional” type I interferon-producing
cells, which can produce 3–10 pg/cell of IFNα upon viral infection [42]. This is 10 to
100-fold more compared to the IFNα production of monocytes [43]. Besides type I IFNs
pDCs are also capable of producing type III IFNs and are equipped with the type III IFN
receptor as well [44]. Viruses and synthetic endosomal TLR agonist such as CpG-A can also
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induce type III IFN production in pDCs; however, compared to IFNα, pDCs produce IFNλ1
at levels approximately 10-fold lower. In general, a larger percentage of pDCs produce
IFNα than IFNλ upon viral infection and IFNλ mostly serves as an autocrine signal that
increases IFNα and IFNλ production of pDC and thus promotes pDC survival [44].

Investigating the IFN landscape in mild and severe COVID-19 cases it was revealed
that IFNλ1 and IFNλ3 are dominant in the upper airways of mild COVID-19 patients and
are responsible for the expression of protective ISGs. In contrast, in severe-to critical patients
increased expression of type I IFNs and IFNλ2 can be observed. Similarly, in the lower
airways of severe COVID-19 patients type I IFN and IFNλ2 expression is increased, whereas
IFNλ1 and IFNλ3 expression is decreased that goes hand in hand with low ISG induction
and high pro-apoptotic p53 expression [45]. These results indicate that spatio-temporal
regulation of IFN responses is critical to overcome viral infections.

Based on previous studies on Middle East respiratory syndrome (MERS) and Severe
Acute Respiratory Syndrome (SARS) infections and on the newest data derived from
COVID-19 studies, the timing of the IFN response determines the course of the disease.
When the viral load is still relatively low an early IFN induction results in rapid viral
clearance and mild disease. In contrast, high viral load leads to delayed IFN response
due to viral evasion mechanisms. Delayed IFN response promotes viral persistence and
stimulates the pro-inflammatory cytokine production by innate immune cells resulting
in overzealous inflammation and tissue damage [46,47]. Based on these data it can be
concluded that the individual’s IFN signature fundamentally determines the severity of
COVID-19. A recent review with an excellent summarizing table provided a thorough
overview of literature data on the features of IFN response in COVID-19 patients [48].

3. The Role of pDCs in COVID-19

In the previous section we have emphasized the importance of optimal type I IFN
response in COVID-19. As previously mentioned pDCs are the main producers of IFNα
and according to the newest studies well-functioning pDCs are crucial to overcome
SARS-CoV-2 infection.

In vitro studies showed that human pDCs are resistant to SARS-CoV-2 viruses due
to the lack of ACE-2 and TMPRSS2 receptors, which are required for the cellular entry of
SARS-CoV-2. However, instead of these proteins SARS-CoV-2 can use the transmembrane
neuropilin 1 receptor (NRP1, also called blood dendritic cell antigen 4 [BDCA4]), the
specific cell surface marker of pDCs, to enter the cells [49]. Previously it was observed that
antibody ligation of BDCA4 impaired type I IFN production of pDCs [50,51], and lately it
was also revealed that the binding of SARS-CoV-2 to BDCA4 on pDCs also decreased the
type I IFN responses of pDCs that can serve as an evasion mechanism for the virus [26].

Another study also revealed that pDCs are refractory to SARS-CoV-2 infection under
in vitro conditions. Upon SARS-CoV-2 stimulation, the signs of viral replication can not
be observed in pDCs [52], and more interestingly SARS-CoV-2 stimulation increased the
viability of pDCs compared to medium condition [52]. In addition, upon SARS-CoV-2
stimulation pDCs mount a robust type I IFN response by effectively producing type I IFNs.
For instance, the concentration of IFNα2 can even reach 80 ng/mL [52]. Furthermore,
the SARS-CoV-2-exposed pDCs can be divided into 3 activated subpopulations based on
their cell surface co-stimulatory molecule expression, and this diversification can also be
observed upon coculture with SARS-CoV-2 infected cells [52]. Upon SARS-CoV-2 stimula-
tion pDCs mainly diversify into P1-pDCs (PD-L1+CD80−), which subset is characterized
by high type I IFN production [49]. Infected cells also efficiently induce a P1 dominant
diversification [53]. The type I IFN production of activated pDCs seems to be dependent
on TLR7 signaling upon SARS-CoV-2 stimulation [49], and their diversification and cy-
tokine production is related to the adaptor molecules IRAK4 and UNC93B1 [52]. The TLR7
activation-induced signaling also promotes the effective antiviral action of pDCs via the so-
called interferogenic synapse in response to SARS-CoV-2 infected cells [54]. Overall, these
in vitro studies indicate that pDCs can induce an effective type I IFN-dependent antiviral
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response against SARS-CoV-2 by inducing an antiviral state in the host cells to inhibit viral
replication and by facilitating the antiviral actions of various innate and adaptive immune
cells (Figure 1).
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Figure 1. Beneficial effects of pDC-derived type I IFNs help to overcome SARS-CoV-2 infection.
When the SARS-CoV-2 viruses break through the first line of defense ensured by the epithelial cells,
viral particles or cell debris derived from virus-infected cells are delivered to the draining lymph
nodes, where pDCs are stimulated to migrate to the entry site of the viruses. Here, the pDC-derived
type I IFNs initiate an antiviral state in the host cells, which effectively blocks viral replication, and
also promotes the activation and function of both innate and adaptive immune cells thereby creating
an effective antiviral response. APRIL: A proliferation-inducing ligand; BAFF: B-cell activating factor;
IL: interleukin; IDO: Indoleamine 2, 3-dioxygenase; IFN: interferon; NK: natural killer; pDC: plasmacytoid
dendritic cell; TGF: Transforming Growth Factor; Th: T helper; Treg: T regulatory; CTL: cytotoxic T cell.

Besides the in vitro experiments, numerous in vivo studies proved that pDCs are cru-
cial to mount an effective antiviral response against SARS-CoV-2. Several studies showed
that pDC number is reduced in COVID-19 patients [55–57]. Furthermore, the decreased
pDC number in COVID-19 patients negatively correlates with disease severity [57–60].
It was found that the immune landscape of patients differs depending on the severity
of the disease. pDC frequency was lower in severe cases and that correlated well with
disease severity. Moreover, clinical improvement of patients went hand in hand with
increasing pDC frequency showing a dynamic process [61]. Another study also found
that pDC frequency and number are decreased in asymptomatic patients compared to
healthy donors and in hospitalized patients their level is dramatically reduced. Moreover,
in asymptomatic patients, the high type I IFN producing P1-pDC population was dominant,
while in hospitalized patients mainly the P2 subgroup (PD-L1+CD80+) with lower capacity
to produce antiviral IFNs was observed [49,52]. Single-cell RNA sequencing showed that
in the pDCs of severe COVID-19 patients the expression of pro-apoptotic molecules is in-
creased, whereas their TLR7 and DHX36 expression are lost, and their antiviral effects and
cytotoxic functions are decreased compared to pDCs from patients with moderate disease
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or cells from healthy controls [62]. The pDCs of hospitalized patients are characterized by
decreased type I IFN and increased pro-inflammatory cytokine (TNF-α, IL-6) production
compared to asymptomatic individuals [49].

Single-cell RNA sequencing of bronchoalveolar lavage fluid (BALF) from COVID-19
patients showed that in the BALF of severe/critical COVID-19 patients lower proportions of
pDCs can be found compared to those with moderate infection [63]. Sánchez-Cerrillo et al.
also found that pDCs are diminished from the blood of critical patients, and no pDCs were
found in bronchoscopy infiltrates as well [64]. The decreased pDC number in the blood can
be explained by the fact that pDCs migrate to the lungs upon inflammation; however, in
critical cases, pDCs are also depleted in the lung. In case of extremely severe infection, it is
due to the hyper-inflammatory landscape of the lung, which milieu impairs the viability
and type I IFN producing capacity of pDCs.

In the context of chronic viral infections, high viral load induces pDC exhaustion,
which means that pDCs tune down their type I IFN secretion and eventually die by
apoptosis. This promotes viral replication and decreases the efficiency of innate immune
responses [65]. In line with that, a study showed that pDCs from COVID-19 patients are
characterized by decreased mTOR signaling and IFN production [58]. Moreover, pDCs
displayed an apoptotic gene signature, which positively correlated with disease status and
severity [57].

The type I IFN producing ability of pDCs is highly affected by the cytokine milieu
of the inflamed lung and it is negatively regulated by pro-inflammatory mediators such
as prostaglandin E2 (PGE2), IL-1β, IL-10 and TNF-α [66–72], which are highly elevated in
COVID-19 patients [60,73].

It is also important to note that IL-3, which is mainly produced by T cells is an essential
survival factor for pDCs and is also depleted in COVID-19 [74]. Benard et al. identified IL-3
as a prognostic marker for COVID-19 severity and outcome. Low IL-3 level correlates with
increased viral load, mortality and severity. Non-survivors had lower T cell numbers and
in COVID-19 patients the number of T cells correlates with pDC number in the plasma and
BALF as well. In addition, in the BALF of COVID-19 patients with pulmonary manifestation
a positive correlation was found between IL-3 and CXCL12 levels. The authors found
that IL-3 derived from T cells induced the secretion of CXCL12 by epithelial cells and this
chemokine mediated the recruitment of pDCs into the lung [75] (Figure 2).

In conclusion, these studies highlight that optimal pDC number and type I IFN
response are vital to control SARS-CoV-2 infection and prevent the development of severe
disease. Thus, all kind of diseases and conditions, which are characterized by low pDC
frequency and decreased type I IFN production are risk factors for severe/critical COVID-
19. The features of pDCs in COVID-19 are extensively reviewed in a recent paper [26],
which thoroughly details the positive correlation between pDC function and COVID-19
severity, and provides a summary table about the observations regarding the fate of pDCs
during COVID-19.
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Figure 2. The inflammatory microenvironment in severe COVID-19 leads to the exhaustion and
decreased antiviral potential of pDCs. The overactivation of immune cells in severe COVID-19 leads
to an excessive production of pro-inflammatory cytokines and eventually cascades into a cytokine
storm. This inflammatory environment drives pDC exhaustion that is characterized by high hypoxia
and functional abnormalities of pDCs. However, the inflammatory environment has an inhibitory
effect on the virus sensing ability and type I IFN production of pDCs, and their pro-inflammatory
cytokine production comes to the fore that can further fuel the detrimental inflammatory circuit.
The excessive inflammatory milieu also causes T cell exhaustion and leads to increased T cell death.
Consequently, the levels of T cell-derived IL-3, which is an essential survival factor for pDCs, also drop
and that leads to pDCs apoptosis. Thus, severe COVID-19 is associated with a reduced number of
pDCs. G-CSF: granulocyte colony stimulating factor; GM-CSF: granulocyte-macrophage colony stimulating
factor; IFN: interferon; IP: interferon gamma-induced protein, MCP: monocyte chemoattractant protein; pDC:
plasmacytoid dendritic cell; TNF: tumor necrosis factor.

4. Risk Factors of COVID-19

While the mortality rate of COVID-19 is 0.9% in the healthy population, this ratio
is significantly higher in patients with cardiovascular disease (10.5%), diabetes (7.3%)
and hypertension (6%) [76]. The reason for the more severe disease course is that these
conditions are all associated with chronic inflammation [18,77]. In diabetes, persistent
inflammation due to hyperglycemia promotes easier entry of the virus into cells, and
inhibits T-cell functions leading to a higher viral load. In addition, an exaggerated immune
response predisposes to the development of a cytokine storm [78]. Excessive baseline
activity of immune cells is also observed in hypertension, which reduces the efficiency
of virus elimination and leads to more severe airway inflammation [79]. Heart disease is
also associated with a poor prognosis of COVID-19, since infection associated fever and
tachycardia increase the body’s need for oxygen that puts a heavy strain on a sick heart,
and the virus can also damage the heart muscle directly or by inducing a cytokine storm
indirectly [80].
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In addition to the above mentioned diseases, which correlate with a more severe
prognosis of COVID-19, there are a number of other risk factors that are closely linked to
the body’s dysregulated type I IFN response or decreased type I IFN production due to
various congenital or acquired causes [23,25]. The factors or conditions, which negatively
affect the body’s type I IFN production result in a higher viral load due to inadequate virus
elimination and thus lead to a more severe course of COVID-19. Such factors influencing
type I IFN responses may include genetic defects of the antiviral immune response, or
factors modulating baseline IFN signature, such as sex, age, and the condition of the
microbiome, which promotes a steady-state basal IFN production. In addition, obesity,
pregnancy, and viral infection-induced autoantibody production also result in an altered
IFN response of the body. Furthermore, immunosuppression-associated chronic conditions
that result from endogenous immunodysfunctions or immunosuppressive therapies are
also risk factors for COVID-19. These conditions are also mostly associated with impaired
functionality of pDCs, the main sources of type I IFNs in antiviral responses. In the
following section, we detail those type I IFN response-associated risk factors, which may
contribute to the development of more severe symptoms of COVID-19 (Figure 3).
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paired functionality of pDCs, the main sources of type I IFNs in antiviral responses. In the 
following section, we detail those type I IFN response-associated risk factors, which may 
contribute to the development of more severe symptoms of COVID-19 (Figure 3). 

 

Figure 3. Type I IFN related risk factors in COVID-19. A low IFN signature predicts a more severe
COVID-19 outcome. Thus, those conditions, which are associated with impaired type I IFN response
or decreased pDC number may be risk factors for severe COVID-19. IFN: interferon; pDC: plasmacytoid
dendritic cell, IRF: interferon regulatory factor; IFNAR: interferon-α/β receptor.
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5. Type I IFN-Associated Risk Factors in COVID-19
5.1. Genetic and Congenital Factors Associated with Reduced Antiviral IFN Production

It has long been known that defective variants at 13 genetic loci contribute to the
development of influenza virus-induced severe pneumonia (IRF7, IRF9 and TLR3 genes),
adverse events to live attenuated virus vaccines (IFNAR1, IFNAR2, STAT2 genes) or herpes
simplex encephalitis (TLR3, UNC93B1, TICAM1, TRAF3, TBK1, IKBKG, IRF3, IFNAR1,
STAT1 genes). These congenital gene defects impair the TLR3- and IRF7-dependent type I
IFN responses [81,82]. In an international cohort, it has been shown that approximately
3.5% of patients with critical COVID-19 carry loss of function mutations at these loci [83].
In 23 people from the 659 patients with severe COVID-19 autosomal recessive (IRF7,
IFNAR1) and autosomal dominant (TLR3, UNC93B1, TICAM1, TBK1, IRF7, IRF3, IFNAR1,
IFNAR2) deficiencies were found. 10 patients were also characterized by low IFNα levels.
It seems that the penetration values are higher for autosomal recessive mutations than
for autosomal dominant gene defects [83,84]. TLR3-, IRF7-, or IFNAR1-deficient cells are
highly sensitive to SARS-CoV-2, and IRF7-deficient pDCs are unable to produce type I
IFNs upon viral exposure [83]. Furthermore, IFNAR1-deficient cells do not respond to
type I IFN stimulation. The studies identified two patients (49 and 50 years old) with
autosomal recessive IRF7 deficiency and two other patients (26 and 38 years old) with
IFNAR1 mutation. Prior to COVID-19 pneumonia, none of the four patients required
hospitalization for severe viral illness, highlighting that in contrast to seasonal influenza
viruses these mutations have a higher penetrance for COVID-19 [84]. Moreover, van der
Made et al. identified four young male patients, who carried the loss-of-function variants
of TLR7. They all suffered from severe COVID-19 and were characterized by impaired
type I and type II IFN production [85]. Another study found that in men under 60 years
recessive TLR7 deficiency accounts for 1% of critical COVID-19 cases [86]. In addition,
the interferon-induced transmembrane protein 3 (IFITM3) gene encodes a protein, which is
critical to restrict viral replication and to inhibit membrane fusion. A study found that
homozygosity for the C allele of the rs12252 SNP in IFITIM3 gene leads to more severe
disease in an age-dependent manner [87]. This genetic variant is also associated with
COVID-19 mortality in the Arab population [88].

Genome-level association studies (GWAS) have so far identified 4 chromosomal re-
gions that may be associated with severe COVID-19. The first such region is located on chro-
mosome three, and all that is currently known is that it encodes six genes (SLC6A20, LZTFL1,
CCR9, FYCO1, CXCR6, and XCR1); however, their functions are still unexplored [89,90].
Furthermore, three other regions found in a recent GWAS analyzing 2244 critically ill
patients from UK intensive care units were also identified in an international GWAS com-
paring hospitalized COVID-19 patients with other members of the population [90]. The
odds ratio for heterozygous susceptibility alleles is between 1.2 and 1.4. Two of these three
regions also contain genes involved in the antiviral immune response. The first region
at chr12q24.13 includes the OAS1, OAS2, and OAS3 genes and a group of ISGs required
for RNase L enzyme activation. The second region, chr21q22.1, contains IFNAR2, which
encodes the second chain of the IFN receptor [90].

We could expect that more alleles of the genes involved in the type I IFN response
might be beneficial against COVID-19. However, according to the latest data it is not the
case. People with Down syndrome have an extra chromosome, which encodes several gene
involved in type I IFN response, for example the IFN receptor is also triplicated in trisomic
cells. In the initial phase of the infection, the overactive type I IFN response might be
advantageous, but later it fuels a detrimental inflammatory response due to the pleiotropic
effects of type I IFNs [91].

Besides genetic defects, autoantibodies against type I IFNs are also associated with
severe COVID-19. It was discovered that at least 10% of patients with critical COVID-19
pneumonia had autoantibodies that were able to neutralize large amounts of at least one,
but typically more, type I IFN subtypes in vitro and in vivo. These IgG antibodies mainly
neutralized IFNω, IFNα, or both, however, some patients had autoantibodies against all
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13 IFNα subtypes. These autoantibodies were not found in any of the tested individuals
with asymptomatic or mild SARS-CoV-2 and were present only in 0.33% of healthy individ-
uals. Interestingly, these autoantibodies already existed in the patients prior to SARS-CoV-2
infection, and were the cause of severe disease rather than the consequence of the infection.
The presence of these antibodies was associated with poor clinical outcome and increased
mortality. It is noteworthy that 94% of patients with autoantibodies were male, half of them
were over 65 years of age, and more than a third of them died from COVID-19. Overall,
autoantibodies against type I IFNs are present in at least 3.5% of women and 12.5% of men
with critical COVID-19 [92]. Another study showed that in vitro non-neutralizing anti-IFN
antibodies were detected in 16% of patients, who were admitted to the intensive care unit
(ICU) due to non-viral respiratory infection. However, neutralizing autoantibodies were
only detectable in severe SARS-CoV-2 infected patients and their presence was associated
with higher mortality and the development of multiple organ failure [93]. Wang and his
colleagues also screened COVID-19 patients and healthy individuals for autoantibodies
against extracellular and secreted proteins. They identified autoantibodies against type I
IFNs in 5.2% of patients, who were hospitalized with COVID-19. Autoantibodies against
type III IFNs (IFNλ2 and IFNλ3) were also found. Patients with type I IFN neutralizing anti-
bodies were characterized by higher average viral load and extended durations of hospital
admission [94]. It should be noted that only 2% of individuals with autoantibodies against
type I IFNs produce autoantibodies against IFNβ [92]. However, autoantibodies are likely
to be more common against the 13 IFNα subtypes and IFNω. Furthermore, genes encoding
some of these IFN subtypes underwent strong negative selection, suggesting that they play
an extremely important role in the antiviral response of the population [95]. Increased au-
toantibody production is probably due to an X chromosome-linked defect that is indicated
by the increased involvement of men and the fact that one of the autoantibody-producing
women suffered from a disease called incontinentia pigmenti, in which the inactivation
of the X chromosome is skewed, and not random [92]. After the age of 65, autoantibody
production is more likely because the composition of the immune system also changes with
age. For instance, an atypical B-cell subpopulation might arise known as age-associated
B cells (ABC), which differentiate into abnormal plasma cells characterized by increased
autoantibody production [96]. In line with that, the incidence of neutralizing antibodies
sharply rises after the age of 70. Neutralizing antibodies account for approximately 20% of
both critical COVID-19 cases in the over 80s, and total lethal COVID-19 cases [97].

5.2. Influence of Biological Sex and Sex Hormones on Antiviral IFN Signature

Sexual dimorphism is observed not only in the physical appearance and behaviour
of the sexes, but also in the context of autoimmunity and antiviral immunity [98–100]. It
has long been known that women are less susceptible to viral infections than men due to
their ability to develop a more effective antiviral response. Today, unfortunately, we can
see how this observation is confirmed, as the currently raging COVID-19 pandemic affects
men much more severely than women. For men, the mortality rate is 1.7 times higher in
COVID-19, and sex differences are even more pronounced in the population over 30 years
of age [101,102]. In a cohort longitudinal analysis of COVID-19 patients, higher level of
IFNαwas found in female patients [103]. The different type I IFN-producing capacity of
pDCs in men and women plays a major role in this phenomenon. Genes involved in the
antiviral response are often located on sex chromosomes or contain a hormone response
element (HRE), so their expression is regulated by sex hormones and depends on the
inactivation of sex chromosomes.

X chromosome number affects the type I IFN response of pDCs. In a humanized
mouse model, it has been shown that when CD34+ human stem cells isolated from women
or men are transplanted into female or male mice, pDCs derived from female stem cells
produce higher amounts of type I IFNs upon TLR7 stimulation than pDCs from male
donor cells regardless of the sex of the recipient mice. These data suggest that the double
X chromosomes in women provide immunological benefits as it may contribute to an
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enhanced immune response against infections [104]. A similar study examined the effect
of X chromosome number and sex hormones on the TLR7-induced IFNα response of
primary pDCs in healthy women, patients suffering from Turner syndrome, men, and
transgender volunteers receiving hormone therapy. It has been found that the antiviral
effect induced by type I IFNs is much more pronounced in healthy women than in men or
women with Turner syndrome, where one of the X chromosomes is absent. However, the
strength of the antiviral response did not correlate with serum sex hormone levels [105].
Furthermore, it is known that several genes encoded on the X chromosome involved in
the TLR signaling pathway can avoid X chromosome inactivation and thus contribute
to a stronger antiviral and humoral immune response. It has been observed that TLR7
encoded on the X chromosome is biallelically expressed in the pDCs, B cells and monocytes
not only of women (XX) but also of men with Klinefelter’s syndrome (XXY), and that
immune cells with biallelic TLR7 expression show greater transcriptional activity compared
to monoallellic cells [106]. This was supported by another study showing that pDCs from
women with biallelic TLR7 expression are capable of greater IFN production than pDCs
expressing only one TLR7 allele [107]. These data may also explain why men with a single
X chromosome have a higher mortality rate for COVID-19 compared to women [108,109].
PDCs in women with biallelic TLR7 expression may produce a higher amount of type I IFNs
and respond more rapidly to SARS-CoV-2 infection that may result in a better control of
the infection in women [107]. These data are further supported by a recent study showing
that loss-of-function mutation of TLR7 on the X chromosome results in severe COVID-19
symptoms in young men that also indicates that the corresponding TLR7-mediated type
I IFN response can play an essential role in overcoming the disease [85]. In addition,
it is important to mention that pDC-derived type I IFNs regulate B cell activation and
differentiation into plasma cells and are therefore essential to elicit an optimal antibody
response against viral infections, therefore women may have an advantage over men in
terms of antibody response regarding SARS-CoV-2 infection [102].

Sex hormones also affect antiviral immune responses. Due to their lipophilic nature,
steroid hormones readily cross the plasma membranes of cells and, by binding to nuclear re-
ceptors, are able to affect the functions of immune cells, including pDCs [110]. Oestrogen is
known to play an important role in regulating TLR-mediated immune responses in human
and mouse pDCs. In mice, 17β-oestradiol (E2) has been reported to significantly increase
CpG-B-induced IFNα production by spleen pDCs [111]. Consistent with this observation,
E2 treatment in postmenopausal women also significantly increased TLR7/9 activation-
induced IFNα production by primary pDCs. It has also been shown that E2 directly targets
pDCs, as deletion of the oestrogen receptor α (ERα) in mouse pDCs suspended the positive
effect of E2 treatment on TLR-induced IFNα induction [112]. In addition, impairment
of oestrogen receptor signaling significantly reduces TLR7-induced IFNα expression in
human pDCs from umbilical cord blood [104]. In another study, the ERα signaling pathway
was found to induce increased IFNα secretion in TLR7-stimulated mouse pDCs through ac-
tivation of the transcription factor IRF5, which is a positive regulator of the IFNα response
of pDCs [113].

So far, only one study has examined the effect of androgens on the functions of pDCs.
Dihydrotestosterone (DHT) has been shown to reduce TLR7-mediated IFNα production
by pDCs isolated from the blood of healthy women. It was also found that pDCs in male
infants produced less IFNα in response to TLR7 stimulation compared to female infants
that can be explained by the early postnatal testosterone surge in 1–6-month-old male
infants [114].

Based on the above data, it can be concluded that while oestrogens positively regulate
the type I IFN response of pDCs, testosterone may negatively affect these processes. Thus,
gender differences can greatly determine the strength of an individual’s immune response
to viral infections as well as the efficacy of vaccines [115].

Observations to date have shown that COVID-19 is also more dangerous for pregnant
women, which might be explained by the effects of progesterones. Pregnant women are
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less likely to have typical symptoms of SARS-CoV-2 infection such as fever, dyspnoea, and
muscle pain, but are more likely to be admitted to the ICU or require invasive ventilation
than other non-pregnant women of childbearing age. Of course, other risk factors for
COVID-19, such as pre-existing comorbidities, ethnicity, chronic hypertension, pre-existing
diabetes, high maternal age, and high body mass index (BMI), also carry the potential for
more severe viral infections during pregnancy. Pregnant women with COVID-19 are at
increased risk of preterm birth, gestational toxaemia, caesarean section, maternal mortality,
and admission to the ICU. Newborns are also more likely to require neonatal intensive
care [21,116].

During pregnancy, a number of physiological changes occur in the body, including
changes in the function of the immune system. It is known that in pregnant women,
from the start of implantation, the immune response shifts towards a Th2 type tolerogenic
immune response that provides the optimal microenvironment for the development of
the foetus in the maternal uterus. The predominant Th2 immunity then switches to a Th1
dominance at the end of pregnancy that is required for labour induction [117]. Along
with the number of circulating NK cells, the number of pDCs also decreases as pregnancy
progresses [118,119]. Furthermore, in vitro experiments have already showed that after
H1N1 infection, pDCs of pregnant women produce less IFNα compared to non-pregnant
women [119]. This may explain why pregnant women are more severely affected during
influenza as well as COVID-19 pandemics [120]. Progesterone hormone levels also increase
in women during pregnancy, and their immunosuppressive properties and negative effects
on the functions of pDCs are well known [121]. In contrast to oestrogen, progesterone
and its synthetic analogues inhibit the activity of innate immune cells and negatively
regulate the secretion of type I IFNs in human pDCs [122]. In vitro experiments have
shown that progesterone and depo-medroxyprogesterone acetate (DMPA), a synthetic form
of progesterone, inhibit TLR9 activation-induced IFNα secretion in mouse and human
pDCs. In vivo vesicular stomatitis virus (VSV) infection has also been shown to significantly
lower serum IFNα levels in DMPA-treated mice compared to DMPA-untreated mice. The
inhibitory effect of progesterone may be due to the inhibition of TLR9 activation-induced
nuclear translocation of the transcription factor IRF7 in pDCs [123,124]. These data indicate
that the enhanced tolerogenic responses to protect the foetus during pregnancy and the
negative effect of progesterone on pDCs’ type I IFN production make pregnant women
more vulnerable to viral infections including SARS-CoV-2 infection.

The question may arise whether it is safe to use type I IFN therapy in pregnant
women. A meta-analysis concluded that IFNα did not significantly increase the risk of
developmental abnormalities, miscarriages, stillbirths, or preterm births in women exposed
to IFNs during pregnancy [125]. Thus, in pregnant women suffering from severe COVID-19,
if the possibility of IFN therapy arises, it may be safe to use.

5.3. The Role of Age in Impaired IFN Production

Age is a very prominent clinical risk factor of COVID-19 mortality [126]. This is
supported by the fact that the mortality rate of COVID-19 was found to be lower in patients
under 60 years of age (1.4%) than in those over 60 years of age (4.5%) [127]. Increased
morbidity and mortality in the elderly are likely to be caused by a shift in the innate immune
system towards inflammation, as well as age-related cellular changes and abnormalities
in antiviral signaling pathways leading to delayed, prolonged type I IFN production. In
the elderly, the basic inflammatory phenotype may result in a late type I IFN response
during viral infections that has been previously observed in the case of SARS-CoV infection
as well [128]. Delayed antiviral type I IFN response leads to increased tissue damage
and cytokine storm, which is also the characteristic of severe COVID-19 [128,129]. With
regard to SARS-CoV infection, it has also been previously reported that the frequency of
pro-inflammatory macrophages and alveolar macrophages in the lung may also shift due
to the disruption of IFN production [130]. Furthermore, during viral infections, type I IFNs
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support NK cell activation, while inhibit pathological responses mediated by neutrophil
granulocytes and type II innate lymphoid cells (ILC2) in the infected mucosa [129,131,132].

In addition, the efficiency of the early type I IFN response is decreased with age
due to the descending number of IFN-producing macrophages and DCs, and impairment
of signaling pathways implicated in IFN production [133–136]. While the myeloid DC
population persists with advancing age, a decline in the number and function of pDCs was
reported in association with aging [135–140]. In the elderly, the decline in IFN-producing
ability of pDCs is partly due to the decreased TLR7/9 expression [135] and functional
impairment of IRF7 [138]. These processes are associated with increased reactive oxygen
species (ROS) levels and cell damage observed in aging cells [141]. Furthermore, aging
also affects the RIG-I/MDA-5 signaling pathway, as proteasomal degradation of TRAF3
is increased in elderly human monocytes, making IRF3 activation less efficient and thus
results in lower production of antiviral IFNs [133]. In contrast to adults, the nasal epithelial
cells, macrophages and DCs of children are abundant in receptors such as RIG-I and MDA5.
The high baseline expression of these sensors results in a stronger, immediate antiviral
response against SARS-CoV-2 that can partially explain the lower sensitivity of children to
the more severe symptoms of COVID-19 [142].

Thus, impairment of type I IFN production pathways, delayed IFN response, and pDC
dysfunction in elderly individuals greatly reduce the chances of overcoming SARS-CoV-2
infection [129,143].

5.4. The Role of Microbiome in Antiviral IFN Production

A healthy gut microbiome is essential to support the host’s immune responses. On the
one hand, it prevents the activation of pro-inflammatory cascades, on the other hand, it
prepares the body for future viral infections [144,145]. However, in the state of dysbiosis,
these protective functions are impaired. Many studies suggest that the clinical manifes-
tation and severity of COVID-19 may be linked to gut dysbiosis [144–147]. Furthermore,
SARS-CoV-2 infection can also alter the microbial composition of the lung indicating that
serious inflammation occurs in lung tissues. The level of inflammation detected in the
lung was significantly correlated with the levels of pathogenic microorganisms and SARS-
CoV-2 [148]. Dysbiosis of the respiratory tract in hospitalized COVID-19 patients leads
to accelerated destabilization over time and correlates with disease severity and systemic
immune activation [149]. In intubated patients an enrichment of Staphylococcus species can
be observed. Moreover, the small commensal DNA viruses, Anelloviridae and Redondoviridae
showed increased titer and colonization in severe COVID-19 as well [149]. In the upper
respiratory tract the bacterial load, bacterial richness consistently increased, while the abun-
dance of an amplicon sequence variant, Corynebacterium_unclassified.ASV0002 decreased, as
disease severity increased [150].

Various commensal intestinal bacteria with beneficial immunomodulatory potential,
such as Faecalibacterium prausnitzii, Eubacterium rectale, and bifidobacteria were reduced in
COVID-19 patients and their frequency remained low even after 30 days of recovery from
COVID-19. The decline in beneficial gut bacteria was correlated with increased disease
severity, and elevated levels of inflammatory markers and cytokines in the patients ’plasma.
This may suggest that the microbial disturbance that persists after disease resolution may
contribute to post-COVID syndrome [151]. Another study also found that decreased
commensal species and increased opportunistic pathogenic species characterize the gut
of COVID-19 patients. Severe illness was associated with the abundance of Burkholderia
contaminans, Bacteroides nordii and Blautia sp. CAG 257. The abundance of Burkholderia
contaminans was correlated with higher levels of inflammation and lower number of im-
mune cells [152]. In addition, a decrease in Lactobacillus and Bifidobacterium species, which
play important roles in protecting against intestinal infections by stimulating intestinal
functions, promoting immune responses, and preventing the overgrowth of pathogenic
species, has been observed in COVID-19 patients with intestinal dysbiosis [153].
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Since the commensal microbial flora is vital to maintain the baseline IFN secretion
in the human body, dysbiosis might lead to a decreased antiviral immune response. The
stimulatory signals from commensal bacteria keep the immune cells as well as the stromal
cells in constant state of antiviral readiness. Among others, they maintain the constitutive,
low-level IFN production of pDCs [154], the baseline activity of mononuclear phagocytes
and NK cells [155], the baseline production of IFN by lung stromal cells, and thus the
constitutive expression of antiviral Mx proteins [40]. It is important to note that antibi-
otic therapy can easily destroy this vulnerable system, since antibiotics not only target
pathogenic bacteria but also kill or drastically reduce the numbers of commensal bacte-
ria, which are responsible for sustaining tonic levels of IFN signals, and thus antibiotics
eliminate the body’s baseline antiviral state [40,41], and increase the risk of viral infections
and inflammatory conditions [39]. This phenomenon was elegantly demonstrated using a
mouse model. When mice with healthy intestinal flora were infected with influenza virus,
80% of the mice survived. However, with antibiotic pre-treatment, only one-third of the
mice survived the infection, but faecal transplantation could rescue mice from pathogen-
induced death/sepsis. These results indicate that a healthy intestinal flora provide a strong
protection against influenza, as the gut microbiota-driven systemic antiviral immunity was
already active when the virus entered the body. On the contrary, in the absence of intestinal
bacteria, the antiviral genes only turn on when the immune response is triggered. However,
this sometimes happens too late, when the virus has already multiplied in the body and
thus the high viral load leads to an exaggerated, detrimental immune response [40]. In line
with that, a significant correlation was found between previous antibiotic exposure and
increased severity of COVID-19 in Spain [156]. Thus, it can be assumed that among many
other factors, dysbiosis caused by the overuse of antibiotics, may be listed as a risk factor
for severe COVID-19.

These data suggest that the use of probiotics as a prophylaxis may be advisable
to reduce the incidence of respiratory infections [157,158]. Several data indicate that
prebiotics and probiotics are able to enhance the type I IFN response of pDCs through
TLR9 stimulation and thus provide a more effective antiviral response [159–162]. Besides
probiotics, it may be advisable to increase the intake of anti-inflammatory foods, such as
vegetables and fruits, as a high-fiber diet serves as a good source of carbohydrates for
beneficial bacteria. In addition, foods with a high polyphenol content, such as vegetables,
fruits, cereals, tea, coffee, dark chocolate or cocoa powder, have prebiotic or antimicrobial
properties and thus can effectively inhibit the replication of pathogens in the body [163–165].
Therefore, a proper, personalized diet might help to prevent coronavirus infection and
might contribute to patients’ recovery, as well as might help to eliminate dysbiosis caused
by the infection and restore the gut microbiota after recovery from COVID-19.

5.5. Obesity and Antiviral IFNs

So far it seems, that obesity also predisposes to a more severe course of SARS-CoV-2
infection [166]. Diabetes, hypertension, and cardiovascular diseases, which are risk factors
of COVID-19, are commonly associated with obesity. For example, one study found that
74% of diabetics were obese, which may further exacerbate the severity of COVID-19 in
this disease group [167]. When obesity, diabetes, hypertension, and dyslipidemia occur
together, it is called metabolic syndrome, a disease, which is also associated with increased
COVID-19 mortality [168]. Thus, obesity is not only a single risk factor, but by acting
synergistically with other underlying diseases it may further increase the incidence of
critical SARS-CoV-2 infection.

According to a comprehensive study examining data from 5700 hospitalized patients
infected with SARS-CoV-2, obesity (41.7%) is the second most common comorbidity in
COVID-19 after hypertension (56.6%) [169]. According to a French study, 47.6% of patients
in the ICU had a BMI above 30 kg/m2, while 28.2% had a BMI above 35 kg/m2 [170]. Re-
ports from two Spanish ICUs also confirmed that obesity is the most common comorbidity
that occurred in half of the patients admitted to hospital [171]. However, data from 6 New
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York University hospitals show an inverse correlation between BMI and age among those
admitted to the ICU. Although the risk of severe disease in SARS-CoV-2 infection increases
with age, younger patients with critical disease were more likely to be obese [172]. A
meta-analysis found that obese people were 113% more likely to be hospitalized, 74% more
likely to be admitted to an ICU, and 48% more likely to die [173].

More severe COVID-19 symptoms in obese individuals may be caused by a weaker
and prolonged type I IFN response that results in a decreased antiviral immune response.
In obese people, the serum level of the hormone leptin produced by fat cells is high, which
may indicate leptin resistance. Leptin may induce the expression and activation of sup-
pressor of cytokine signaling (SOCS) 3 and while decrease the type I IFN response in
obese individuals [174–176]. Type I IFNs and leptin use the same JAK–STAT signaling
pathway that can be inhibited by SOCS3 and that results in a lower IFN response to viral
infections in obese individuals [174,177]. It has recently been shown that the baseline
SOCS3 expression is increased and correlates with a decreased type I IFN response in
obese patients [177]. Due to this reason, obese individuals are also much more suscep-
tible to infections and are characterized by higher mortality during seasonal influenza
epidemics [178,179]. In addition, increased inflammatory cytokines levels, enhanced M1
polarization of lung macrophages and impaired IFN response and ISG induction by respira-
tory epithelial cells and macrophages can be observed in obesity that can eventually lead to
more severe pneumonia and lung damage in obese individuals [178,179]. Furthermore, the
diet of obese individuals is generally high in fat, which can also lead to dysbiosis, thereby
further reducing the intensity of the type I IFN response [174]. Collectively, obese patients
are characterized by reduced IFN production, and thus might provide a microenvironment
that allows the emergence of novel virulent variants of the virus [178].

5.6. Underlying Chronic Medical Conditions Associated with Impaired IFN Response
Causing Immunosuppression

We had already mentioned that chronic diseases such as diabetes, hypertension, obe-
sity are listed as the underlying cause in the majority of COVID-19 mortality. However,
the proportion of another group of diseases, the immunosuppression-associated chronic
diseases, which are caused by either endogenous immunodysfunctions or immunosuppres-
sive treatments, is also remarkably high [180]. This group includes, but is not limited to,
primary and secondary immune deficiencies, cancers, chronic renal failure, post-transplant
organ status, and autoimmune diseases. Particular attention should be paid to this group of
diseases, as not only the patients themselves are at increased risk, but also their immediate
environment, as immunosuppressed individuals can serve as “reservoirs” for viruses and
might remain infectious for up to several months [181–183]. Furthermore, it may also be
of concern that viral pneumonia may occur atypically with low inflammatory markers in
these patients, but later can be associated with a more severe disease course [184].

Studies have shown that patients with primary and secondary immunodeficiencies
are characterized by increased morbidity and mortality from COVID-19 compared to the
general population [185]. A meta-analysis also supports increased mortality in patients
with chronic renal failure associated with immunosuppression [186,187]. Cancer patients
with COVID-19 are 3.5 times more likely to be admitted to the ICU and to need mechanical
ventilation, and are more prone to infections with SARS-CoV-2, which is eliminated later
from their bodies compared to the general population [188,189]. In the case of autoimmune
diseases, however, the situation is more complicated. Although COVID-19 is more severe
compared to influenza in autoimmune patients [190], it appears that low-dose immunosup-
pressive therapy may provide protection against the complications of COVID-19 in these
patients [191,192].

Immunosuppressive agents used to treat certain autoimmune conditions also affect
the production of type I IFNs, as well as the functions of pDCs, and may predispose to more
severe viral infections. For example, steroids have been reported to reduce the number and
type I IFN responses of pDCs in systemic lupus erythematosus (SLE) patients; however, it
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is important to note that after the discontinuation of glucocorticoids, both pDC number and
IFNα levels recovered rapidly in the patients [193,194]. Hydrochloroquine also reduces
type I IFN production of TLR7 or TLR9 activated pDCs in patients with SLE [195] and
also inhibits TLR9 activation-induced type I IFN production by pDCs of cutaneous lupus
erythematosus patients [196]. Furthermore, the active form of mycophenolate mofetil, my-
cophenolic acid, is also able to dose-dependently reduce CpG-induced type I IFN secretion
in pDCs of SLE patients by inhibiting nuclear translocation of IRF7 [197]. Furthermore,
baricitinib, which inhibits the JAK/STAT pathway, is able to inhibit IFN secretion by pDCs
and thus increases the risk of varicella reactivation as well [198,199].

It is important to note that besides the above mentioned immunomodulatory effects,
some IFN response inhibitors, also exhibit direct antiviral activity as well. For example,
chloroquine interferes with different stages of the viral life cycle including viral entry,
uncoating, assembly and budding. Via increasing endosomal pH chloroquine blocks virus-
endosome fusion and is also able to inhibit posttranslational modifications of viral proteins
by interfering with proteolytic processes [200,201]. Furthermore, mycophenolate mofetil
was able to inhibit SARS-COV-2 replication in vitro. Similar antiviral activity was observed
for calcineurin and mTOR inhibitors as well as thiopurine analogs against SARS-CoV and
MERS-CoV strains [202]. Nevertheless, immunosuppressive agents may still be detrimental
in the initial phase of COVID-19, since the weakened immune system cannot adequately
control viral replication. However, in the later stages of the disease, the immunosuppressive
effects of these drugs may be particularly beneficial, as they may prevent an overzealous
immune response, the development of cytokine storm, and multi-organ failure. Thus,
as previously mentioned, low-dose immunosuppression may have a beneficial effect in
autoimmune patients, as it may alleviate the severe symptoms of COVID-19 caused by the
body’s overactivated immune response [191,192].

6. Discussion

The severity of viral infections can greatly vary among individuals, as a wide array of
endogenous and exogenous factors can affect an individual’s type I IFN response, which
is one of the most important weapons of our immune system that can rapidly inhibit the
replication of viruses [24]. Our body prepares to defend against viral infections long before
viral exposure, owing to the constituent baseline type I IFN production by various tissues
and cell types that creates a general antiviral state in the host [24]. In accordance with that, it
was observed that the incidence and mortality of severe COVID-19 caused by SARS-CoV-2
is also significantly higher in individuals with an inadequate type I IFN response [203–205].

Interestingly, a robust type I IFN response can be observed in some patients that may
result in early control of the infection and thus in a mild course. The sign of an effective
IFN response in these patients may be reflected by the appearance of a skin condition
called “COVID toes” [206]. The lesion is reminiscent of perniosis, which is an inflammatory
condition caused by cold, and associated with red-purple discoloration and blistering of the
acral areas. Histologically, edema of the epidermis as well as perivascular and perieccrine
lymphocytic infiltration are present, and even microthrombi may form in the blood vessels.
Similar changes can be observed in a rare cutaneous form of lupus, the so-called familiar
chilblain lupus (FCL), which can be classified as an interferonopathy and is associated with
increased type I IFN production [207]. Therefore, one might suppose that COVID toes are
probably caused by the increased systemic type I IFN secretion and thus might serve as a
marker for patients with efficient viral clearance and mild course of COVID-19 [206].

An individual’s IFN signature may also be adversely affected by viral evasion mecha-
nisms as well as by host-dependent factors, which result in low or delayed IFN response
and high viral load that impacts the severity of COVID-19 symptoms [203,208]. Thus,
individuals with reduced IFN signature, such as patients with congenital defects of the
IFN pathway, men, the elderly, people suffering from dysbiosis, obese or immunosup-
pressed individuals and pregnant women may benefit from type I IFN therapy in the early
phase of the disease or as prophylaxis. Thus, the therapeutic application of type I IFNs
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in COVID-19 is in the focus of several ongoing clinical studies [209]. However, in order
to treat COVID-19 more effectively, the type, dose, route and frequency of administration
of the most optimal therapeutic IFNs subtype and the time of intervention needs to be
optimized. PEGylated forms may be preferred over unmodified IFNs, since those can be
administered by subcutaneous injection once a week. It should be noted that IFN injection
elicits a systemic response and induces antiviral, pro-inflammatory and anti-inflammatory
effects simultaneously. In contrast, the local action of inhaled type I IFNs in the airways
may compensate for the production of IFNβ by epithelial cells and may have excellent
preventive potential when used as a nasal drop [210–214]. Another important issue is the
subtype of IFN used in therapy, since while IFNα has a strong antiviral effect, IFNβ also has
immunomodulatory and antiproliferative effects as well [215,216]. It is also important to
emphasize that the use of IFNs in patients with severe or critical COVID-19 is not advised,
since IFNs significantly enhance the inflammatory state in the later stages of the infection
and exacerbate cytokine storm and lung injury similar to the inflammation boosting effect
of delayed type I IFN responses in severe COVID-19 patients [217].

The results of clinical trials regarding IFN therapies are encouraging [209]; however,
prior to use it is essential to consider the condition of the patient, the effects of the treatment,
and the possible side effects of the IFN subtype applied in these therapies.

7. Conclusions

In summary, an individual’s IFN signature is a major factor influencing the severity of
COVID-19 outcome, which is strongly associated with the activity and number of pDCs.
If lifestyle-related factors, which are detrimental to type I IFN responses or normal pDC
functions, accumulate in a given population, a more severe epidemic can be expected.

The COVID-19 pandemic shed light on the importance of adequate/sufficient IFN
responses and on the benefits of early or prophylactic IFN therapies. Therefore, a com-
prehensive analysis of the complex and pleiotropic effects of type I IFNs are needed to
gain a clear understanding on the specific functions, kinetic profiles, tissue- and cell-type
specific effects of all subtypes of type I IFNs (including the 13 subtypes of IFN-α along
with IFN-β, IFN-ε, IFN-κ, IFN-ω, IFN-δ, IFN-ζ, and IFN-τ) and their efficacy against novel
virus variants. In addition to SARS-CoV-2 infection, data obtained from such studies
might also apply to other viral infections. Thus, patient with known risk factors might
be targeted by the most optimal type I IFN therapy in the early stage of the infection that
could significantly reduce disease severity and mortality upon the possible emergence of a
new pandemic.
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