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A B S T R A C T   

The current paper studies the global and local interaction behaviour of box-section columns using numerical 
simulations by creating a numerical model and analysing their buckling resistances to pure compression. The 
developed numerical model uses a combination of global and local imperfections as well as residual stresses, 
which are the key parameters of the resistance calculation. The unique approach in the current paper is that all 
the previous studies applied safe sided imperfections, while this research applies improved imperfections for the 
local buckling behaviour provided by the authors in previous research work. This improved local geometric 
imperfection is applied in the verified numerical model to determine and analyse the interaction buckling 
resistance and develop an improved design resistance calculation method. Based on the accurate numerical 
simulation results, an analytical design approach following the buckling resistance calculation methodology of 
the Eurocode has been developed in the current paper and proposed for application. A comparison is made with 
the available design methods found in the international literature showing the achieved improvements.   

1. Introduction 

Welded box sections are widely used nowadays due to their 
manufacturing and fabrication advantages, making them a practical 
structural element in many constructions. This puts an extra demand on 
a more practical understanding of their structural behaviour in a wide 
range of geometrical configurations. The stability behaviour is one of the 
factors that need more attention as it affects the ability of sections to 
resist the load and causes ineffective utilisation of the section capacity. 
The stability issues for this section can be classified into three types, 
namely the global, local and interaction buckling behaviours. The global 
buckling is categorised by a large deformation near the weakest point 
along the length of the column, depending on its configuration. These 
deformations will hinder the ability of the column to sustain further 
loading. The local buckling is categorised by a group of half-sin waves 
that appears at the different plates of the section that has a very high 
width to thickness ratio, and this will cause a significant decrease in the 
resistance of the section to resist loads by not allowing the section to 
reach the plastic resistance and the full yielding of the section. The third 
type is interaction buckling which is a combination of the previously 
mentioned two types of buckling that will occur in the case of sections 
that are slender both globally and locally. While many researchers 

investigated the global and local buckling of the box sections, only 
limited efforts have been paid to study the interaction behaviour be
tween these two types of buckling and provide a more advanced 
approach to estimate the interaction buckling resistance. The current 
research aims to investigate the behaviour of welded box-section col
umns under pure compression by applying GMNIA (geometrically and 
materially nonlinear analysis with imperfections) and propose a reliable 
design method to give a more accurate resistance. 

The current Eurocode utilises a simplified approach to estimate the 
interaction buckling resistance. The global buckling reduction factor is 
based on the Ayrton-Perry-type formula that was developed and cali
brated to estimate the global buckling resistance of columns based on a 
set of curves given in EN1993-1-1 [1]. The currently adopted buckling 
curve for the analysed welded slender box-section columns is the 
buckling curve “b”. This curve was calibrated to account for the 
geometrical imperfections and residual stresses that exist in columns, 
and the characteristic value of the buckling resistance fits well with the 
numerical calculations using L/1000 geometric imperfections and 
additional residual stresses. The second reduction factor accounts for 
local buckling, which is based on the Winter-type buckling curve 
available in EN1993-1-5 [2]. The local buckling reduction factor can be 
used in the effective width method to reduce the cross-sectional area of 
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the Class 4 sections (i.e., where the width-to-thickness ratio exceeds the 
given value) under compression. By multiplying these two factors, the 
cross-sectional area and the yield strength of the column, the charac
teristic interaction resistance of the section can be determined. 

A limited number of researchers studied this interaction behaviour 
combining the global and local buckling behaviour of welded box- 
section columns. There is quite a large number of investigations in this 
topic studying the interaction behaviour of I-section columns. The most 
significant and recent results are given in [3, 4]. However, these results 
are not directly applicable to welded box-section columns. One of the 
most recent research on box-section columns was done by Schillo et al. 
[5], studying the interaction buckling of high strength steel columns. 
They proposed a new design formula based on numerical and experi
mental results. The proposed method utilised an equivalent geometrical 
imperfection that accounts for the effect of local buckling instead of the 
effective width method. The method utilises a similar approach as 
currently given in the Eurocode EN1993-1-1 [1] for global buckling, but 
with the addition of the equivalent imperfection to account for the loss 
of stiffness due to local buckling. The authors have mentioned that the 
Eurocode results are highly scattered compared to their numerical re
sults. Another research on this topic was done by Degée et al. [6]. A 
numerical parametric study was carried out as well as an experimental 
test program to study the effect of interaction buckling. The authors 
suggested a modification factor of the global slenderness to include the 
ratio of the gross cross-sectional moment of inertia (I) and the effective 
moment of inertia (Ieff) to account for the loss of flexural stiffness when 
interaction buckling occurs and included the local plate reduction factor 
in the β factor modifying the global slenderness λg. Additionally, an 
upgrade from Eurocode curve “b” to curve “a” was also suggested as they 
have found that the buckling resistance of the class 4 welded box-section 
column is higher than what is currently adopted by the Eurocode. Both 
researchers criticised the currently adopted design formula of the 
Eurocode and suggested further investigation to be done over a larger 
global and local slenderness range. Both are investigated in the current 
paper and the improved design procedures will be validated against the 
current numerical results in a wide slenderness range. 

The presented research program starts by creating a numerical model 
that utilises the GMNIA (Geometrically and Materially Nonlinear anal
ysis) technique to estimate the interaction buckling resistance of the 
box-section columns. The model uses a certain combination of local and 
global imperfections and residual stress to give an accurate estimation of 
the buckling resistance. This is the first point where the current research 
delivers a significant new contribution because the applicable imper
fections for the global and for the local buckling behaviour have been 
separately investigated and improved by the authors [7]. The current 
paper takes advantage of these previous investigations, making it 
possible to determine the interaction buckling resistance more accu
rately. The applied imperfection combinations include always L/1000 as 
global imperfection and local imperfections specified based on the local 
slenderness of the cross-section calibrated for the plate buckling curve of 
the second-generation Eurocodes (prEN 1993-1-5:2024 [8]). As previ
ously validated by the authors, this buckling curve provides a more 
reliable and accurate estimation of the local buckling resistance of box- 
section columns compared to the Winter-type curve that is available in 
the ancient EN1993-1-5, which was criticised by different researchers to 
provide overestimated results. It also means that if the buckling curve 
related to local buckling is changed, the applied imperfections in the 
numerical model should also be changed following the buckling curve 
change and accounting for accurate results. The applied geometric im
perfections are combined with residual stresses according to the ECCS 
residual stress patterns representing light welding [9]. The same resid
ual stresses are recommended in the second-generation Eurocodes prEN 
1993-1-14 [10] as well. The developed numerical model is also vali
dated against tests available in the literature and utilised to perform a 
parametric study on a wide range of global and local slenderness for 

different steel grades between S235 and S960. Based on the numerical 
parametric study, the interaction buckling resistance of the analysed 
columns are determined for a wide parameter range of local and global 
slenderness, which forms a database that is the source for a detailed 
investigation of the structural behaviour of the interaction buckling 
resistance and improved design method development, which is the 
second main new contribution of the current paper. The reason why 
previous design methods show larger scatter are highlighted, and a 
reduction factor for the interaction buckling has been developed 
considering the local and global slenderness ratio of the analysed col
umns, taking the nonlinear interaction behaviour into account. 

2. Literature review 

2.1. Eurocode-based design approach 

2.1.1. Global buckling resistance 
Verification against buckling according to EN 1993-1-1 [1] is 

executed by Eq. (1): 

NEd

Nb,Rd
≤ 1 (1)  

where: NEdis the design value of the compression force, Nb,Rdis the 
design buckling resistance of the compression member. For class 4 cross- 
sections in which the local buckling occurs before the attainment of 
yield stress in one or different parts of the cross-section, the design 
buckling resistance of compression elements can be determined as fol
lows according to Eq. (2): 

Nb,Rd =
χAfy

γM1
(2)  

where: χ is the reduction factor for the relevant buckling mode deter
mined according to Eqs. (3)–(4). 

χ =
1

ϕ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
ϕ2 − λg

2)
√ ≤ 1.0 (3)  

ϕ = 0.5
[
1+ α

(
λg − 0.2

)
+ λg

2 ] (4)  

where: 
α is the imperfection factor; in this study, equal to 0.34, corre

sponding to the buckling curve b according to EN1993–1- [1]. 
The non-dimensional slenderness λg can be determined according to 

Eq. (5), where Ncris the elastic critical force for the relevant buckling 
mode based on the properties of the cross-section. 

λg =

̅̅̅̅̅̅̅

Afy

Ncr

√

(5)  

2.1.2. Local buckling resistance 
According to EN1993-1-5 [2], class 4 sections are those plates and 

structures which are susceptible to local buckling. They cannot attain 
their elastic resistance and are characterised by local buckling failure. 
The various method can be used to design these types of cross-sections, 
such as the reduced stress method or the effective width method. The 
latter is investigated in the current paper. The effective width method 
works by reducing the effective area of the compression zone of the 
plate, according to Eq. (6), as the applied stresses on the non-effective 
regions are carried out by the adjacent effective areas. 

Ac,eff = ρ Ac (6) 

Where: ρ is the reduction factor for plate buckling. 
For the case of square box-section columns with all elements 

considered as internal compression elements, the reduction factor ρ may 
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be taken by Eqs. (7)–(8): 

ρ =

⎧
⎪⎪⎨

⎪⎪⎩

1, λρ < 0.673

λp − 0.005(3 + ψ)

λ2
p

≤ 1, λρ ≥ 0.673 (7)  

λp =

̅̅̅̅̅̅̅
fy

σCr

√

=
b/t

28.4ε
̅̅̅̅̅
kσ

√ (8)  

where: 
Ψ is the stress ratio. 
b is the appropriate width to be taken according to Table 5.2 of EN 

1993-1-1 [1], 
kσ is the buckling factor corresponding to the stress ratio Ψ and 

boundary conditions for long plates kσ is given in Table 4.1 or Table 4.2 
of Eurocode3 [1], 

t is the thickness, 
σCr it is the elastic critical plate buckling stress, 
ε calculated according to Eq.(9) 

ε =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅
235

f
y

[
N

mm2

]

√
√
√
√
√

(9)  

2.1.3. Interaction buckling resistance 
In EN1993-1-1 [1], the interaction buckling is accounted for by 

taking both the effect of the global and local buckling. The effect of 
global buckling is taken by calculating the global reduction factor χ 
according to Eq.(3). Also, the effect of local buckling by calculating the 
effective area by the effective width method according to Eq. (6). Both 
effects will be combined by multiplication according to Eq. (2) without 
taking into account the interaction that can happen between the two 
buckling modes. The final equation will be as follows: 

Nb,Rd =
χAeff fy

γM1
=

χρAfy

γM1
(10) 

A certain interaction is, however, considered within the calculation 
of the global slenderness ratio according to Eq. (10), where the effective 
cross-sectional area is used instead of the gross cross-sectional area for 
class 4 cross-sections. It leads to the fact that if the considered cross- 
sectional area reduces, the slenderness of the column will be smaller, 
leading to a larger global reduction factor and buckling resistance. This 
interaction consideration method has been criticised by researchers in 
the past, and several modifications have been already proposed, as 
summarized in the following section. 

2.2. Previous research results 

Degée et al. [6] studied the interaction buckling behaviour of S355 
welded rectangular section columns (RHS). A total number of six sam
ples were tested in this investigation with global slenderness of 0.35, 
0.55, and 0.75 for the same local slenderness of 0.9. A numerical para
metric study was also carried out for the global slenderness of 0.8 to 1.4 
and local slenderness of 0.7 to 1.1 to study the interaction buckling 
resistance of welded rectangular sections columns. The authors sug
gested the application of L/1000 as global imperfection and b/1000 as a 
local imperfection if the residual stresses are also applied. Otherwise, L/ 
750 as a global imperfection and b/250 as local imperfection can be 
used. The authors suggested an upgrade of the buckling curve from 
Eurocode buckling curve “b” to curve “a” as the buckling curve “b” was 
found too conservative. The authors suggested a new definition of global 
slenderness to account for the loss of stiffness due to the local slender
ness and called it interaction slenderness λint, and a new method was 
proposed for both normal and high strength steel structures, namely for 

S355, S460 and S690 steel grades. It is based on the Eurocode β factor 
with the additional modification on the global slenderness to include the 
ratio of the gross moment of inertia to the effective moment of inertia 
( I
Ieff

)
The original β factor contained only the ratio of effective area to the 

gross cross-sectional area (Aeff
A
)
. Moreover, the effect of the local slen

derness was adopted in the modification of the global slenderness, this 
will lead to decreasing the value of the global slenderness, and a larger 
resistance will be obtained due to the smaller slenderness as the 
reduction factor is increased. 

This evaluation method includes the following steps: (i) calculation 
of the global slenderness according to Eq. (11), then by using the 
Eurocode EN1993-1-1 [1] the global reduction factor χacan be deter
mined by using λGLand buckling curve “a”, (ii) calculation of the local 
reduction factor ρp using the plate buckling curve of EN1993-1-5 [2], 
(iii) modification of the global slenderness using the parameter β given 
by Eq.(12) to obtain the λint as depicted in Eq. (13), (iv) then, using the 
interaction slenderness λint the overall reduction factor χa can be 
calculated using buckling curve “a” of EN1993-1-1 [1]. Finally, the 
design resistance can be obtained using Eq. (14). 

λGL =

̅̅̅̅̅̅̅
NRk

Ncr

√

=

̅̅̅̅̅̅̅̅̅
A fy

π2 EI
L2

cr

√

(11)  

β =
i

ieff
.
[
1 − 0.5 χa

(
1 − 0.6.

̅̅̅̅̅ρp
√ )]

(12)  

λint = β.λGL (13)  

NRd =
χAeff fy

γ1
(14) 

Where Ncr is the elastic critical force for the relevant buckling mode 
based on the gross cross-sectional properties, i is the gross radius of 
gyration, and ieff is the effective radius of gyration, which is calculated as 
̅̅̅̅̅̅
Ieff
Aeff

√
, where Ieff is the effective moment of inertia in pure bending and 

Aeff is the effective area in pure compression calculated according to 
EN1993-1-5 [2]. 

Khan et al. [11] investigated the structural behaviour and buckling 
resistance of slender box-section columns manufactured from HSS (690 
MPa). Fifteen test specimens are examined, and buckling resistances are 
compared to various international standards, including the Eurocode, 
AISC, and Australian Standard. In this experimental program, only three 
tests failed in pure local buckling, while other tests failed in global or 
interaction buckling modes. The authors investigate the effects of re
sidual stresses on the member capacity using heavy and light welds. A 
numerical model was also developed to carry out a numerical para
metric study. In the study, L/1000 was used as global imperfection and 
b/1000 as local imperfection with residual stress. The numerical model 
was validated against experimental tests showing reliable results. Based 
on the experimental and numerical results, it was found that specimens 
with large global slenderness failed in global buckling, specimens with 
small global slenderness failed due to local buckling. Intermediate 
specimens failed due to a combination of both the global and local 
buckling. Accordingly, the authors suggested utilising a reduction factor 
that accounts for the combined buckling effect. It was stated that all 
normalized values of the experimental and numerical tests were lying 
above the buckling curve “b” of the Eurocode and suggested utilising 
this curve as a suitable curve for determining the interaction buckling. It 
was also noticed there was no significant difference between specimens 
with heavily and lightly welded sections. 

Yang et al. [12] investigated numerically and experimentally the 
interaction buckling behaviour of welded box-section columns. Twelve 
steel columns with medium lengths were tested. Two specimens were 
welded square hollow section (SHS) and ten with welded rectangular 
hollow sections (RHS). Tests specimens were made of S235 and S355. All 
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specimens under this experimental program failed due to the interaction 
buckling between the local and the global buckling modes. Local 
buckling occurred first and became more obvious before reaching the 
ultimate load. The authors found that the high slenderness ratio of the 
plate led to an early local buckling that resulted in a lower ultimate 
bearing capacity. It was found that the current specifications are not 
taking into account the post-buckling capacity of the plates and, there
fore, estimate a lower interaction buckling resistance. The post-buckling 
behaviour should be taken more accurately into account to achieve an 
economical design. A numerical parametric study was performed on 
normal and high strength steel columns. Based on the numerical study, 
the authors suggested using the buckling curve “a“ of Eurocode instead 
of the buckling curve “b” for S960 steel grades. The Eurocode over
estimates the buckling resistance of the welded box-section columns, 
indicating that the effective width method overestimates the local 
buckling resistance. It was also noticed that there is a significant influ
ence of residual stresses on the ultimate capacity that can reach up to 
20% in the case of medium length columns. Also, the initial imperfec
tions mainly affect plates with a high slenderness ratio with an influence 
that can reach 10%. 

Two experiments on S460 and S690 box-section steel columns were 
conducted by Usami and Fukumoto [13] to investigate the interactive 
buckling behaviour of high strength steel columns. An experimental 
study is carried out on the local and overall interaction buckling 
behaviour of welded built-up box columns made of high strength steel. 
Twenty-seven box-section columns with large slenderness were tested, 
twenty-four were loaded concentrically, and the rest were loaded 
eccentrically. Using the test results, an empirical design formula was 
presented to estimate the interaction buckling strength. Another 
experimental program [14]was executed by the same authors on a total 
of twenty-five columns with different lengths and width-to-thickness 
ratios. Both square and rectangular box sections were tested. A com
puter program was developed that uses the effective width method to 
investigate the collapse and characteristics of beam-columns that are 
suspectable to local buckling. The authors found that there is a good 
agreement between the results of the theoretical based computer pro
gram and the experimental test results for columns with large width-to- 
thickness ratio. 

Chiew et al. [15] performed 17 tests on welded thin-walled box 
section steel columns made of S235 steel grade. The experimental pro
grams included different sample configurations, including eccentric and 
concentric compressive loadings. This led to various failure modes, 
including local, overall and interaction buckling. The authors found that 
the effect of the plate width-to-thickness ratio and the column slender
ness have a significant effect on the ultimate load-carrying capacity. The 
behaviour of long columns with a low width-to-thickness ratio was 
mainly dominated by overall buckling, while for sections with high 
width to thickness ratio failed due to the combined effect of local and 
overall buckling, i.e., interaction buckling. The authors suggested an 
iterative theoretical method to obtain the load and global slenderness 
curves for different columns under different load conditions utilising an 
elastic-perfectly plastic stress-strain diagram to calculate the stresses 
and the iterative load based on the curvature, neutral axis and the total 
strain of each element. Based on this method, a set of curves can be 
developed for moment-slenderness (M-λ) and load-slenderness (P- λ) and 
moment-load (M-P) interaction curves. 

Kwon et al. [16] performed a series of compression tests on welded 
rectangular hollow section (RHS) columns fabricated from 6.0 mm thick 
steel plates using a steel material with a nominal yield strength of 315 
MPa. The ultimate strength of the compression members undergoing a 
nonlinear interaction between local and overall buckling was investi
gated experimentally and theoretically. The width-to-thickness ratio for 
the web and flange of test specimens was selected that the elastic local 
buckling stress of the section was low, and a significant post-buckling 
strength reserve was displayed before reaching the ultimate load. 
Strength formulas using the DSM method and accounting for local 

buckling are proposed for the design of welded section columns and 
beams based on test results for H-section, C-section, RHS and CHS col
umns, and H-section beams. A provision for the width-to-thickness ratio 
limit of welded RHS columns should be prepared, and the proposed 
strength formulas for DSM should be further calibrated against more test 
results of various grade steel sections before they are applied for prac
tical use. In this method, the authors tried to extend the applicability of 
the direct strength method (DSM) to welded box-section columns. The 
DSM method incorporates empirical formulas and elastic buckling stress 
obtained by buckling analysis and utilises a non-reduced cross-section 
area instead of using effective areas. This formula considers the inter
action between the global and local buckling modes as the authors have 
already investigated the interaction buckling of H-sections. A similar 
formula was adopted for box-sections with a small reduction due to the 
reason that plates of H-sections have a higher post-buckling reserve. Eq. 
(15) shows the utilised formula where Pnl is the nominal load accounting 
for the interaction buckling. Pcrl is the elastic local buckling load 
calculated by the finite element method or finite strip method. Pne is the 
nominal column design load calculated according to Eurocode using the 
appropriate buckling curve. Eq.(16) shows the slenderness based on the 
nominal column design load and the elastic critical buckling load. 

Pnl =

⎧
⎪⎪⎨

⎪⎪⎩

Pne, λ ≤ 0.745
(

1 − 0.2
(

Pcrl

Pne

)0.55
)(

Pcrl

Pne

)0.55

Pne, λ > 0.745
(15)  

λ =

̅̅̅̅̅̅̅̅
Pne

Pcrl

√

(16) 

Schillo et al. [5] performed thirteen tests on a square welded box- 
section columns with a high b/t ratio made of S500 and S960 steel 
grades having various global slenderness. Numerical modelling of the 
tests was also done by Ansys finite element program, and the numerical 
model was validated against the test results. The validated numerical 
model was used to perform a parametric study, which was used to 
determine the reduction factors to design box-section columns under the 
interaction of both global and local buckling. A different approach was 
used to implement the local buckling behaviour by adding additional 
geometric equivalent imperfection depending on the effective width 
method. According to the authors, the proposed approach seems to be 
more conservative across the analysed slenderness range, and it is more 
distinct for eccentrically loaded columns, where the bending is more 
important. Although this method is developed for high strength steel 
structures, it is still a good alternative to compare with, as it utilises the 
currently adopted Eurocode formula based on the Ayrton-Perry-type 
formulation of the global buckling resistance. Additionally, the pro
posed formula was validated against test results. In this approach, the 
authors utilised an additional equivalent local imperfection (ep) to be 
implemented in the global buckling formula to account for the loss of 
stiffness due to local buckling, instead of using the Eurocode approach, 
which is the effective cross-sectional method. The proposed value for the 
equivalent local imperfection is calculated according to Eq. (17). 

ep = s
[(

1
χA

− 1
)

+
1 − ψ
1 + ψ

(
1

χW
− 1
)]

(17) 

Where, (s) is equal to the moment of inertia (I) over the area of the 
section (A) multiplied by the distance from the neutral axis to the 
maximum fibre (z) s = I

A.z. The parameters χA and χW are factors derived 

using the effective width method χA =
Aeff
A , χW =

Weff
W , ψ is a factor that 

depends on the eccentricity of the load. In this current research program, 
only pure compression is studied; therefore, ψ = 1 is assigned. Eqs. (18)– 
(22) are given to calculate the interaction resistance of the box-section 
columns. 
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λgs =

̅̅̅̅̅̅̅̅
Nult

Ncrit

√

(18)  

Nult =
Npl

1 +
1− ψ
1+ψ

(19)  

where, Npl is the plastic resistance. 

η = α
(
λgs − 0.2

)
+
(
eL + ep

)
.
A
W

(20) 

W is the cross-sectional modulus, α is the imperfection factor 
depending on the buckling curve; in this case, it is equal to 0.34 (cor
responding to buckling curve b). 

ϕ =

̅̅̅̅
1
ke

√

.0.5
[
ke + η.ke + λ2

gs

]
(21)  

ke is the ratio between Nult to Npl, and for this research, it is always equals 
to 1 as all sections are subjected to pure compression. 

χgs =

̅̅̅̅̅̅
1
ke

√
⎡

⎢
⎣

1

ϕ +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

ϕ2 − λ2
gs

√

⎤

⎥
⎦ (22) 

The value of χgs is multiplied by the plastic resistance to obtain the 
interaction buckling resistance of the box-section columns. 

2.3. Executed research strategy 

The literature review shows that the interaction behaviour between 
global and local buckling needs further investigation as the current 
design procedures are usually underestimating the capacity of steel box- 
section columns under pure compression [5,6,16]. The weakness of all 
the previous numerical investigations is in consideration of the local 
imperfections because there are no reliable results regarding the appli
cable imperfection magnitude. The applicable global imperfections and 
residual stresses for box-section columns are mainly agreed upon and 
accepted by researchers in the past. However, for the local imperfec
tions, reliable values fitting to the buckling curves are just currently 
developed by the authors [7], which results are applied here for the 
interaction buckling resistance calculation. A further weakness of the 
previous analytical investigations is using the Winter-type buckling 
curve of the EN 1993-1-5 for the local buckling resistance calculation, 
which is proved to be too optimistic for square box-sections. Therefore, 
in the second-generation Eurocodes, a new buckling curve is proposed 
[10] for this specific case. However, the influence of changing the 
buckling curve on the interaction resistance has not been studied before. 
Therefore, in the current research program, a detailed numerical para
metric study is executed using a validated numerical model to investi
gate the interaction buckling behaviour and to determine the accurate 
buckling resistance. Based on the numerical study, an improved resis
tance calculation method is proposed. The following research program is 
executed and presented in the current paper:  

1- A numerical model is developed and validated against laboratory test 
results to determine the buckling behaviour of box-sections columns. 

2- The local buckling capacity of the box-sections is controlled ac
cording to the Annex B curve of the EN 1993-1-5 by imposing the 
actual imperfection back calculated according to the Annex B curve, 
developed by the authors in previous research [7]. It was shown that 
the Annex B curve is giving conservative results for very slender 
sections, therefore, a maximum allowable imperfection of ±b/125 is 
applied, according to European manufacturing tolerance, to achieve 
a more reliable local buckling capacity for welded square box- 
sections. Therefore, as a first step, the local buckling resistance of 
the analysed sections is determined for class 4 sections, and the 

necessary imperfection magnitudes are determined to achieve the 
most accurate buckling resistances.  

3- The global buckling capacity is controlled by imposing a suitable 
global imperfection of L/1000 in case the residual stresses are 
applied, as was shown by different studies to show a reliable solution 
[6]. Therefore, as a second step, a global buckling resistance of non- 
slender cross-sections is determined by investigating the boundaries 
of the interaction buckling behaviour.  

4- An extended numerical parametric study is performed on a wide 
range of global and local slenderness, analysing slender columns 
with slender cross-sections, determining the interaction of global and 
local buckling resistance. Within the numerical model, well- 
established global and local geometric imperfections and residual 
stresses according to ECCS recommendations are applied.  

5- The structural behaviour is analysed, and the differences between 
the current design methods and the obtained results are evaluated 
and discussed.  

6- A fitting technique is used to propose a new formula to estimate the 
interaction buckling resistance of box-sections with high accuracy.  

7- The numerical results are also compared to the previous design 
proposals, and the accuracy of the improved design approach is 
demonstrated. 

3. Numerical model development and verification 

3.1. Numerical model development 

A numerical model is developed using Ansys finite element software 
[17]. Four node thin shell elements are used in the numerical model, 
which is a full shell model, as shown in Fig. 1. Geometrical and material 
nonlinear analyses using imperfections (GMNIA) are used to determine 
the ultimate load of the columns under study. Two master nodes are 
defined and placed in the centre of gravity of the end cross-sections. 
Rigid diaphragms were used to link all the 6 DOFs between the master 
nodes and the nodes at the end cross-sections using rigid member links. 
The movement of one of the master nodes is restricted against trans
lation in (UX, UY, UZ) global directions and restrained against rotation 
along the longitudinal axis (RZ), while the other master node is allowed 
to move in the UZ direction, allowing to apply the compression force on 
the column. 

At first, mesh sensitivity analysis is performed to obtain an appro
priate mesh size yielding accurate results in a reasonable time without 
being numerically expensive, as shown in Fig. 2. A suitable number of 
elements is adopted to ensure an appropriate application of residual 
stress patterns. A mesh sensitivity study is performed for the smallest 
and the largest plate width that will be used in the current study, and one 
example is presented in Fig. 2. The width of the plate of the cross-section 
governs the applied mesh size. Results of the mesh sensitivity analysis 
show that decreasing the mesh size leads to a decrease in the ultimate 
load of the column. This shows the significance of the discretisation 
error check that can be controlled by applying a suitable mesh size to 
yield the accurate ultimate load. For the presented example, 10 mm FE 
size was sufficient. In this case, the error is equal to 0.1% from the 
smallest possible analysed mesh size. For all other cases, the applied 
element number has been regulated to keep the same width-to-element 
number ratio. 

Imperfections exist naturally in plates due to the fabrication and 
manufacturing processes. In the current study, local imperfection is 
modelled manually through modification of the perfect shape of the 
specimens. As the authors have found in previous research [7] based on 
a numerical parametric study, the first buckling mode leads to the lowest 
resistance. Therefore, the first buckling mode is modelled and consid
ered as the dominant failure mode for local buckling. The modelling of 
the first buckling mode is done by defining the shape of the local 
imperfection as a continuous half sin-waves equals to the integer num
ber that is found by dividing the length (L) of the plate by its width (b). 
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These half sin-waves are applied on each one of the columns along the 
longitudinal axis of each plate, with amplitudes having opposite signs on 
the adjacent sides. The shape of the local imperfection is defined in both 
directions (longitudinal and transversal) according to Eq. (23), and the 
shape of the global imperfection is defined according to Eq. (24), as 
shown in Fig. 3. 

UF
L,Y = Uamp,loc.sin

(
π.Nw.(i − 1)

Nc

)

(23)  

UG,Y = Uamp,glob.sin
(

π.(i − 1)
Nc

)

(24) 

Where Uamp,loc is the amplitude of the local imperfection (changed 

Fig. 1. a) Local, b) global, and c) interaction definitions of imperfections.  

Fig. 2. The result of a mesh sensitivity analysis.  

Fig. 3. Shape of local [7] and global imperfections.  

M. Radwan and B. Kövesdi                                                                                                                                                                                                                   



Journal of Constructional Steel Research 194 (2022) 107334

7

during the numerical parametric study), while Uamp,glob is the amplitude 
of the global imperfection (L/1000). Nc is the number of cross-sections 
defined along the length to model the different half sin-waves, Nw is the 
number of half-sin waves along the length of the column (which is equal 
to the length L over the width b), i is the integer of the loop that goes 
from 1 to Nc + 1. The imperfections from Eq. (23–24) were added or 
subtracted to/from the proper coordinate of the defined nodes to model 
the imperfections at each node for each side of the column, depending 
on the sign of the imperfection and the location of the node. The full 
model for the three types of buckling is shown in Fig. 1, showing the 
different applied imperfections for global and local and their 
combination. 

3.2. Applied material model 

Two different material models are used for NSS and HSS materials, as 
they have different properties and behaviours. A quad-linear material 
model is used for NSS, as given by Eqs. (25)-(30) according to prEN 
1993-1-14 [10] and presented in Fig. 4, is applied. This material model 
is accurately able to capture the yield plateau and the strain hardening 
behaviour of normal strength steel as proposed by Gardner et al. using a 
large database of coupon tests [18]. 

σ(ε) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Eε, ε ≤ εy

fy, εy < ε ≤ εsh

fy + Esh(ε − εsh), εsh < ε ≤ C1 εu

fyC1εu +
fu − fyC1εu

(εu − C1εu)
(ε − C1εu), C1 εu < ε ≤ εu

(25)  

Esh =
fu − fy

C2εu − εsh
(26)  

εsh = 0.1
fy

fu
− 0.055 but 0.01 ≤ εsh ≤ 0.03 (27)  

εu = 0.6
(

1 −
fy

fu

)

, but 0.06 ≤ εu < A (28)  

C1 =
εsh + 0.25(εu − εsh)

εu
(29)  

C2 =
εsh + 0.4(εu − εsh)

εu
(30) 

To be able to use this model in Ansys APDL, different coefficients are 
needed, including the yield strain εy = fy/E, strain hardening strain εsh, 
the strain hardening modulus Esh, A = 0.2 which is the elongation after 
fracture defined according to material specification, C1 “cut-off” strain 
coefficient defined to prevent over-predictions strength, and C2 is 
defined in Eq. (26) to determine the slope of strain hardening Esh. The 
calculated parameters for the steel grades under study are summarized 
in Table 1. 

The Ramberg-Osgood-type material model, which is a nonlinear 
elastic-plastic material model using strain hardening, is applied in the 
numerical model to simulate the behaviour of HSS material according to 
Eq. (31). Throughout this study, the factor n = 14 is used, which was 
determined by different coupon tests available in the international 
literature [19]. A modulus of elasticity of E = 210,000 and a Poisson’s 
ratio v= 0.3 are used for all tests in this study. The yield and the ultimate 
strengths of the HSS material are summarized in Table 2. The charac
teristic behaviour of the three steel grades is shown in Fig. 5. 

ε =
σ
E
+ 0.002

(
σ
fy

)n

(31)  

3.3. The applied residual stress model 

Different studies have shown the correlation between the buckling 
capacity and the effect of both the residual stresses and imperfections. As 
for the slender plates, the effect of geometrical imperfections surpasses 
the influence of residual stress. The effect of residual stress still has a 
significant influence on the buckling capacity of columns under 
compression as it can cause loss of stiffness and premature yielding. 
Therefore, an accurate residual stress model must be carefully chosen to 
give an accurate estimation of the buckling capacity of the columns. 
Different research programs proposed different residual stress models 
[20,21]. A typical distribution of residual stress for welded box-sections 
that is reliable and leads to a good estimation of buckling resistance is 
shown in Fig. 5, (σt) and the positive sign represents tensile residual 
stress, while (σc) and the negative sign represents compressive residual 
stress. This model is widely used in the international literature according 
to the recommendations of the ECCS (European Convention for 
Constructional Steelworks) [9] and prEN1993-1-14 [10]. The details of 
this model are available in Table 3. For NSS, the tensile stress is taken 
equal to the yield strength of the section and the compressive stress is 
taken according to Table 3, a and b are the parameters defining the 
distance of each plate subjected to tensile stresses near each corner of the 
section. The H/t ratio for the vast majority of sections under this study is 
larger than 40 to study class 4 slender sections. 

Different studies have shown that the compressive residual stresses 
in the HSS are less severe than NSS due to different reasons such as better 
fabrication processes and better welding techniques [20,21]. Therefore, 
a value of 0.13*355 MPa is taken as compressive residual stress for all 
HSS sections and fy as tensile residual stress. The tensile zone is deter
mined based on the equilibrium between tensile and compressive re
sidual stresses. 

Fig. 4. NSS applied material model according to prEN 1993-1-14 [10].  

Table 1 
The applied material model parameters.   

S235 S355 S460 

fy 235 355 460 
fu 360 510 540 
εsh 0.010 0.015 0.030 
εu 0.208 0.182 0.089 
C1 0.287 0.310 0.505 
C2 0.430 0.448 0.604 
Esh 1578 2310 3407 
C1 ⋅ εu 0.060 0.057 0.045 
fC1εu 313 451 510  

Table 2 
Material properties for different types of steel.  

Steel grade Yield strength (fy) (MPa) Ultimate strength (fu) (MPa) 

S500 500 625 
S690 690 850 
S960 960 1115  
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3.4. Validation of the numerical model 

The accurate behaviour of the numerical model can be verified by 
comparison with experimental results. This comparison includes both 
the behaviour of column under buckling, the ultimate force that is ob
tained during the tests as well as the axial deformations. To make sure 
that the numerical model accurately simulates the real structural 
behaviour and align with the experimental results, the measured ma
terial and geometrical properties are used in the numerical model. In the 
current study, four different research programs are used to validate the 
established numerical model. Approximately four samples were taken 
from each research program, as shown in Table 4. The first set consists of 
four samples that are taken from Chiew’s research work [15]; this set is 
made of S235 steel welded box-sections with the same section width of 
80 mm and varying the length of the column to produce different global 
slenderness ranging from λg = 0.37 to 0.59 and a constant local 

slenderness of λp=0.71. The second set is taken from Lu Yang research 
program [12] consists of two rectangular cross-sections with relatively 
large local slenderness ratios λp = 1.5 − 1.78 . The third set contains 
S500 steel grades that are taken from Schillo’s research program [5], 
box-sections with a nominal width of 160 mm was used with different 
column lengths to produce different global slenderness ranging from 
λg = 0.33 to 0.44 and an approximately constant local slenderness of 
λp=1.06. The fourth set is taken from Khan’s research program inves
tigating S700 steel grade and different box-section widths and lengths to 
cover larger global and local slenderness ranges [11]. The fourth set is 
again taken from Schillo’s research program [5], studying S960 steel 
grade with global slenderness ranging from λg = 0.15 to 0.42 and local 
slenderness of λp=1.25. The full details of each test are included in 
Table 4, showing the steel grade, the global slenderness λg, the local 
slenderness λp, section width b, height h, thickness t, length L, yield 
strength fy, ultimate strength fu, the local imperfection scaling factor floc 
applied in the numerical model as (b/floc),the ultimate load from the 
experiments Fu,exp, and the ultimate load from numerical calculations Fu, 

num. Validation of the model against the experimental tests is done using 
the previously presented material and residual stress models, depending 
on the measured material properties. All the measured values are 
applied according to the experimental research programs. The global 
imperfection that is utilised in this process is L/1000, with the actual 
combinations of geometrical local imperfections and residual stress, 
developed by the authors in a previous research program [7]. The 
applied actual imperfections are shown in Table 4, considering the 
physically possible imperfection of ±b/125 according to EN 
1090–2:2018 Table B.4 No. 3 [22]. Two samples are shown in Fig. 6 for 
the comparison between the numerical and the experimental results. 
The figure on the left shows a test result taken from Khan’s research 
program [11]. The figure on the right-hand side is from Schillo’s 
research program [23]. Both numerical results show a very reliable 
estimation of the behaviour and the buckling capacity of the experi
mental tests that is going an interaction buckling for the first case and 
local buckling for the second case, which proves the applicability and 
reliability of the numerical model. The interaction buckling mode is 
shown in Fig. 7, showing both the deformation as well as the Von-Mises 
stresses for a specimen taken from Khan’s research program 
/S700–150–4.92-2512/ [11]. 

The results in Table 4 prove the numerical model is providing reli
able results, as the numerical tests are done with this set of combinations 
of global and local imperfections as well as residual stresses. It is also 

Fig. 5. The applied residual stress model for welded box-section columns [10].  

Table 3 
Parameter values for residual stress model according to ECCS [9].  

H/t Welding type σrt/fy σrc/fy a b 

10 – 1.0 − 0.60 0 – 
20 Heavy weld 1.0 − 0.82 3 t 3 t 
20 Light weld 1.0 − 0.29 1.5 t 1.5 t 
40 Heavy weld 1.0 − 0.29 3 t 3 t 
40 Light weld 1.0 − 0.13 1.5 t 1.5 t  

Table 4 
Results of the model validation.  

Steel grade λg λp b (mm) h 
(mm) 

t 
(mm) 

L 
(mm) 

fy 

(MPa) 
fu 

(MPa) 
Loc. 
Imp. Sca. Fa. (floc) 

Fu, exp 

(kN) 
Fu, num 

(kN) 
Fu,num

Fu,exp  

S235 0.37 0.71 80 80 2 1100 261 360 2130 159 150.75 0.95 
S235 0.47 0.71 80 80 2 1500 261 360 2130 140 141.69 1.02 
S235 0.59 0.71 80 80 2 1850 261 360 2130 143 134.51 0.94 
S235 0.50 0.71 80 80 1.4 1850 261 360 2130 72 72.31 1.01 
S235 0.21 1.78 251.4 491 5.44 4378 309 458 125 1287 1268 0.98 
S355 0.24 1.51 209.5 403 5.82 3582 385 545 125 1456 1533 1.05 
S500 0.33 1.06 159.75 159.5 4.1 1599 562 640 633 880.3 948 1.08 
S500 0.37 1.07 160 159.25 4 1800 562 640 606 883.9 925 1.05 
S500 0.40 1.08 160 159 4 2000 562 640 599 858.2 899 1.05 
S500 0.44 1.08 159.25 159.25 4 2198 562 640 600 828.9 889 1.07 
S700 0.28 1.22 199 199 4.9 1512 762 819 147 1733 1735 1.00 
S700 0.45 0.90 149 149 4.9 1512 762 819 515 1800 1698 0.94 
S700 0.57 0.74 125 125 4.9 1512 762 819 400 1659 1593 0.96 
S700 0.45 1.22 199 199 4.9 2512 762 819 125 1598 1626 1.02 
S700 1.7 0.42 75 75 4.9 2512 762 819 400 467 439 0.94 
S700 1.75 0.58 99.4 99.4 4.9 3512 762 819 400 499 542 1.08 
S960 0.15 1.25 137 137 3.9 470 980 1024 125 1444.1 1298 0.90 
S960 0.23 1.17 136 136 4.2 728 980 1024 178 1400.4 1383 0.99 
S960 0.42 1.24 137 137 4 1299 980 1024 132 1390.5 1223 0.88  
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worth mentioning that some tests might have some uncontrolled ec
centricities during load application that cause lower or higher capacity 
compared to the numerical model, where only pure compression and 
initial geometric imperfections were modelled. 

4. Results of the numerical parametric study 

4.1. Parameters used in the numerical parametric study 

The numerical parametric study aims to create a large database to 
study the interaction buckling and propose a design formula for columns 
under pure compression made of normal and high strength steel welded 
box-section columns. The analysed cross-sections have b/t ratio larger 
than 40 with a local slenderness ratio (λp) larger than 0.7 and global 
slenderness ratio (λg) larger than 0.2. Only square box-section columns 
are investigated within the current parametric study covering a wide 
range of width-to-thickness ratios and cross-section dimensions. The 
local slenderness ratio is changed between 0.6 and 2.8. The global 
slenderness ratio is changed between 0.1 and 2.6. The width of the 
analysed panels is varied between 200 mm to 450 mm. The thickness of 
the plates is changed between 2.5 and 12 mm with 0.5 mm increment 
resulting in different local slenderness ratios. The lengths of the columns 

are varied between 750 mm and 20,000 mm, resulting in a different 
global slenderness ratio for each cross-section. The parametric study and 
the evaluation of the results are divided into two parts, the first part is 
concerned with NSS (S235, S355, and S460) material, and the second 
part is considering HSS (S500, S700, and S960) materials, so a total of 
six different steel grades are covered in the current study. The applied 
geometries, a combination of b = h and t values are given in Table 5. 

More than 2000 GMNI analyses are performed in the current 
research program, investigating 280 different sections to determine the 
interaction buckling resistance of columns under pure compression. 
Within the numerical parametric study, at first, the two boundaries: (i) 
pure local and (ii) pure global buckling, are investigated separately to 
prove the applicability of the numerical model for both failure modes 
and check the resistance models. Then the interaction behaviour is 
analysed on the same numerical model to improve the interaction 
buckling resistance model. 

4.2. Local buckling behaviour 

The local buckling behaviour was studied previously by the authors 
in a more detailed manner, results are published in a separate paper [7]. 
Here only the final results and the calculated buckling reduction factors 

Fig. 6. Comparison of measured and computed load-deformation curves: a) Khan’s test specimen S700–150–4.92-2512 [11] and b) Schillo’s test specimen 
S960–140–4-470 [23]. 

Fig. 7. Obtained failure mode for interaction buckling at the final loading step of Khan’s test specimen S700–150–4.92-2512 [11]; a) deformed shape, b) Von- 
Mises stresses. 
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are presented compared to two buckling curves, which are found as the 
more accurate and reliable design resistance models currently. Fig. 8 
shows the local slenderness ratio on the horizontal axis and the buckling 
reduction factor on the vertical axis. The two buckling curves are (i) the 
buckling curve of EN1993-1-5 Annex B, which is proposed for the square 
box-section columns by the Eurocode and (ii) the buckling curve 
developed by Schillo [5], which is found as the most reliable buckling 
curve currently for this column type [7,24,25]. Previous investigations 
of the authors [7] were executed to determine the necessary imperfec
tion magnitude for local buckling, which local imperfection together 
with residual stresses and considering the manufacturing tolerances 
would lead to accurate local buckling resistance. The local buckling 
resistance considered to be accurate has been checked and statistically 
evaluated by Schillo in 2017 [5]. Large test database from all over the 
world for NSS and HSS box-sections columns are gathered by Schillo. 
That database has been statistically evaluated and a reliable design 
buckling resistance curve has been proposed. This curve can be seen by 
red in Fig. 8. Applying the previously developed combinations of im
perfections and residual stresses by the authors [7], the obtained results 
prove the applied numerical model provides close resistances to this 
accurate buckling curve and provides reliable buckling resistances 
fitting to the analytical design approach. 

4.3. Global buckling behaviour 

Cross-sections not sensitive to local buckling are also investigated, 
and the flexural buckling resistances are determined by the numerical 
model. The numerical model contained L/1000 geometric imperfections 
and residual stresses. Results are presented in Fig. 9, proving that the 
flexural buckling resistance provided by the numerical model is close to 
the buckling curve b of the EN 1993-1-1, in which the buckling curve is 
tabulated for this column type. 

4.4. Interaction between local and global buckling 

After proving the numerical model fits the laboratory test results and 
provides reliable buckling resistances for local as well as for global 
buckling, the interaction buckling resistances are determined for all 
column geometries listed in Table 5. 

At first, the obtained buckling resistances are compared to the cur
rent resistance model of the EN 1993-1-1 and EN 1993-1-5 design rules. 
Fig. 10 shows the comparison between the calculated buckling resis
tance according to Eurocode on the horizontal axis calculated using the 
Winter-type buckling curve available in the EN1993-1-5 [2] and the 
numerically computed buckling resistance on the vertical axis. It can be 
seen that the average value of the resistances fits quite well with the 
Eurocode-based calculation results. However, some results overestimate 
the buckling resistance, while others underestimate it with a large 
scatter. It is known from previous research results that; Winter-type 
curve is overestimating the local buckling resistance (giving average 
value and not lower characteristic resistance values) as shown by 
different previous studies. The current results prove, it also has a sig
nificant effect on the interaction resistance as well and the buckling 
curve modification is important for the interaction buckling case as well. 

Therefore, a similar comparison is executed by modifying the local 
buckling resistance curve to the Annex B curve, which will be given in 
the second generation EN 1993-1-5. Fig. 11 shows the comparison of the 
numerical results to the modified Eurocode-based buckling resistance. It 
can be noticed that all the calculated resistances are on the safe side. 
However, a similar scatter remained, as obtained in Fig. 10. It shows that 
the real physical behaviour is not captured, and the interaction buckling 
is not correctly considered within the standardized resistance calcula
tion process, which might be revised and improved. In order to achieve a 
better fit and see the differences, all ratios between the standardized and 
numerically calculated buckling resistances are calculated and pre
sented in Fig. 12, depending on the global and local slenderness ratio on 
a three-dimensional surface. Fig. 13 shows the results depending only on 

Table 5 
Geometrical properties of the analysed cross-sections.   

b = h [mm] thickness values [mm] Lengths 

1 200 2.0; 2.5; 3.0; 3.5; 4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 

750;1750;2500;3000;3750;5000; 
6250;7500;8750;10,000;11,250; 
12,500;15,000;17,500;20,000 

2 250 2.0; 2.25; 2.5; 2.75; 3.0; 3.25; 3.5; 4.0; 5.0; 6.0; 7.0; 8.0 
3 300 2.75; 3.0; 3.5; 4.0; 4.25; 4.5; 4.75; 5.0; 5.25; 5.5; 5.75; 6.0; 6.5; 7.0; 8.0; 9.0 
4 350 2.75; 3.0; 3.5; 4.0; 4.5; 5.0; 5.5; 6.0; 6.5; 7.0; 8.0; 9.0; 10.0 
5 400 3.5; 3.75; 4.0; 4.25; 4.5, 4.75; 5.0; 5.5; 6.0; 6.5; 7.0; 8;0 
6 450 3.75; 4.0; 4.25; 4.5; 4.75; 5.0; 5.25; 5.5; 5.75; 6.0; 6.5; 7.0; 8.0; 9.0; 10.0; 11;0 

All geometries are investigated using steel grades of: 
NSS: S235, S355, S460; HSS: S500; S700; S960 

Fig. 8. Numerically calculated local buckling resistances compared to buckling curves.  
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Fig. 9. Numerically calculated global buckling resistances compared to buckling curves.  

Fig. 10. Comparison of the numerically calculated and the Eurocode-based resistance model considering the Winter-type buckling curve in the local buckling 
resistance calculation. 

Fig. 11. Comparison of the numerically calculated and the Eurocode-based resistance model considering the Annex B curve in the local buckling resistance 
calculation. 
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Fig. 12. Relationship between the ratio of numerical results to Eurocode-based interaction buckling resistance considering Annex B curve for local buckling 
resistance – 3D diagram. 

Fig. 13. Relationship between the ratio of numerical results to Eurocode-based interaction buckling resistance considering Annex B curve for local buckling 
resistance – 2D diagram. 

Fig. 14. The normalized capacity of a welded box section with respect to the global slenderness range for two slender sections with two different local slenderness.  
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the global slenderness ratio and indicating the maximum difference 
between the numerically and analytically calculated resistances. These 
plots highlight that the ratios for the pure local and global buckling are 
close to 1.0. However, in the interaction domain, the difference can 
reach up to 50–70% strongly depending on the local and global slen
derness ratio. 

The largest difference is obtained within the slenderness ratio ranges 
of λGL = 1.0–2.0 and λp = 1.0–1.5. This is the slenderness range where 
the residual stresses have the most significant effect on the buckling 
resistance, and this range is often used in the practical design. It has been 
previously shown by Degée et al. [6] that previous numerical calcula
tions considered the residual stresses twice using equivalent geometric 
imperfections for the global and local buckling as well. The current 
study solves this issue and determines the correct resistances with the 
numerical model, making the buckling resistance model improvement 
possible. Results also show that the difference between the numerically 
and the analytically calculated resistances does not depend on the yield 
strength for steel grades of S235 – S460. 

To show the obtained differences more understandably, a compari
son is made for two cross-sections with significantly different local 
slenderness ratios (λp = 0.676 and λp = 1.8). The obtained results are 
compared and presented in Fig. 14 in the function of the global slen
derness ratio. The vertical axis shows the normalized capacity calculated 
by the modified Eurocode-based resistance model, and the horizontal 
axis shows the global slenderness ratio. It can be seen that the difference 
between the applied buckling curve for the interaction behaviour and 
the numerical resistances significantly depend on the local as well as on 
the global slenderness, which should be considered more accurately in 
the improved resistance calculation method. The difference between the 
numerical calculation and the analytical solution is significantly larger 
for larger local slenderness values, which proves that the combination of 
the local and global buckling behaviour has a significant impact on each 
other. 

5. Comparison with the available methods in the literature 

In this section, three previously developed resistance models are 
compared to the numerical results. The three resistance models are 
proposed by Schillo [23], Degée [6] and Young [16]. The proposed 
method of Schillo is developed for high strength steel columns to take 
the effect of the interaction buckling and implement the loss of stiffness 
caused by local buckling in the calculation as an equivalent local 
imperfection factor ep. The comparison of the numerical results to the 
analytically calculated values is presented in Fig. 15. Results show that 

Schillo’s [23] resistance model, which uses the Annex B curve to esti
mate the effective area of the sections, generates reliable results for a 
large parameter range, follows the trend of the buckling resistance and 
fits the average resistance values. However, the obtained scatter within 
the results is still significant. 

The design proposal of Degée et al. was developed for the local 
slenderness range λp= 0.7 to 1.1 and the global slenderness of λg=0.4 to 
1.4, while in this research, it was tested against a larger slenderness 
range, up to 2.7 in local slenderness and up to 2.6 in global slenderness. 
To check the validity of the Degée’s resistance model against the per
formed numerical parametric study, a comparison was made and shown 
in Fig. 16. 

From the obtained results, it can be concluded the proposed equation 
follows the trend of the numerical calculations. It presents an average 
solution where some results are overestimated, and others under
estimated. Additionally, this method has also a significant scatter 
compared to the numerical results. This can be due to the fact that 
different proposed combinations of residual stresses and geometric im
perfections were adopted in the numerical study, which was L/1000 for 
global imperfection and b/1000 for local imperfection with residual 
stresses. In contrast, in the current research, a value of L/1000 for global 
imperfection and the actual imperfection based on Annex B curve for 
local imperfections is applied with residual stresses. The differences 
within the applied imperfections can lead to different buckling re
sistances. These results also show the importance of the local imper
fection in the numerical analysis that can lead to quite large differences 
in the interaction buckling resistance. 

Fig. 17 shows the same comparison to Young’s resistance model. 
Results prove this method shows a large scatter compared to the nu
merical model and comparing to the previous design models, where the 
majority of the results lie on the safe side but with large differences in 
the obtained results. A clear trend can be seen in Fig. 17 that Young’s 
method yields a buckling capacity of approximately 50–60% of the 
numerically calculated values, as shown by the black line on the graph. 

6. Improved resistance model 

Observations between the numerical and analytical resistances pre
sented in the previous sections, especially shown in Figs. 12-13 proves 
that the modification factor for the local or global buckling reduction 
factors should depend on both the local and global slenderness. Previous 
modifications mainly applied a modification factor depending on the 
local slenderness and did not consider the global buckling behaviour. 
Therefore, in the current study, an improved resistance model is 

Fig. 15. Comparison of Schillo’s resistance model and the numerical results.  
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developed containing a modification factor depending on the global and 
local slenderness ratios as well. 

The results of the numerical study were used to create the best fit 
resistance function. The authors wanted to keep the general calculation 
procedure of the Eurocode, and Eq. (10) is extended by a new modifi
cation factor, which depends on the global and local slenderness of the 
column under investigation. The authors also wanted to eliminate the 
iterative way of the resistance calculation. Therefore, the interaction 
buckling resistance can be determined within one step using the local 
and global buckling resistances and a new modification factor (fmod). The 
new design process is given by Eqs. (32)–(34). The modification factor 
(fmod) depends only on the local (λp) and global (λg) slenderness ratio. For 
better understanding ability, the slenderness effects are separated into 
two equations (Eqs. (33)–(34)). The local buckling modification factor 
(fmax) can be calculated by using Eq.(34), taking into account the effect 
of local buckling depending on the local slenderness ratio 

(
λp
)
. The 

interaction modification factor (fmod) can be calculated by using Eq. 
(33), taking into account the interaction effect through the consider
ation of the global slenderness (λg) and fmax. 

Within the improved resistance model, the global buckling reduction 

factor χis calculated using the column buckling curve “b” according to 
EN1993-1-1 [1]. The effective area Aeff is determined using the Annex B 
buckling curve of EN1993-1-5 [2]. It is worth mentioning that the cur
rent proposal is valid for both normal and high strength steel, as it will 
be shown later in the following section. 

Nb,int,Rd = fmod⋅χ⋅
Aeff .fy

γM1
= fmod⋅χ⋅

ρ A fy

γM1
(32) 

Where: 

fmod =

⎧
⎨

⎩

1, λg ≤ 0.4
1 +

(
λg − 0.4

)
⋅(fmax − 1), 0.4 < λg < 1.4

fmax, λg ≥ 1.4
(33)  

fmax =

⎧
⎨

⎩

1, λp ≤ 0.67
1 +

(
λp − 0.67

)
⋅1.36, 0.67 < λp < 1

1.45, λp ≥ 1
(34) 

χ reduction factor related to global flexural buckling according to 
EN 1993-1-1, 

ρ reduction factor related to local plate buckling according to EN 

Fig. 16. Comparison of Degée’s resistance model and the numerical results.  

Fig. 17. Comparison of Young’s resistance model and numerical results.  
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1993-1-5 
– in the present study Annex B buckling curve is used in the Aeff 

calculation, 
λp local slenderness ratio according to Eq. (8), 
λg global slenderness ratio according to Eq. (5) without considering 

Aeff. in the global buckling behaviour. 
It should be mentioned the new design model has a clear physical 

background and fits the boundaries of global and local buckling cases, 
for which the current design approaches are proved safe-sided and 
reliable. Therefore, in the improved design model if λp ≤ 0.67 or λg ≤

0.2 the modification factor is 1.0, leading to the pure flexural buckling 
case or the pure local buckling cases, respectively. The maximum 
improvement within the interaction buckling resistance is achieved in 
the parameter range where λp ≥ 1.0 and λg ≥ 1.4, meaning that for 
columns having large local and global slenderness ratios, the interaction 
has the largest effect, and the largest modification factor is required to 
consider it. Within the intermediate slenderness regions, the influence of 
the interaction is more or less linear and clearly depends on both the 
local and global slenderness ratios, as considered by Eqs. (33)–(34). 
Visualization of the modification factor depending on the local and 
global slenderness ratios is given in Fig. 18. Within the calculation 
process, the local and global buckling reduction factors and their 
calculation methods are completely separated; no interaction is 
considered in the χ and ρ calculation. The interaction effect is entirely 
considered in the modification factor (fmod). This separation technique 
improves the ease-of-use of the design process and ensures highly ac
curate results, as proved in the following. 

6.1. Validation of design proposal for NSS grades 

The proposed design method is compared to the numerically calcu
lated buckling resistances; the comparison is shown in Fig. 19 for normal 
strength steel grades, where the horizontal axis represents the calculated 
resistance according to Eqs. (32)–(34), while the vertical axis represents 
the numerical results. It can be seen that almost all the points lie above 
the diagonal line meaning the safe-sided region. It can be seen that the 
proposed method is always giving a reliable minimum estimation of the 
resistance with limited scattering compared to Eurocode resistance 
calculated using the Annex b curve. This shows that the proposed fit is 
significantly reliable, as it yields safe resistances compared to the ob
tained resistance of the numerical analysis, 

6.2. Validation of design proposal for HSS grades 

Results show that the proposed resistance model is also valid for 
columns made of HSS grades as well. Comparison of the numerical and 
analytical resistances are summarized in Fig. 20. It is worth mentioning 
that an upgrade from buckling curve “b” to curve “a” in Eq. (32) would 
be feasible for S960 to achieve a more accurate fit as different studies 
proposed previously. 

The statistical evaluation of the obtained results is also executed, and 
the relevant values are given in Table 6. The mean values, standard 
deviation and coefficient of variation (CoV), the minimum and the 
maximum values of the results are shown in Table 6. The given values 
are calculated for the ratio of the resistances determined by the devel
oped enhanced analytical model, or by the Eurocode-based original 
design equations using the Winter-type or Annex B buckling curve, 
divided by the numerical results. Results show the improvement ach
ieved by the proposed method to decrease the scattering of the results 
compared to the cases of applying the Eurocode-based approach using 
the Winter-type curve or Annex B curve. As it can be seen, the developed 
model shows a better mean value and a smaller CoV compared to the 
current Eurocode based solutions, irrespective of the buckling curves. 
The developed model is showing the best results with the least scattering 
for NSS. Although the statistical measures for the HSS show larger 
scattering compared to NSS, the proposed model is still valid and 
showing a good agreement with the numerical tests and nearly all the 
results are on the safe side. 

7. Conclusions 

Previous research papers criticised the design method of EN1993-1-1 
[1] and EN 1993-1-5 [2] regarding the local and global interaction 
buckling resistances for welded box-section columns subjected to pure 
compression. Therefore, the current research work investigated the 
interaction buckling capacity of welded square box-section columns 
under pure compression utilising a GMNIA technique and FEM based 
design approach to accurately determine the interaction buckling 
resistance of slender columns. The executed research work included 
developing a numerical model that can capture the combined behaviour 
of both global and local buckling and can estimate the interaction 
buckling resistance. The numerical model has been extensively vali
dated and verified by the authors for the local, global and interaction 
buckling capacities separately. A new approach is applied in the nu
merical model to consider accurate geometric imperfections and resid
ual stresses to eliminate the duplicated effect of residual stresses, which 

Fig. 18. Proposed modification factor depending on the local and global slenderness ratios.  
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importance has been highlighted in previous research works. Another 
improvement in the current research work is that the buckling curve for 
local buckling has been previously changed for welded square box- 
section columns, and it also has an effect on the interaction buckling 
resistance, which was not tested and analysed before. The current 
investigation considered the new buckling curve in the interaction 
buckling resistance calculation and approved its applicability and high 
accuracy as well. 

A numerical parametric study was carried out using the verified and 
validated numerical model investigating a large range of global and 

local slenderness values to create a resistance database, which can be 
used to evaluate and improve the previously developed buckling resis
tance models. Using the numerical calculation results, the differences 
between the previous resistance models and the numerical resistances 
are evaluated and the correct trends depending on the local and global 
slenderness are determined. Based on the numerical calculations, an 
improved resistance model is developed given by Eqs. (32)–(34) 
providing highly accurate resistances for the interaction buckling 
problem. New improvements in the proposed equations are the 
following: 

Fig. 19. Comparison of the numerical and analytical buckling resistances for NSS.  

Fig. 20. Comparison of the numerical and analytical buckling resistances for HSS.  

Table 6 
Statistical measures of the numerical results.   

NSS HSS  

Dev. Model/Num. Model Winter/Num. Model Annex b/Num. Model Dev. Model/Num. Model Winter/Num. Model Annex b/Num. Model 

Mean 0.946 0.936 0.799 0.899 0.899 0.750 
Standard Deviation 0.056 0.150 0.132 0.090 0.150 0.137 
CoV 0.060 0.160 0.165 0.100 0.167 0.183 
Min 0.848 0.645 0.516 0.781 0.537 0.422 
Max 1.109 1.204 1.033 1.091 1.196 1.036  
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- Calculation of the global and local buckling reduction factors are 
separated, and the design calculations follow the rules of the 
Eurocode, 

- The interaction of local and global buckling is considered by a uni
versal modification factor (fmod) considering both the local and 
global slenderness ratio,  

- No iteration is necessary within the design process due to the cross- 
sectional changes. 
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Methodology, Software, Validation, Formal analysis, Investigation, Re
sources, Data curation, Writing – review & editing, Visualization, Su
pervision, Project administration, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgement 

The presented research program has been financially supported by 
the Grant MTA-BME Lendület LP2021-06 / 2021 “Theory of new gen
eration steel bridges” program of the Hungarian Academy of Sciences 
and Stipendium Hungaricum Scholarship. Both grants are gratefully 
acknowledged. 

References 

[1] C.E. de Normalisation, EN 1993-1-1 (2005) (English): Eurocode 3: Design of Steel 
Structures - Part 1–1: General Rules and Rules for Buildings, British Standards 
Institute, London, 2005. https://www.phd.eng.br/wp-content/uploads/2015/12/e 
n.1993.1.1.2005.pdf. 

[2] C.E. de Normalisation, EN 1993-1-5: 2006 Eurocode 3-Design of Steel Structures, 
Part 1.5: Plated Structural Elements, British Standards Institute, London, 2006. 
https://www.phd.eng.br/wp-content/uploads/2015/12/en.1993.1.5.2006.pdf 
(accessed May 20, 2021). 

[3] X. Cao, R. Zhong, Y. Xu, C. Cheng, S. Liu, Z. Chen, S.-E. Kim, Z. Kong, Local–overall 
interactive buckling behaviour of 800 MPa high-strength steel welded H-section 
members under axial compression, Thin-Walled Struct. 164 (2021), 107793, 
https://doi.org/10.1016/j.tws.2021.107793. 

[4] H.X. Yuan, Y.Q. Wang, L. Gardner, Y.J. Shi, Local–overall interactive buckling of 
welded stainless steel box section compression members, Eng. Struct. 67 (2014) 
62–76, https://doi.org/10.1016/j.engstruct.2014.02.012. 

[5] N. Schillo, M. Feldmann, A. Taras, Local and global buckling of box columns made 
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