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Overview of the results

The goal of this thesis dissertation is to give an account into two fields I have been
working on in the last few years. In the papers collected here, I deal with extension,
complementation, and decomposition type issues of positive and symmetric operators in
the context of so called anti-dual dual pairs. In this chapter, we briefly present the content,
motivation, and background of these articles. The precise definitions and results are found
in the Summary of results chapter.

Positive operators on anti-dual pairs ([42,57])

One of the most natural questions that arises when dealing with partially defined
objects in mathematics is whether there exists an extension that has some prescribed
properties. A great many authors have studied abstract extension problems for operators
on Hilbert spaces, that go at least back to M. G. Krein [34] and J. von Neumann [38].
(For various different developments of their groundbreaking work see e.g. [6–8, 11, 26,
27], and the references therein.) The following extension problem was posed by Yu. L.
Shmul’yan [45]: Assume that a positive operator A : D → H is given, where D is a linear
subspace of the complex Hilbert space H. Positivity here means that (Ax |x) ≥ 0 for
all x ∈ D. The question is: under what conditions can we guarantee the existence of an
everywhere defined bounded positive extension Ã of A? Of course, if there is any then A
itself must be bounded. Hence, extending it to the closure by continuity, we may suppose
that D is closed. Consider the matrix representation of A with respect to the orthogonal
decomposition H = D ⊕D⊥

[A] =

[
A11 ∗
A21 ∗

]
,

where A11 : D → D and A21 : D → D⊥ arise in the usual way, whereas the second column
(of symbols ∗) waits to be filled to obtain a positive operator. It is easy to see that every
positive extension of A has representation of the form

[Ã] =

[
A11 A∗21
A21 X

]
,(1)

where A11 : D → D and X : D⊥ → D⊥ are positive. So, extending A to a positive
operator Ã is equivalent to find X ≥ 0 such that the operator matrix (1) is positive. (For
a more general completion problem for block operators see [9,58].) This form also helps
us to demonstrate that such an extension need not exist even in the simplest case. Indeed,
assume that H is of the form H = K⊕K with a complex Hilbert space K and assume that
A11 is the zero operator, while A21 = A∗21 is any positive but nonzero bounded operator
on K. Then an elementary calculation shows that there is no positive completion at all.

Our main aim was to develop a general extension theory which overcomes the problem
of not having orthogonal decomposition when we drop the Hilbert space structure. This
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6 OVERVIEW OF THE RESULTS

level of generality is indeed necessary in our considerations, because we intend to investi-
gate extendibility of “positive” mappings acting on spaces without inner product. In order
to introduce the appropriate analogues of standard operator classes, that cover the origi-
nal Hilbert space setting, and is general enough to be applicable for objects like operator
kernels and representable functionals, we are going to consider anti-dual pairs. That is,
two appropriately chosen complex linear spaces intertwined by a separating sesquilinear
map, called anti-duality. This is a slight modification of the well known dual pair setting,
the only difference we make is the conjugate linearity in the second variable. Having an
anti-duality at hand also allows us to introduce various topologies, and hence continu-
ity and boundedness of maps acting between the spaces in question. In fact, it turned
out that positive and symmetric operators are automatically weakly continuous which
suggests that the most adequate topologies for our investigations are the weak topologies.

Our first result is a quite general extension theorem, which can be considered as the
main result of the section. This result served as the base of our further investigations
throughout. Roughly speaking, this theorem characterizes (in both topological and alge-
braic ways) operators possessing positive extension to the whole space. In addition, the
construction has some useful theoretical consequences, including an explicit formula for
the obtained positive extension, as well as for its “quadratic form”. Also, we showed that
this extension is minimal in some sense, thus we shall called it Krein-von Neumann ex-
tension, in accordance with the classical literature. We emphasize that in this paper we
restricted ourselves to continuous extensions, and thus the operators we dealt with are typ-
ically not densely defined. Hence, the maximal (Friedrichs) extension, apart from trivial
cases, does not exist. Nevertheless, we showed that the set of positive extensions bounded
by a fixed positive operator always possesses a maximal element. We also considered the
special case when the anti-duality is the evaluation on the pair of a fixed Banach space
and its conjugate topological dual. From that we concluded that Shmul’yan’s original
result is an immediate consequence of our main theorem. Finally, we applied our results
to obtain representable positive extensions of linear functionals given on a left ideal of an
involutive algebra.

Self-adjoint extensions ([56])

The question whether a self-adjoint extension exists arises naturally in various situa-
tions when a partially defined (bounded or unbounded) symmetric operator is given. For
classical results, we refer the reader to [4, 12, 26] and the references therein; for more
recent results, see, for example, [9,36].

The aim of the paper [56] was to continue these investigations and to discuss the
problem of self-adjoint extendibility of operators acting on anti-dual pairs. The main
result, Theorem 14, generalizes Krein’s theorem on the existence of a norm preserving self-
adjoint extension of a bounded symmetric operator [34, Theorem 5.33]. Due to the lack
of norm, we considered extensions bounded by a fixed positive operator A. It turned out
that extensions preserving the A-bound form an operator interval. As a nice application
of Theorem 14, we also generalized a recent result of Yamada [65], which was an extension
of the Strong Parrott Theorem [20,39]. In order to demonstrate the effectiveness of our
general extension theory, we apply it to obtain hermitian extensions of functionals of an
involutive algebra.
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Lebesgue decomposition ([22,51,53–55])

This section is part of the unification project aiming to find a common framework
and generalization for various results obtained in different branches of functional analysis
including extension, dilation and decomposition theory. One important class of such re-
sults are decomposition theorems analogous to the well known Lebesgue decomposition
of measures. What do we mean about analogous? In several cases, transformations of a
given system can be grouped into two extreme classes according to the behavior with
respect to their qualitative properties. These particular classes are the so-called regular
transformations (i.e., transformations with “nice" properties) and the so-called singular
ones (transformations that are hard to deal with). Of course, regularity and singularity
may have multiple meanings depending on the context. A decomposition of an object into
regular and singular parts is called a Lebesgue-type decomposition.

In order to understand a structure better, it can be effective to characterize its regu-
lar and singular elements. This explains why a regular-singular type decomposition the-
orem may have theoretic importance, especially when the corresponding regular part
can be interpreted in a canonical way. The prototype of such results is the celebrated
Radon-Nikodym theorem stating that every σ-finite measure splits uniquely into abso-
lutely continuous and singular parts with respect to any other measure, and the abso-
lutely continuous part has an integral representation. Returning to the previous idea, the
Radon-Nikodym theorem can be phrased as follows: if we want to decide whether a set
function can be represented as a point function, we only need to know if it is absolutely
continuous or not. That is to say, in this concrete situation, the appropriate regularity
concept is absolute continuity.

In the last 50 years quite a number of authors have made significant contributions
to the vast literature of non-commutative Lebesgue-Radon-Nikodym theory – here we
mention only Ando [3], Gudder [23], Inoue [30], Kosaki [32] and Simon [46], and from
the recent past Di Bella and Trapani [16], Corso [14], ter Elst and Sauter [59], Hassi et
al. [24,25,28], Kosaki [33], Sebestyén and Titkos [44], Vogt [64].

The purpose of [53] was to develop and investigate an abstract decomposition theory
that can be considered as a common generalization of many of the aforementioned results
on Lebesgue-type decompositions. The key observation is that the corresponding absolute
continuity and singularity concepts rely only on some topological and algebraic properties
of an operator acting between an appropriately chosen vector space and its conjugate dual.
So that, the problem of decomposing Hilbert space operators, representable functionals,
Hermitian forms and measures can be transformed into the problem of decomposing such
an abstract operator.

In this section we are going to investigate Lebesgue decompositions of positive oper-
ators on a so called anti-dual pair. Hence, for the readers sake, we gathered in Section
2 the most important facts about anti-dual pairs and operators between them. We also
provide here a variant of the famous Douglas factorization theorem. Section 3 contains
the main result of the paper (Theorem 22), a direct generalization of Ando’s Lebesgue
decomposition theorem [3, Theorem 1] to the anti-dual pair context. It states that every
positive operator on a weak-* sequentially complete anti-dual pair splits into a sum of
absolutely continuous and singular parts with respect to another positive operator. We
also prove that, when decomposing two positive operators with respect to each other, the
corresponding absolute continuous parts are always mutually absolutely continuous.
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Given a mathematical structure and an important operation/quantity/relation corre-
sponding to it, a natural question to ask is: how can we describe all maps that respect this
operation/quantity/relation? Such and similar problems belong to the gradually enlarging
field of preserver problems. In the paper [22] our goal was to generalize Molnár’s result
[37, Theorem 1.1] about the structure of bijective maps on B(H)+ (the set of positive
operators on the Hilbert space H) that preserve the Lebesgue decomposition in both di-
rections. Molnár proved that the cone is quite rigid in the sense that these maps can be
always written in the form

A 7→ SAS∗

with a bounded, invertible, linear- or conjugate linear operator S : H → H. A natural
question arises: how can we describe the form of those bijections that preserve absolute
continuity (or singularity) of operators in both directions? Clearly, this is a weaker con-
dition than that of Molnár, hence maps considered by Molnár obviously preserve this
relation. However, it is not too hard to construct other maps which preserve absolute
continuity. For example, one could use the fact that every positive operator is absolutely
continuous with respect to every invertible element of B(H)+, and that invertible ele-
ments are the only ones with this property. Therefore, if we leave all positive and not
invertible operators fixed, and consider an arbitrary bijection on the subset of invertible
and positive operators, then this map preserves absolute continuity in both directions.
Despite the existence of such seemingly unstructured maps, it is still possible to describe
all maps with this weaker preserver property.

Schur complementation ([58])

Since the first appearance of the name of the “Schur complement” in [29], the theory
of partitioned matrices (or block operators) is an active field of research in linear algebra
and functional analysis. The direction we are interested in is the problem of completing
special operator systems. To formulate the central question in the most classical setting,
consider the incomplete system S = [ A B

B ∗ ] of positive semidefinite n × n matrices A,B.
The task is to find a matrix D for which [ A B

B D ] is a positive semidefinite 2n× 2n matrix.
If we denote by AB the smallest possible solution, then the Schur complement of D in the
block-matrix [ A B

B D ] is D − AB. Therefore, to find the Schur complement and to find the
minimal operator that makes a system positive is the same problem. In the paper [58],
we focused our attention on the completion problem.

Because of its wide-range applicability in pure and applied mathematics, a number
of authors made a lot of efforts to extend the concept of Schur complement for various
settings. We mention first the fundamental work of Pekarev and Šmul’jan [40] on the
connection between the shorted operator and positive completions of block operators in
the context of Hilbert spaces. The corresponding result in Krein spaces has been developed
by Contino, Maestripieri, and Marcantognini in [13] (see also [35]). The relation between
extension, completion, and lifting problems of operators on both Hilbert and Krein spaces
has been discussed in [9]. A quite general approach was developed by Friedrich, Günther
and Klotz in [21]. They introduced a generalized Schur complement for non-negative 2×2
block matrices whose entries are linear operators on linear spaces. In their considerations
the setting is purely algebraic and therefore topology plays a minor role.

In [58] we treated the completion problem in the more general setting of anti-dual
pairs that covers Hilbert, Krein, and linear spaces. The key idea of our approach was the
observation that the block matrix completion problem can be formulated as an opera-
tor extension problem. This gave rise to invoke our corresponding Krein–von Neumann
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extension theory developed in [57]. Our aim was two folded: besides solving the block
completion problem in a quite general setting, we wanted to demonstrate how the de-
veloped method can be applied for structures like rigged Hilbert spaces and involutive
algebras.

The cornerstone of [58] is a result that provides necessary and sufficient conditions for
the positive complementarity of an incomplete operator matrix. Our main result gives an
explicit formula for the minimal solution of the completion problem.

Following the method of Pekarev and Šmul’jan, we introduced the notions of par-
allel sum and difference as an immediate application. Furthermore, by means of these
operations we exhibited an alternative description of the Lebesgue decomposition. To
demonstrate how this operator approach works in concrete structures, we derive the cor-
responding results for representable functionals on involutive algebras.





Summary of results

Positive operators on anti-dual pairs ([42,57])

We start by recalling the notion of anti-duality, which is just a slight technical modifi-
cation of dual pairing. Although there is no crucial difference between these two notions,
we choose anti-duality in order to stay formally as close as possible to the Hilbert space
case. Let E,F be complex vector spaces. A function 〈·, ·〉 : F × E → C is called anti-
duality if it is sesquilinear (that is to say, linear in the first argument and conjugate linear
in the second one) and 〈·, ·〉 separates the points of F and E (i.e., if 〈f, x〉 = 0 for all
x ∈ E then f = 0F and if 〈f, x〉 = 0 for all f ∈ F then x = 0E). The triple ((E,F ), 〈·, ·〉)
is called an anti-dual pair, and it is denoted shortly by 〈F,E〉. Observe that if 〈F,E〉 is
an anti-dual pair then 〈E,F 〉′ is also an anti-dual pair where 〈·, ·〉′ : E × F → C is given
by

(2) 〈x, f〉′ := 〈f, x〉, x ∈ E, f ∈ F.

The most natural anti-dual pair is a linear space and a linear subspace of its conjugate
algebraic dual, intertwined by the evaluation as anti-duality. In fact, every anti-dual pair
can be written in the above form. Indeed, if 〈F,E〉 is an anti-dual pair, then due to the
identification

x 7→ ϕx; ϕx(f) := 〈f, x〉 for all f ∈ F,
E may be regarded as a linear subspace of F ∗, the algebraic dual of F . Similarly, due to
the mapping

f 7→ ψf ; ψf (x) := 〈f, x〉 for all x ∈ E,

F can be identified as a linear subspace of Ē∗, the algebraic anti-dual space of E. Our
prototype of anti-dual pairs is the system ((H,H), (· | ·)) where H is a Hilbert space with
inner product (· | ·). This particular anti-dual pair has the useful feature that H can be
identified with its topological dual along the maps x 7→ ϕx and f 7→ ψf , according to
the Riesz representation theorem. A similar feature is obtained in the general setting if
we endow E and F with appropriate topologies. For this purpose the most natural at
hand are the weak topologies σ(E,F ) and σ(F,E) on E and F , respectively: σ(E,F ) is
the smallest topology making ϕx continuous for all x ∈ E, and similarly, σ(F,E) is the
smallest topology on F such that all the functionals of the form ψf (f ∈ F ) are continuous.
Both (E, σ(E,F )) and (F, σ(F,E)) are locally convex Hausdorff spaces such that Ē ′ = F
and F ′ = E, where Ē ′ and F ′ refer to the topological anti-dual and dual spaces of E and
F , respectively. We call an anti dual pair 〈F,E〉 w∗-sequentially complete, if F is σ(F,E)
sequentially complete.

Now we turn to investigate special linear operators acting between two sides of anti-
dual pairs. If an anti-dual pair 〈F,E〉 is given, we will use the short notation A : E ⊇
domA → F for linear operators acting on a subspace domA of E with values in F . We
prefer this setting instead of considering duality with conjugate linear operators as in [1].
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12 SUMMARY OF RESULTS

An operator A : E ⊇ domA→ F is called positive if it satisfies

〈Ax, x〉 ≥ 0 for all x ∈ domA,

and symmetric if
〈Ax, y〉 = 〈Ay, x〉 for all x, y ∈ domA.

Note that every positive operator is symmetric. It is obvious that these are direct gener-
alizations of the well-known notions of Hilbert space theory. The main advantage is that
this setting allows us to handle structures without Hilbert space structure analogously.
As the next example will illustrate, operators on anti-dual pairs appear very naturally for
example in noncommutative integration theory.

Example 1. Let A be a ∗-algebra with algebraic conjugate-dual Ā ∗, and let I ⊆ A
be a left-ideal. Then 〈Ā ∗,A 〉 is an anti-dual pair with 〈f, a〉 := f(a). If a positive linear
functional f : I → C is given, we can associate a positive operator Af : I → Ā ∗ as
〈Afa, b〉 := f(b∗a). It will turn out later that positive extendibility of f to the whole
algebra can be characterized by means of Af . Furthermore, the canonical extension of f
itself will be gained from the canonical extension of Af .

Recall one of the main advantages of weak topology, namely that a linear operator T
acting on a topological vector space (V,TV ) with values in (F, σ(F,E)) is continuous if
and only if the linear functionals

(3) ϑx : V → C; ϑx(v) := 〈Tv, x〉
are continuous for each x ∈ E. For the sake of simplicity we introduce the following
terminology: if two anti-dual pairs 〈F1, E1〉1 and 〈F2, E2〉2 are given, we will call a map
T : E1 → E2 weakly continuous if T is σ(E1, F1)-σ(E2, F2) continuous. The set of weakly
continuous linear operators T : E1 → E2 is denoted by L (E1;E2). By replacing 〈F2, E2〉2
with 〈E2, F2〉′2 (see (2)) one can characterize weak continuity of an operator T : E1 → F2.
Indeed, according to (3), T is weakly continuous if and only if for all x2 ∈ E2 there exists
f1 ∈ F1 such that

(4) 〈Tx1, x2〉2 = 〈f1, x1〉1 (= 〈x1, f1〉′1) for all x1 ∈ E1.

The (necessarily weakly continuous) operator T ∗ : E2 → F1 satisfying

〈Tx1, x2〉2 = 〈T ∗x2, x1〉1, x1 ∈ E1, x2 ∈ E2,

is called the adjoint of T . In particular, if E1 = E2 =: E and F1 = F2 =: F , the adjoint A∗

of an operator A ∈ L (E;F ) belongs again to L (E;F ) and satisfies 〈Ax, y〉 = 〈A∗y, x〉
for all x, y ∈ E. Hence it makes sense to speak about self-adjointness A = A∗ of an
operator A ∈ L (E;F ). An everywhere defined symmetric operator (that is, an operator
S : E → F such that 〈Sx, y〉 = 〈Sy, x〉, x, y ∈ E) is automatically weakly continuous, and
hence self-adjoint. If A : E ⊇ domA → F is an operator such that 〈Ax, x〉 is real for all
x ∈ domA then the sesquilinear form tA(x, y) := 〈Ax, y〉 (x, y ∈ domA) is hermitian, thus
A is symmetric. Indeed, 〈Ax, y〉 = tA(x, y) = tA(y, x) = 〈Ay, x〉 holds for all x, y ∈ domA.

In rest of the paper we are mainly interested in positive operators on anti-dual pairs.
In the next example we present the prototype of such positive operators.

Example 2. Let 〈F,E〉 be an anti-dual pair and H a Hilbert space. If T : E → H is
a σ(E,F )-σ(H,H) continuous linear operator then its adjoint T ∗ : H → F is σ(H,H)-
σ(F,E) continuous so that T ∗T ∈ L (E;F ) is positive:

〈T ∗Tx, x〉 = (Tx |Tx) ≥ 0, x ∈ E.
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We will see later that, under some natural conditions on F , each positive operator
A ∈ L (E;F ) possesses a factorization of the form A = T ∗T with a suitable T and H of
Example 2.

The central problem of this section is to provide necessary and sufficient conditions
under which a linear operator A : E ⊇ domA → F possesses a positive extension to the
whole E. The following set associated to A will play a key role in our treatment:

(5) W (A) := {Ax : x ∈ domA, 〈Ax, x〉 ≤ 1} ⊆ F.

The construction below is motivated by the work of Sebestyén [41]. A similar factorization
approach has been used by Ando and Nishio in [4] who considered extensions of closed
positive symmetric operators. Here we emphasize that we do not impose any topological
condition, that is, neither closedness of A or domA, nor density of domA is assumed.
Another construction of the Krein–von Neumann extension in terms of the boundary
conditions was proposed in [15, Proposition 4.2].

Theorem 3 ([57, Theorem 3.1]). Let 〈F,E〉 be a w∗-sequentially complete anti-dual pair
and let A : E ⊇ domA → F be a linear operator with domain domA, which is assumed
to be only a linear subspace. Then the following statements are equivalent.

(i) There is an everywhere defined positive operator Ã : E → F extending A,
(ii) W (A) is β(F,E)-bounded in F ,
(iii) W (A) is σ(F,E)-bounded in F ,
(iv) To any y in E there is My ≥ 0 such that

(6) |〈Ax, y〉|2 ≤My〈Ax, x〉 for all x ∈ domA.

If one (and hence all) of the above conditions is satisfied then there exists a distinguished
extension AN , called the Krein-von Neumann extension of A, which is minimal in the
following sense: AN ≤ Ã holds for any (everywhere defined) positive extension Ã : E → F
of A.

Since not only the result itself, but also the construction of AN plays an important
role in the in this thesis, we sketch the proof of implication (iv)⇒(i).

Endow the range space ranA with the following inner product:

(Ax |Ay)A := 〈Ax, y〉, x, y ∈ E.
It can be shown that (· | ·)A is well defined and positive definite, hence (ranA, (· | ·)A) is
a pre-Hilbert space. Let HA denote its Hilbert completion so that ranA ⊆ HA forms a
norm dense linear subspace. The canonical embedding operator

(7) JA(Ax) = Ax, x ∈ E,
of ranA ⊆ HA into F is weakly continuous by (iv). Hence JA extends to an everywhere
defined weakly continuous operator because of weak-* sequentially completeness of F . We
continue to write JA ∈ L (HA, F ) for this extension. The adjoint operator J∗A ∈ L (E,HA)
admits the canonical extension property

(8) J∗Ax = Ax ∈ HA, x ∈ E,
from which one obtains that AN := JAJ

∗
A is a positive extension of A.

We mention that the following construction works even if A is everywhere defined on
E (i.e., A ∈ L (E;F )). In that case one obtains a useful factorization of A:

(9) A = JAJ
∗
A.
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A simple example below demonstrates that w∗-sequentially completeness of F was
really essential in the main theorem.

Example 4. Let H be a Hilbert space and let A be an unbounded positive self-adjoint
operator in H, with (dense) domain domA. Let E := domA1/2 and let F := H, then
clearly, 〈F,E〉 is an anti-dual pair with respect to the duality induced by the inner product.
But 〈F,E〉 is not w∗-sequentially complete because E is a proper dense subspace of H. It
is readily seen that A : E ⊃ domA→ F fulfills condition (iv) of Theorem 3:

|(Ax | y)|2 = |(A1/2x |A1/2y)|2 ≤ ‖A1/2y‖2(Ax |x), x ∈ domA, y ∈ E.

Although condition (iv) is satisfied, the statement of Theorem 3 does not remain true.
Indeed, assume that A extends to a positive operator Ã : E → F . Recall that a self-adjoint
operator may not have any proper symmetric extension, hence A = Ã and, in particular,
domA = domA1/2. But this is impossible because domA $ domA1/2 whenever A is
unbounded (see [48, Corollary 2.4]).

Notice that the set of positive extensions of a given positive operator A has no maximal
element (unless domA is dense): for example, in the trivial case when domA = {0}, every
positive operator is an extension of A. The largest (so-called Friedrichs) extension of a
non-densely defined positive operator A becomes a linear relation (that is, a multivalued
operator). This fact immediately follows from a description of the Krein–von Neumann
extension obtained in [15, Proposition 4.2].

The next theorem says that we will get a maximum among continuous positive exten-
sions, bounded by a positive operator B.

Theorem 5 ([57, Theorem 3.3]). Let A be a subpositive operator on the w∗-sequentially
complete anti-dual pair 〈F,E〉. Let B ∈ L (E;F ) be a positive operator such that AN ≤ B,
then there exists a positive operator ABmax ∈ L (E;F ), ABmax ≤ B such that for every
positive extension Ã ∈ L (E;F ) of A, 0 ≤ Ã ≤ B, one has Ã ≤ ABmax. In other words,

ABmax = max{Ã ∈ L (E;F ) : 0 ≤ Ã ≤ B,A ⊂ Ã}.

Furthermore, a positive operator 0 ≤ Ã ≤ B is an extension of A if and only if AN ≤
Ã ≤ ABmax:

(10) [AN , A
B
max] = {Ã ∈ L (E;F ) : 0 ≤ Ã ≤ B,A ⊂ Ã}.

The next theorem tells us that the Krein–von Neumann extension preserves certain
commutation properties as well.

Theorem 6 ([57, Theorem 3.4]). Let A : domA→ F be a subpositive operator on the w∗-
sequentially complete anti-dual pair 〈F,E〉. Suppose that there are two weakly continuous
operators B,C ∈ L (E) leaving domA invariant, and that the spectrum of BC restricted
to domA is bounded. Assume in addition that B and C satisfy

(11) C∗A ⊂ AB, and B∗A ⊂ AC,

then the Krein-von Neumann extension of A satisfies

C∗AN = ANB, and B∗AN = ANC.

Next we are going to investigate the special case when the anti-duality is the evaluation
on the pair of a fixed Banach space E and its conjugate topological dual Ē ′. We will obtain
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a strengthening of the main result of [42], and we will show that Shmul’yan’s original result
is indeed a corollary of our main theorem.

We remark that the Banach-Steinhaus theorem forces Ē ′ to be weakly sequentially
complete, and hence everything that has been proved in the preceding sections also re-
mains valid for the anti-dual pair 〈Ē ′, E〉.

Theorem 7 ([57, Theorem 4.2] and [42, Theorem 3.1]). Let E be a Banach space, and
let A : E ⊇ domA→ Ē ′ be a positive linear operator. Then the following statements are
equivalent.

(i) A has a bounded positive extension Ã ∈ L (E; Ē ′),
(ii) There is a constant M ≥ 0 such that

‖Ax‖2 ≤M · 〈Ax, x〉, x ∈ domA,(12)

(iii) For any y ∈ E there exists My ≥ 0 such that

|〈Ax, y〉|2 ≤My · 〈Ax, x〉, x ∈ domA.

In any case, there exists the Krein-von Neumann extension AN of A that is the smallest
among the set of positive extensions of A. The norm of AN satisfies

(13) ‖AN‖ = inf{M ≥ 0 : ‖Ax‖2 ≤M · 〈Ax, x〉, x ∈ domA}.
If B,C ∈ L (E) are continuous operators leaving domA invariant such that C∗A ⊂ AB
and B∗A ⊂ AC then the Krein-von Neumann extension of A satisfies

(14) C∗AN = ANB, and B∗AN = ANC.

Corollary 8 ([57, Corollary 4.4]). Let A : domA → H be a positive operator satisfying
the equivalent conditions of Corollary 7. Then, for every constant M ≥ ‖AN‖ there is a
positive extension AMmax of A with ‖AMmax‖ ≤M such that for any positive extension Ã of
A, ‖Ã‖ ≤M one has Ã ≤ AMmax. In other words,

AMmax = max{Ã ∈ B(H) : Ã ≥ 0, A ⊂ Ã, ‖Ã‖ ≤M}.
Furthermore, one has equality

[AN , A
M
max] = {Ã ∈ B(H) : Ã ≥ 0, A ⊂ Ã, ‖Ã‖ ≤M}.

In the rest of the section we apply our theory to positive functionals on a *-algebra.
Let A be a (not necessarily unital) complex ∗-algebra. Recall that a linear functional f
on A is called representable if there exist a Hilbert space H, a *-representation (that is,
a *-homomorphism) π : A → B(H) and a vector ξ ∈ H such that

f(a) = (π(a)ξ | ξ), a ∈ A .

It is clear that every representable functional is positive, nevertheless the converse is not
true in general.

Consider now a left ideal I of A and a linear functional f : I → C. In this section we
provide necessary and sufficient conditions under which f admits a representable extension
to A (cf. also [42] for the Banach-* algebra setting). Recall that if f : I → C is a linear
functional, then we can associate an operator A : I → Ā ∗ to f by setting

(15) 〈Aa, x〉 := f(x∗a), x ∈ A , a ∈ I .

Clearly, A is positive if and only if f is positive, i.e., f(a∗a) ≥ 0 holds for all a ∈ I .
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In what follows, we are exclusively interested in representable extensions of functionals.
Recall that f is said to be Hilbert bounded if there is constant M ≥ 0 such that

(16) |f(a)|2 ≤Mf(a∗a) for all a ∈ I ,

and admissible if for any x in A there exists λx ≥ 0 such that

(17) f(a∗x∗xa) ≤ λxf(a∗a) for all a ∈ I .

Theorem 9 ([57, Theorem 5.1]). Let A be a ∗-algebra, I ⊆ A be a left ideal, and let
f : I → C be a linear functional. The following assertions are equivalent:

(i) there is a representable functional f̃ ∈ A ∗ extending f ,
(ii) f is admissible and Hilbert bounded.

If there is any, then there is a minimal one (denoted by fN) among the set of representable
extensions.

In case when the algebra has a unit element the theorem can be more easily formulated.
In fact, the following simple formula may suggest that extension theory of functionals and
extension theory of operators fit nicely together, indeed.

Corollary 10 ([57, Theorem 5.3]). Assume that A is a unital ∗-algebra with unit 1 ∈ A .
Assume further that f : I → C is admissible. Then f is Hilbert bounded, and its Krein-
von Neumann extension satisfies

(18) fN(x) = 〈AN1, x〉, x ∈ A .

In a Banach *-algebra every positive functional f : I → C is automatically admissible
according to the following result:

Lemma 11 ([42, Lemma 5.1]). Let A be a Banach *-algebra, I ⊆ A a left ideal, and
let f : I → C be a positive linear functional, then

f(a∗x∗xa) ≤ r(x∗x)f(a∗a) for all a ∈ I and x ∈ A .

Corollary 12 ([42, Theorem 5.3]). Let A be a Banach ∗-algebra and I ⊆ A a left
ideal. A positive functional f : I → C admits a representable extension to A if and only
if f is Hilbert bounded.

An analogue of Theorem 5 for positive functionals can be established as follows:

Theorem 13 ([57, Theorem 5.4]). Let f : I → C be an admissible and Hilbert bounded
functional and fix any representable functional g ∈ A ∗ such that fN ≤ g. Then there is a
representable extension f gmax ∈ A ∗ of f such that f gmax ≤ g, and for every representable
extension f̃ of f one has f̃ ≤ f gmax. In other words,

f gmax = max{f̃ ∈ A ] : f̃ ≤ g, f ⊂ f̃}.

Furthermore, a representable functional f̃ ≤ g is an extension of f if and only if fN ≤
f̃ ≤ f gmax:

[fN , f
g
max] = {f̃ ∈ A ] : f̃ ≤ g, f ⊂ f̃}.

Self-adjoint extensions ([56])

M. G. Krein [34] proved that every bounded symmetric Hilbert space operator pos-
sesses a norm preserving self-adjoint extension. The problem of constructing self-adjoint
extensions of a symmetric operator arises in our anti-dual pair setting naturally. Since we
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cannot speak about norm preservation due to the lack of norm, we need to find a suitable
notion to generalize Krein’s theorem. Observe that the norm of a self-adjoint operator
S ∈ B(H) can be expressed by means of the partial order induced by positivity. Namely,
‖S‖ is the smallest constant α ≥ 0 such that −αI ≤ S ≤ αI. Based on this observation, a
symmetric operator S0 : E ⊇ domS0 → F is called A-bounded for a fixed positive operator
A ∈ L (E;F ) if

(19) |〈S0x, y〉|2 ≤ α2 · 〈Ax, x〉〈Ay, y〉, x ∈ domS0, y ∈ E,

holds. The smallest constant α is called the A-bound of S0 and is denoted by αA(S0). We
will call the extension S ⊃ S0 A-bound preserving if αA(S0) = αA(S).

In the next theorem, which is the main result of this section, we will present a sufficient
condition to guarantee for a symmetric linear operator that it possesses a self-adjoint
extension. Moreover, we describe the set of all A-bound preserving extensions of a given
symmetric operator.

Theorem 14 ([56, Theorem 2.1]). Let 〈F,E〉 be a weak-∗ sequentially complete anti-dual
pair and let S0 : domS0 → F be a symmetric operator, i.e.,

〈S0x, y〉 = 〈S0y, x〉, x, y ∈ domS0.

Suppose that S0 is A-bounded with some positive operator A ∈ L (E;F ). Then there exist
two distinguished self-adjoint extensions Sm, SM ∈ L (E;F ) of S0 such that

αA(Sm) = αA(SM) = αA(S0).

In fact, the interval [Sm, SM ] consists exactly of all self-adjoint extensions S ⊃ S0 such
that αA(S) = αA(S0):

[Sm, SM ] = {S ∈ L (E;F ) : S0 ⊂ S = S∗, αA(S) = αA(S0)}.(20)

In the following corollary, we recover the classical result of Krein on self-adjoint norm-
preserving extensions.

Corollary 15 ([56, Corollary 2.2]). Let H be a Hilbert space and let S0 : domS0 → H be
a bounded symmetric operator. Then S admits two self-adjoint norm-preserving extensions
Sm, SM ∈ B(H) such that the interval [Sm, SM ] consists exactly of all self-adjoint norm-
preserving extensions of S0 :

[Sm, SM ] = {S ∈ B(H) : S0 ⊂ S = S∗, ‖S0‖ = ‖S‖}.

If a self-adjoint operator B ∈ B(H) leaving domS0 invariant satisfies BS0 ⊂ S0B, then

(21) SmB = BSm, SMB = BSM .

The aim of this section is to generalize Parrott’s famous theorem [39] on contractive
extensions of 2 by 2 block operator-valued matrices, which is one of the crucial results in
extension and dilation theory. As an application, we will deduce Yamada’s recent result
[65, Theorem 4] on the extension of the Strong Parrott Theorem [20,60].

Theorem 16 ([56, Theorem 3.1]). Let 〈F1, E1〉1 and 〈F2, E2〉2 be two w∗-sequentially
complete anti-dual pairs and let T1 : E1 ⊇ domT1 → F2 and T2 : E2 ⊇ domT2 → F1 be
linear operators such that

〈T1x1, x2〉2 = 〈T2x2, x1〉1, x1 ∈ domT1, x2 ∈ domT2.
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Assume, furthermore, that there exist two positive operators Ai ∈ L (Ei;Fi) and constants
αi ≥ 0, (i = 1, 2) such that the following estimates hold true:

|〈T1x1, y2〉2|2 ≤ α1〈A1x1, x1〉1〈A2y2, y2〉2, x1 ∈ domT1, y2 ∈ E2,

|〈T2x2, y1〉1|2 ≤ α2〈A1y1, y1〉1〈A2x2, x2〉2, x2 ∈ domT2, y1 ∈ E1.

Then there exists a T ∈ L (E1;F2) such that T1 ⊆ T and T2 ⊆ T ∗ and that

|〈Ty1, y2〉1|2 ≤ max{α1, α2} · 〈A1y1, y1〉1〈A2y2, y2〉2, y1 ∈ E1, y2 ∈ E2.

Corollary 17 ([56, Corollary 3.2]). Let 〈F1, E1〉1, 〈F2, E2〉2 be anti-dual pairs and let
H, K be Hilbert spaces. For S1 ∈ L (E1,H), S2 ∈ L (E1,K), T1 ∈ L (H, F2), and T2 ∈
L (K, F2), the following conditions are equivalent:

(i) T1S1 = T2S2, S∗2S2 ≤ S∗1S1, and T1T ∗1 ≤ T2T
∗
2 ;

(ii) there exists X ∈ B(H,K), ‖X‖ ≤ 1, such that XS1 = S2 and T2X = T1, i.e., X
makes the following diagram commutative:

E1

H K

F2

S1 S2

X

T1 T2

Positive functionals play an important role in the representation theory of algebras.
Extension of such functionals has been investigated in many different settings. For exam-
ple, if f is a positive linear functional defined on a closed ideal in a C∗-algebra, then f
always admits an extension with the same norm. Positive functionals defined on left-ideals
of the full operator algebra possessing normal extension were characterized in [43], while
positive extendibility of positive functionals defined on left ideals of general ∗-algebras
was studied in [57]. Below we demonstrate how our anti-dual pair setting can be used to
construct hermitian extensions of linear functionals in the unital ∗-algebra setting.

Theorem 18 ([56, Theorem 4.1]). Let A be a unital ∗-algebra, I ⊆ A a left ideal and
f ∈ A ∗ a representable positive functional. If g0 : I → C is an f -bounded symmetric
functional with f -bound αf (g0), then there exist two distinguished f -bounded hermitian
functionals gm, gM ∈ A ∗ with f -bound αf (gm) = αf (gM) = αf (g0) extending g0. Fur-
thermore, gm ≤ gM and the interval [gm, gM ] consists of all hermitian f -bound preserving
extensions of g0:

[gm, gM ] = {g ∈ A ∗ : g0 ⊂ g = g∗, αf (g) = αf (g0)}.
We remark that Theorem 18 provides only a sufficient condition for the existence of

hermitian extensions. On C∗-algebras, the statement of Theorem 18 may be improved in
two ways; first, the condition on f of being representable can be replaced by the formally
weaker one of being positive. On the other hand, the existence of a dominating positive
functional is both necessary and sufficient.
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Corollary 19 ([56, Corollary 4.2]). Let A be a unital C∗-algebra and I ⊆ A a left
ideal. A linear functional g0 : I → C possesses a continuous hermitian extension g if and
only if g0 is symmetric and f -bounded for some positive functional f ∈ A ∗.

Lebesgue decomposition ([22,51,53–55])

Douglas’ factorization theorem. Operators of type T ∈ L (E,H) play a peculiar
role in the theory of positive operators on anti-dual pairs. In fact, every positive operator A
on a weak-* sequentially complete anti-dual pair admits a factorization A = T ∗T through
a Hilbert space H. Below we describe the range of the adjoint operator T ∗ ∈ L (H, F ).
The key result is a variant to Douglas’ famous range inclusion theorem [17] (for further
generalizations to Banach space setting see Barnes [10] and Embry [18]).

Theorem 20 ([53, Theorem 2.1]). Let 〈F,E〉 be an anti-dual pair and let H1,H2 be
Hilbert spaces. Given two weakly continuous operators Tj ∈ L (Hj, F ) (j = 1, 2) the
following assertions are equivalent:

(i) ranT1 ⊆ ranT2,
(ii) there is a constant α ≥ 0 such that

‖T ∗1 x‖2 ≤ α‖T ∗2 x‖2, x ∈ E,
(iii) for every h1 ∈ H1 there is a constant αh1 ≥ 0 such that

|〈T1h1, x〉|2 ≤ αh1‖T ∗2 x‖2, x ∈ E,
(iv) there is a bounded operator D : H1 → H2 such that

T1 = T2D.

Moreover, if any (hence all) of (i)-(iv) is valid, then there is a unique D such that
(a) ranD ⊆ (kerT2)

⊥,
(b) kerT1 = kerD,
(c) ‖D‖2 = inf{α ≥ 0 : ‖T ∗1 x‖2 ≤ α‖T ∗2 x‖2, (x ∈ E)}.

H1

H2

D F

T1

T2

Figure 1. Factorization of T1 along T2

There are many important objects in operator theory, including the Moore-Penrose
pseudoinverse [5], the parallel sum [19] or the Schur complement [58] which can be defined
as the Douglas solution of a suitably posed operator equation.

Regarding the structure of Douglas solutions, a natural nonlinear preserver problem
might be posed. Let ϕ : B(H) → B(H) be a bijective map with the property that,
for every triple A,B,X of bounded operators in B(H), X is the Douglas solution of
the equation A = BX if and only if Y = ϕ(X) is the Douglas solution of the equation
ϕ(A) = ϕ(B)Y . (Shortly, we can say in that case that ϕ preserves the Douglas solution in
both directions.) The problem is describing the form all such transformation ϕ. According
to the following result, structure of Douglas solution preserving maps is quite rigid:
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Theorem 21 ([54]). Let H be an infinite dimensional Hilbert space. A bijective map
ϕ : B(H) → B(H) preserves the Douglas solution in both directions if and only if there
exists a unitary or anti-unitary operator U : H → H such that

(22) ϕ(A) = UAU∗, A ∈ B(H).

Lebesgue decomposition of positive operators. Modeled by the Lebesgue–
Radon–Nikodym theory of positive operators on a Hilbert space (see e.g. [3] or [49])
we can introduce the concepts of absolute continuity and singularity of positive operators
on an anti-dual pair. Let A and B be positive operators on an anti-dual pair 〈F,E〉. We
say that B is absolutely continuous with respect to A (in notation, A � B) if for any
sequence (xn)n∈N of E,

〈Axn, xn〉 → 0 and 〈B(xn − xm), xn − xm〉 → 0 (n,m→ +∞)

imply 〈Bxn, xn〉 → 0. On the other hand, we say that A and B are mutually singular
(in notation, A ⊥ B) if C ≤ A and C ≤ B imply C = 0 for any positive operator
C ∈ L (E;F ).

The main purpose of this section is to establish an extension of Ando’s Lebesgue
decomposition theorem [3, Theorem 1]. This states that every positive operator B on a
weak-* sequentially complete anti-dual pair admits a decomposition B = Ba + Bs where
Ba � A and Bs ⊥ A.

The construction of the Lebesgue decomposition is based on a the decomposition the-
ory of linear relations between Hilbert spaces. Let us consider the Hilbert spaces HA,HB

and the linear operators JA, JB, associated with A and B, respectively, in accordance with
the proof of Theorem 3. Introduce the closed linear relation

(23) B̂ := {(Ax,Bx) ∈ HA ×HB : x ∈ E}
from HA to HB, and denote its multivalued part byM:

M := {ξ ∈ HB : (0, ξ) ∈ B̂}.
It can be shown thatM is a closed linear subspace of HB and one easily verifies that

(24) M = {ξ ∈ HB : ∃(xn)n∈N of E, 〈Axn, xn〉 → 0, Bxn → ξ in HB}.

It is easy to check that B � A if and only if B̂ is a closed operator, or equivalently,
if M = {0}. Furthermore, since ranA ⊆ dom B̂, the adjoint relation B̂∗ is always a
single-valued operator from HB to HA such that

(25) (dom B̂∗)⊥ =M.

The main result of the section is the following Lebesgue type decomposition theorem
for positive operators:

Theorem 22 ([53, Theorem 3.3]). Let A,B be positive operators on a weak-* sequentially
complete anti-dual pair 〈F,E〉. Let P stand for the the orthogonal projection of HB onto
M, then

(26) Ba := JB(I − P )J∗B and Bs := JBPJ
∗
B

are positive operators such that B = Ba + Bs, Ba is A-absolutely continuous and Bs is
A-singular. Furthermore, Ba is the greatest element of the set of those positive operators
C ∈ L (E;F ) such that C ≤ B and C � A.
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E F

HB M⊥

Ba

I − P

J∗B JB

Figure 2. Factorization of the absolute continuous part

Suppose now that A,B are positive operators and let B = Ba + Bs be the Lebesgue
decomposition of B with respect to A. Here we have Ba � A. Interchanging the roles of
A and B, by the same process we may take the Lebesgue decomposition of A with respect
to B, namely, A = Aa + As. An interesting feature of the absolutely continuous parts
are that they are absolutely continuous with respect to each other, i.e., Ba � Aa and
Aa � Ba. This surprising property was discovered by T. Titkos in context of nonnegative
forms [61] and measures [63]. Theorem 23 below generalizes this fact:

Theorem 23 ([53, Theorem 3.6]). Let 〈F,E〉 be a weak-∗ sequentially complete anti-dual
pair and let A,B ∈ L (E;F ) be positive operators. Then we have

Aa � Ba and Ba � Aa.

We have only proved that the canonical absolute continuous parts Aa and Ba have
the property of being mutually absolute continuous. However, in contrast to the Lebesgue
decomposition of measures, the Lebesgue decomposition of positive operators is not unique
in general, so there might exist other Lebesgue-type decompositions differing from what
we have constructed in Theorem 22. The statement of Theorem 23 is certainly not true
for the absolutely continuous parts of such Lebesgue decompositions.

The parallel sum and characterizations of absolute continuity. Ando’s key
notion in establishing his Lebesgue-type decomposition theorem was the so called parallel
sum of two positive operators. Inspired by his treatment, Hassi, Sebestyén, and de Snoo
[24] proved an analogous result for nonnegative Hermitian forms by means of the parallel
sum as well. Parallel addition may also be defined in various areas of functional analysis,
e.g. for measures, representable positive functionals on a ∗-algebra, and for positive op-
erators from a Banach space to its topological anti-dual, see [47,50,62]. In what follows
we provide a common generalization of those concepts.

The parallel sum A : B of two bounded positive operators on a Hilbert space can be
introduced in various ways, see eg. [2,19,40]. Its quadratic form can be obtained via the
formula

(27) ((A : B)x |x) = inf{(A(x− y) |x− y) + (By | y) : y ∈ H},

that uniquely determines the operator A : B. Therefore, it seems natural to introduce the
parallel sum of two positive operators in the anti-dual pair context as an operator whose
quadratic form is (27) (the inner product replaced by anti-duality, of course).

The existence of such an operator is established in the following result:

Theorem 24 ([53, Theorem 4.1]). Let 〈F,E〉 be a weak-∗ sequentially complete anti-dual
pair and let A,B ∈ L (E;F ) be positive operators. There exists a unique positive operator
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A : B ∈ L (E;F ), called the parallel sum of A and B, such that

(28) 〈(A : B)x, x〉 = inf{(A(x− y) |x− y) + (By | y) : y ∈ E}, x ∈ E.
The parallel sum has a number of theoretical applications. Below we establish only a

few of them. Our first result states that the absolutely continuous part might be produced
by means of the parallel sum:

Theorem 25 ([53, Theorem 4.6]). Let A,B ∈ L (E;F ) be positive operators on the
weak-* sequentially complete anti-dual pair 〈F,E〉, then
(29) lim

n→∞
〈((nA) : B)x, y〉 = 〈Bax, y〉, x, y ∈ E.

With the helps of the above result one might establish the following characterization
of absolute continuity.

Theorem 26 ([53, Theorem 5.1]). Let A,B be positive operators on the weak-* sequen-
tially complete anti-dual pair 〈F,E〉. The following conditions are equivalent:

(i) B is absolutely continuous with respect to A.
(ii) B is almost dominated by A, that is, there exists a monotone increasing sequence

(Bn)n∈N of positive operators in L (E;F ) and (αn)n∈N of positive numbers such
that Bn ≤ αnA and Bn → B pointwise on E.

We mention here that property (ii) agrees with the original definition of being abso-
lutely continuous according to Ando.

A ‘Radon-Nikodym type’ characterization of absolute continuity is stated as follows:

Theorem 27 ([53, Theorem 5.3]). For every pair A,B ∈ L (E;F ) of positive operators
the following statements are equivalent:

(i) B is absolutely continuous with respect to A,
(ii) for every y ∈ E there exists a sequence (yn)n∈N in E such that

〈Bx, y〉 = lim
n→∞
〈Ax, yn〉, x ∈ E,

and the convergence is uniform on the set {x ∈ E : 〈(A+B)x, x〉 ≤ 1}.

Characterizations of singularity. The original definition of singularity is rather
algebraic, namely it depends on the ordering induced by positivity. However, singularity
might be characterized through other properties which reflect some geometric and metric
features. Such properties are settled in the next result: For analogous results see [3,25,
31,50].

Theorem 28 ([53, Theorem 6.1]). Let 〈F,E〉 be a weak-* sequentially complete anti-
dual pair and let A,B ∈ L (E;F ) be positive operators on it. The following assertions are
equivalent:

(i) A and B are mutually singular,
(ii) A : B = 0,
(iii) the set {(Ax,Bx) : x ∈ E} is dense in HA ×HB,
(iv) ξ = 0 is the only vector in HB such that |(Bx | ξ)B|2 ≤Mξ〈Ax, x〉 for every x in

E,
(v) M = HB,
(vi) for every x in E there is a sequence (xn)n∈N such that

〈Axn, xn〉 → 0 and 〈B(x− xn), x− xn〉 → 0.
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Lebesgue decomposition of positive operators on Hilbert spaces. Let H be a
complex Hilbert space with inner product (· | ·), then 〈H,H〉 forms a weak-* sequentially
complete anti-dual pair with 〈·, ·〉 := (· | ·). Therefore, everything what has been said so
far remains valid for 〈H,H〉 and the positive operators on it. In particular, we retrieve
Ando’s main results [3, Theorem 2 and 6] immediately from Theorems 22, 26 and 35:

Theorem 29 ([53, Theorem 8.1]). Let A,B be bounded positive operators on a complex
Hilbert space H and let Ba := lim

n→∞
(nA) : B where the limit is taken in the strong operator

topology and let Bs := B −Ba. Then

(30) B = Ba +Bs

is a Lebesgue-type decomposition, i.e., Ba is A-absolutely continuous and Bs is A-singular.
Ba is maximal among those positive operators C ≥ 0 such that C ≤ B and C � A. The
Lebesgue decomposition (30) is unique if and only if Ba ≤ αA for some constant α ≥ 0.

Lebesgue decomposition of forms. Let D be a complex vector space and let t, w
be nonnegative Hermitian forms on it. Let us denote by D̄∗ the algebraic dual space of
D, then 〈D̄∗,D〉 forms a weak-* sequentially complete anti-dual pair and

〈Tx, y〉 := t(x, y), 〈Wx, y〉 := w(x, y), x, y ∈ D

define two positive operators T,W : D → D̄∗. We recall that the form t is called w-
almost dominated if there is a monotonically nondecreasing sequence of forms tn such
that tn ≤ αnw for some αn ≥ 0 and tn → t pointwise. Similarily, t is called w-closable if
for every sequence (xn)n∈N of D such that w(xn, xn)→ 0 and t(xn − xm, xn − xm)→ 0 it
follows that t(xn, xn)→ 0.

It is immediate to conclude that the form t is w-closable if and only if the operator
T is W -absolutely continuous. Similarly, t is w-almost dominated precisely when T is W -
almost dominated. Consequently, from Theorem 26 it follows that the notions of closability
and almost dominatedness are equivalent (cf. also [24, Theorem 3.8]). The map t 7→ T
between nonnegative hermiatian forms and positive operators on D is a bijection, so from
Theorems 22 and 35 we conclude the following result (see [24, Theorem 2.11 and 4.6]):

Theorem 30 ([53, Theorem 8.2]). Let t,w be nonnegative Hermitian forms on a complex
vector space D and let ta(x, x) := lim

n→∞
((n t) : s)(x, x), x ∈ D and ts := t− ta. Then

(31) t = ta + ts

is a Lebesgue-type decomposition of t with respect to w, i.e., ta is w-absolutely continuous
and ts is w-singular. Furthermore, ta is maximal among those forms s such that s ≤ t
and s � w. The Lebesgue decomposition (31) is unique if and only if ta ≤ αw for some
constant α ≥ 0.

Lebesgue decomposition of representable functionals. Let A be a ∗-algebra
(with or without unit), i.e., an algebra endowed with an involution. A functional f : A →
C is called representable if there is a triple (Hf , πf , ζf ) such that Hf is a Hilbert space,
ζf ∈ Hf and πf : A → B(Hf ) is a *-algebra homomorphism such that

f(a) = (πf (a)ζf | ζf )f , a ∈ A .

A straightforward verification shows that every representable functional f is positive hence
the map A : A → Ā ∗ defined by

(32) 〈Aa, b〉 := f(b∗a), a, b ∈ A
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is a positive operator. (Note however that not every positive operator A arises from a
representable functional f in the above way.) Denote by HA the corresponding auxiliary
Hilbert space. It is easy to show that πf : A → B(HA), a 7→ πf (a) is a *-homomorphism,
where the bounded operator πf (a) arises from the densely defined one given by

πf (a)(Ab) := A(ab), b ∈ A .

It follows from the representability of f that |f(a)|2 ≤ Cf(a∗a), a ∈ A , for some constant
C ≥ 0 and hence

Aa 7→ f(a), a ∈ A

defines a continuous linear functional from ranA ⊆ HA to C. The corresponding repre-
senting functional ζf satisfies

(Aa | ζf )A = f(a), a ∈ A ,

and admits the useful property πf (a)ζf = Aa. It follows therefore that

f(a) = (πf (a)ζf | ζf )A, a ∈ A .

Let g be another representable functional on A . We say that g is f -absolutely continuous
if for every sequence (an)n∈N of A such that f(a∗nan)→ 0 and g((an−am)∗(an−am))→ 0
it follows that g(a∗nan)→ 0. Furthermore, g and f are singular with respect to each other
if h = 0 is the only representable functional such that h ≤ f and h ≤ g.

Denote by B : A → Ā ∗ the positive operator associated with g and let (HB, πg, ζg) the
corresponding GNS-triplet obtained along the above procedure. Let us introduceM⊆ HB

and P as in Section 3. ThenM andM⊥ are both πg-invariant, so

gs(a) := (πg(a)Pζg |Pζg)B, ga(a) := (πg(a)(I − P )ζg | (I − P )ζg)B

are representable functionals on A such that

(33) 〈Baa, b〉 = ga(b
∗a), 〈Bsa, b〉 = gs(b

∗a).

It is clear therefore that ga � f and gs ⊥ f . If A has a unit element 1 then the absolutely
continuous and singular parts can be written in a much simpler form:

ga(a) = 〈Ba1, a〉, gs(a) = 〈Bs1, a〉, a ∈ A .

After these observations we can state the corresponding Lebesgue decomposition theorem
of representable functionals [23, Corollary 3]:

Theorem 31 ([51, Theorem 3.3] and [53, Theorem 8.4]). Let f, g be representable
functionals on the *-algebra A , then ga and gs are representable functionals such that
g = ga + gs, where ga is f -absolutely continuous and gs is f -singular. Furthermore, ga is
is maximal among those representable functionals h such that h ≤ g and h� f .

Lebesgue decomposition of additive set functions. Let X be a non-empty set
and R be an algebra of sets on X. Let α be a non-negative finitely additive measure and
denote by S the unital *-algebra of R-measurable functions, then α induces a positive
operator A : S→ S̄∗ by

〈Aϕ,ψ〉 :=

∫
ϕψ̄ dα, ϕ, ψ ∈ S.

We notice that we can easily recover α from A, namely

(34) α(R) = 〈AχR, χR〉, R ∈ R.
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However, not every positive operator A : S→ S̄∗ induces a finitely additive measure, as
it turns out from the next statement.

Proposition 32. If A : S→ S̄∗ is a positive operator then (34) defines an additive set
function if and only if

(35) 〈A|ϕ|, |ϕ|〉 = 〈Aϕ,ϕ〉, ϕ ∈ S.

Assume that we are given another nonnegative additive set function β on R, then β
is called absolutely continuous with respect to α if for each ε > 0 there exists some δ > 0
such that R ∈ R and α(R) < δ imply β(R) < ε. Furthermore, α and β are mutually
singular if γ = 0 is the only nonnegative additive set function such that γ ≤ α and γ ≤ β.

The Lebesgue decomposition of β with respect to α can be obtained by means of their
induced positive operators.

Our claim is to prove that the Lebesgue decomposition of β with respect to α can
also be derived from that of the induced positive operators. To this aim we note first that
singularity of A and B obviously implies the singularity of α and β. It is less obvious that
A-absolute continuity of B implies the α-absolute continuity of β (cf. also [52, Lemma
3.1]). To see this consider a sequence (Rn)n∈N of R such that α(Rn)→ 0. Clearly,

(J∗AχRn
| J∗AχRn

)A = 〈AχRn
, χRn

〉 → 0.

Since (J∗BχRn
| J∗BχRn

)B ≤ β(X), the sequence (J∗BχRn
)n∈N is bounded in HB, and for

every ξ ∈ dom B̂∗,
(J∗BχRn

| ξ)B = (J∗AχRn
| B̂∗ξ)A → 0.

Consequently, J∗BχRn
→ 0 weakly in HB, and hence BχRn

→ 0 in S̄∗ with respect to the
weak-* topology σ(S̄∗,S). This implies that

β(Rn) = 〈BχRn
, 1〉 → 0,

hence β � α.

Theorem 33 ([53, Theorem 8.6]). Let α, β : R → R+ be nonnegative additive set func-
tions. There exist two nonnegative additive set functions βa, βs such that β = βa + βs,
where βa is α-absolutely continuous and βs is α-singular.

Uniqueness. It was pointed out by Ando [3] that the Lebesgue decomposition among
positive operators on an infinite dimensional Hilbert space is not unique. Since anti-
dual pairs are even more general, we expect the same in our case. The reason why non-
uniqueness occurs in the non-commutative integration theory is that absolute continuity
is not hereditary: B � A and C ≤ B do not imply C � A. In fact, it may even happen
that C 6= 0 and C ⊥ A. More explicitly, we have the following result:

Proposition 34 ([53, Proposition 7.1]). Let A,B be positive operators on the weak-*
sequentially complete anti-dual pair 〈F,E〉. Suppose that B is A-absolutely continuous but
not A-dominated, i.e., there is no α ≥ 0 such that B ≤ αA. Then there is a non-zero
positive operator B′ ≤ B such that B′ ⊥ A.

The next result gives a complete characterization of uniqueness of the Lebesgue de-
composition. We mention that this is a direct generalization of Ando’s uniqueness result
[3, Theorem 6]. We also refer the reader to [28, Theorem 7.8], [24, Theorem 4.6], [31, The-
orem 2.8 and 2.9]; cf. also [31, Theorem 3.6 and Corollary 3.7]
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Theorem 35 ([53, Theorem 7.2]). Let 〈F,E〉 be a weak-* sequentially complete anti-
dual pair and let A,B ∈ L (E;F ) be positive operators. The following statements are
equivalent:

(i) the Lebesgue-decomposition of B into A-absolutely continuous and A-singular
parts is unique,

(ii) dom B̂∗ ⊆ HB is closed,
(iii) the map Ax 7→ (I − P )Bx is norm continuous between HA and HB,
(iv) Ba ≤ αA for some α ≥ 0,

Using Theorem 35 above one can easily exhibit some counterexamples showing non-
uniqueness of Lebesgue decomposition of positive operators on Hilbert spaces as well
nonnegative forms. However, the question of uniqueness is much more sophisticated in
the context of representable functionals. of the Lebesgue-type decomposition. According
to Kosaki [32], the Lebesgue decomposition of representable functionals is not necessarily
unique, even in the case of von Neumann algebras. Kosaki’s counterexample was rather
complicated, a much more simpler one might be given:

Example 36 ([55, Example 6.6]). Assume H is infinite dimensional Hilbert spae and
consider an orthonormal sequence (en)n∈N in it. Let (αn)n∈N, (βn)n∈N be two monotone
decreasing sequences in `1 with positive coefficients such that αn/βn →∞. Set

(36) Fx :=
∞∑
n=1

αn(x | en)en, Gx :=
∞∑
n=1

βn(x | en)en, x ∈ H,

and define f, g by

f(T ) := Tr(FT ), g(T ) := Tr(GT ), T ∈ B(H).

Letting

Fnx :=
n∑
k=1

αk(x | ek)ek

we have Fn ≤ Fn+1 → F in operator norm and also Fn ≤
αn
βn
G. Hence F is G-absolutely

continuous, i.e., [G]F = F . On the other hand, F ≤ cG is impossible because αn/βn →∞.
The G-Lebesgue decomposition of F is therefore not unique, in accordance with Theorem
35. Hence the g-Lebesgue decomposition of f fails to be unique as well.

As the above example shows, the Lebesgue-type decomposition of representable func-
tionals is not necessarily unique even over von Neumann algebras. Nevertheless, it is
possible to give a nontrivial sufficient condition for the uniqueness in terms of the regular
part. As we shall see, this property can be necessary in some particular cases.

Theorem 37 ([55, Theorem 6.1]). Let f and g be representable functionals on A . If
the f -absolutely continuous part ga of g satisfies ga ≤ cg holds for some c ≥ 0, then the
Lebesgue-type decomposition of g with respect to f is unique.

Corollary 38. Let A be a finite dimensional ∗-algebra and let f, g be representable pos-
itive functionals on A . Then the Lebesgue decomposition of g with respect to f is always
unique.
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Maps preserving absolute continuity and singularity. In the paper [22] we
investigated so called singularity and absolute continuity preserving bijections. We say
that a bijective map ϕ : B(H)+ → B(H)+ preserves absolute continuity in both directions
if

A� B ⇐⇒ ϕ(A)� ϕ(B) for all A,B ∈ B(H)+.

Similarly, we say that a bijection ϕ : B(H)+ → B(H)+ preserves singularity in both
directions if

A ⊥ B ⇐⇒ ϕ(A) ⊥ ϕ(B) for all A,B ∈ B(H)+.

To formulate our results, we need some further notation. With calligraphic letters we
always denote linear (not necessarily closed) subspaces ofH and we use the symbol Lat(H)
for the set of all subspaces. A special subset of Lat(H) formed by operator ranges is
denoted by

Latop(H) := {M ⊆ H : ∃ S ∈ B(H), ranS =M} = {ranA1/2 : A ∈ B(H)+},
where the second identity is due to the range equality

(37) ranS = ran(SS∗)1/2 for all S ∈ B(H).

It is known that Latop(H) forms a lattice and that Latop(H) $ Lat(H), for more infor-
mation see [19].

For every positive integer n we set Latn(H) and Lat−n(H) to be the set of all n-
dimensional and n-codimensional operator ranges, respectively:

(a) Latn(H) := {M ∈ Latop(H) : dimM = n} = {M ∈ Lat(H) : dimM = n},
(b) Lat−n(H) := {M ∈ Latop(H) : codimM = n}.

Observe also that Lat−n(H) consists of all n codimensional closed subspaces of H. We use
the symbol Bn

+(H) to denote the set of all bounded positive operators with n dimensional
range. We also introduce the following subset of B(H)+ which is associated with an
operator rangeM∈ Latop(H):

R1/2(M) := {C ∈ B(H)+ : ranC1/2 =M}.
Note that R1/2(M) is never empty according to (37).

In [22] we gave a complete description of bijections that preserve absolute continuity
in both directions, and of those that preserve singularity in both directions. It turned out
that these maps have the same structure.

Theorem 39 ([22, Theorem A]). Let H be an infinite dimensional complex Hilbert space
and assume that ϕ : B(H)+ → B(H)+ is a bijective map. Then the following four
statements are equivalent:

(i) ϕ preserves absolutely continuity in both directions,
(ii) ϕ preserves singularity in both directions,
(iii) there exists a bounded, invertible, linear- or conjugate linear operator T : H → H

such that

(38) ranϕ(A)1/2 = ranTA1/2 for all A ∈ B(H)+,

(iv) there exists a bounded, invertible, linear- or conjugate linear operator T : H → H
and a family {ZA : A ∈ B(H)+} of invertible positive operators such that

(39) ϕ(A) = (TAT ∗)1/2ZA(TAT ∗)1/2 for all A ∈ B(H)+.
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If dimH <∞, then Lat(H) = Latop(H), every operator has closed range, and ranA =
ranA1/2 holds for all A ∈ B(H)+. Therefore the notions of absolute continuity and
singularity simplify considerably. In particular, the characterization of absolute continuity
reduces to

A� B ⇐⇒ ranA ⊆ ranB,

for every pair A,B of positive operators. Similarly, the range characterization of singularity
reduces to

A ⊥ B ⇐⇒ ranA ∩ ranB = {0}.
Furthermore, we have R1/2(M) = {C ∈ B(H)+ : ranC = M} for all M ∈ Lat(H).
Therefore the finite dimensional version of Theorem A can be proved much more easily
using the fundamental theorem of projective geometry provided that dimH > 2. However,
we point out that the result we get is slightly different, as T is not necessarily linear- or
conjugate linear anymore.

Theorem 40 ([22, Theorem B]). Let H be a complex Hilbert space such that 3 ≤ dimH <
+∞ and let ϕ : B(H)+ → B(H)+ be a bijective map. Then the following three statements
are equivalent:

(i) ϕ preserves absolutely continuity in both directions,
(ii) ϕ preserves singularity in both directions,
(iii) there is a semilinear bijection T : H → H such that

ranϕ(A) = ranTA for all A ∈ B(H)+.

Finally, in case when dimH = 2, the fundamental theorem of projective geometry can-
not be applied. However, one can prove easily that points (i) and (ii) are both equivalent
with the following condition:

(iii’) ϕ(0) = 0, ϕ maps the set of all invertible positive operators bijectively onto itself,
and there is a bijection Ψ: Lat1(H)→ Lat1(H) such that

ranϕ(A) = Ψ(ranA) for all A ∈ B1
+(H).

Schur complementation ([58])

The next theorem provides necessary and suphicient conditions for positivity of an
incomplete operator matrix of the form [ A B∗

B ∗ ].

Theorem 41 ([58, Theorem 2.1]). Let 〈F1, E1〉 and 〈F2, E2〉 be weak-∗ sequentially com-
plete anti-dual pairs and let A ∈ L (E1;F1) and B ∈ L (E1;F2) be weakly continuous
linear operators such that A ≥ 0. Then the following assertions are equivalent:

(i) There is a positive operator C ∈ L (E2;F2) such that the operator matrix [ A B∗
B C ]

is positive.
(ii) For every y2 ∈ E2 there exists a constant My2 ≥ 0 such that

|〈Bx1, y2〉|2 ≤My2
· 〈Ax1, x1〉 for all x1 ∈ E1.

(iii) For the canonical embedding operator JA : HA → F1 constructed in (7) the
following range inclusion holds

ranB∗ ⊆ ran JA.

If any of the above conditions is fulfilled, then the linear operator

(40) S0 : HA ⊇ ranA→ F2; Ax1 7→ Bx1, x1 ∈ E1
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is well defined and weakly continuous. Furthermore, its unique continuous extension S ∈
L (HA;F2) possesses the property that

(41) AB := SS∗

is the smallest positive operator that makes [ A B∗
B ∗ ] positive. The quadratic form of AB is

given by

〈SS∗y2, y2〉 = sup
{
|〈Bx1, y2〉|2 : x1 ∈ E1, 〈Ax1, x1〉 ≤ 1

}
(42)

= sup
{
〈Bx1, y2〉+ 〈B∗y2, x1〉 − 〈Ax1, x1〉 : x1 ∈ E1

}
.(43)

Definition 42. We refer to the operator AB in (41) as the complement of A with respect
to B. If C ∈ L (E2;F2) is any positive operator that makes the system [ A B∗

B C ] positive,
then C − AB is called the Schur complement of C in the block matrix [ A B∗

B C ].

As a straightforward consequence of Theorem 41 we retrieve the classical result [40, §1
Condition 2’ and Theorem 1.1] of Pekarev and Šmul’jan.

Corollary 43 ([58, Corollary 2.3]). Let H be a Hilbert space and let A,B ∈ B(H) be
bounded operators. Assume further that A is positive. Then the following assertions are
equivalent:

(i) There exists a C ∈ B(H) such that [ A B∗
B C ] is positive,

(ii) B∗B ≤ mA for some constant m ≥ 0,
(iii) ranB∗ ⊆ ranA1/2.

As an immediate consequence of Theorem .... we gain a new equivalent definition the
parallel sum. Namely, A : B can be obtained as the Schur complement of A in the block
matrix

[
A+B A
A A

]
:

Proposition 44. Let A,B ∈ L (E;F ) be positive operators. Then

A : B = A− (A+B)A.

Another useful transformation of two positive operators is the so called parallel dif-
ference. It might be defined in an analogous way to parallel sum, namely as the Schur
complement of A in the block matrix

[
A−B A
A A

]
, provided it exists.

Definition 45. Assume that A,B ∈ L (E;F ) are operators such that (A − B)A does
exist. Then the operator defined by

(44) B ÷ A := (A−B)A − A

is called the parallel difference of B and A. The quadratic form of B÷A can be calculated
as

(45) 〈(B ÷ A)y, y〉 = sup{〈B(x+ y), x+ y〉 − 〈Ax, x〉 : x ∈ E}.
As a significant application of parallel sum and parallel difference we reprove the

Lebesgue decomposition theorem:

Theorem 46 ([58, Theorem 2.7]). Assume that A and B are positive operators belonging
to L (E;F ). Then the operator (A : B) ÷ A is equal to the absolute continuous part Ba

of B. In particular,
B = (A : B)÷ A+ [B − (A : B)÷ A]

is idential with the a Lebesgue decomposition of B with respect to A.
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As a nontrivial application of Theorem 41 one may introduce the Schur complement
of representable positive functionals:

Theorem 47 ([58, Theorem 3.4]). Let f, g be linear functionals on a ∗-algebra A . Sup-
pose that f is representable and that there is a constant C ≥ 0 such that

(46) |g(a)|2 ≤ Cf(a∗a), a ∈ A .

Then there exists a representable positive functional h such that f + g + g∗ + h is repre-
sentable and

(47) f(a∗a) + g(b∗a) + g(b∗a) + h(b∗b) ≥ 0

for all a, b in A . Furthermore, there is a smallest h possessing this property.

Definition 48. We call the smallest representable functional satisfying (47) the comple-
ment of f with respect to g, and we denote it by fg.

The complement fg can be calculated as
fg(a) = (πf (a)ηg | ηg)f , a ∈ A ,

where ηg ∈ Hf is the representing vector of the bounded linear functional
Hf → C; πf (a)ξf 7→ g(a).

Similarly to the case of positive operators the parallel sum, parallel difference, as well
as the Lebesgue decomposition of representable functionals may be obtained by means of
the Schur complement.

Theorem 49 ([58, Definition 3.7-8 and Theorem 3.10]). Let f, g be representable positive
functionals on a ∗-algebra A .

(a) Then (f + g)f and (f : g) := f − (f + g)f are representable functionals and one
has

(f : g)(a∗a) = inf{f((a+ b)∗(a+ b)) + g(b∗b) : b ∈ A }.
(b) If f ≥ g and the complement (f − g)f ∈ A ] exists then the parallel difference

g ÷ f := (f − g)f − f is a representable functional such that

(g ÷ f)(a∗a) = sup{g((a+ b)∗(a+ b))− f(b∗b) : b ∈ A }.
(c) The representable functional ga = (g : f) ÷ f is representable and f -absolutely

continuous and the decomposition

g = ga + (g − ga)
is a Lebesgue-type decomposition of g with respect to f .
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