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Abstract 

Spatial lag dependence in a regression model is similar to the inclusion of a serially 
autoregressive term for the dependent variable in a time-series context. However, unlike 
in the time-series model, the implied covariance structure matrix from the spatial 
autoregressive model can have a very counterintuitive and improbable structure. A single 
value of spatial autocorrelation parameter can imply a large band of values of pair-wise 
correlations among different observations of the dependent variable, when the weight 
matrix for the spatial model is specified exogenously. This is illustrated using cigarette 
sales data (1963–1992) of 46 US states. It can be seen that that two "close" neighbours can 
have very low implied correlations compared to distant neighbours when the weighting 
scheme is the first-order contiguity matrix. However, if the weight matrix can capture the 
underlying dependence structure of the observations, then this unintuitive behaviour of 
implied correlation is corrected to a large extent. From this, the possibility of constructing 
the weight matrix (or the overall spatial dependence in the data) that is consistent with the 
underlying correlation structure of the dependent variable is explored. The suggested 
procedures produced very positive results indicating further research. 

Keywords: Spatial Dependence, Variance-Covariance matrix, Implied Correlation 
Structure, Weight Matrix. 

Introduction 

The key idea of modelling spatial data is that a set of locations can characterise the 
dependence among the observations. One of the many general ways to do this is to define 
a neighbourhood structure based on the shape of a lattice. Among others, this measures the 
distance between centroids of the regions. Once this spatial dependence structure is 
determined or assumed based on distance (social/economic/physical) or adjacency, models 
resembling time-series autoregressive structures are considered. The two very popular 
models that take into account such spatial dependence structure are simultaneously 
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autoregressive (SAR) and conditionally autoregressive (CAR) models. The SAR and CAR 
models were originally developed by Whittle (1954) and Besag (1974), respectively, 
mainly on the doubly infinite regular lattice. On a regular lattice, these models resemble 
the well-understood stationary time-series model defined on the integers. On an irregular 
lattice, however, which is most common in economic applications, the effect that the 
exogenously defined arbitrary neighbourhood structure and spatial correlation parameter 
have on implied covariance structure is not well understood. Wall (2004) was probably the 
first to carry out a systematic analysis of the impractical nature of the correlation structure 
implied by the SAR and CAR models, and this issue has spurred some further inquiries, 
see for instance Martellosio (2009).  

This paper highlights the problem of implied structure of the SAR model in case of an 
irregular lattice and suggests a possible solution. Although the proposal is for the SAR 
model, it can be easily extended to the CAR model. Section 2 provides a summary of the 
existing literature. Section 3 sets up the notations and states the SAR model. Section 4 
presents a spatial regression example on cigarette sales data on 46 US states where the 
spatial model is compared with ordinary least square case and highlights the unintuitive 
and impractical behaviour of the implied correlation structure when the usual 
neighbourhood matrix is used. The findings reconfirm the results of Wall (2004). Section 
5 first gives the basic idea behind the authors W matrix construction and then estimates W 
using the Levenberg-Marquardt nonlinear optimization procedure. Section 6 demonstrates 
how the developed W matrix helps to correct the implied correlation structure and gives a 
more intuitive result using the same dataset as in Section 4, Section 7 concludes the paper. 

Summary of relevant previous work 

Although the implied correlation structures of the spatial models have such a peculiar 
pattern, it is quite surprising that this issue has received relatively little attention in the 
literature, given that these models are so widely used in a variety of applications. Haining 
(1990) and Besag and Kooperberg (1995) mentioned resulting heteroscedasticity from the 
SAR model with homoscedastic error term. They also pointed out about the unequal 
covariance between regions that are at same distance apart. The very first systematic 
treatment of this problem was probably done by Wall (2004). She provided a detailed 
description of the implied structure of SAR and CAR models, and in particular, considered 
the dependence and covariance structures on an irregular lattice. Using the US state level 
summary data of SAT verbal score for the year 1999, she investigated the relationship 
between the correlation ߩ and the implied pair-wise correlations among the scores of 
various states when W was based on first-order neighbours. The implied spatial correlations 
between the different states using the SAR and CAR models did not seem to follow an 
intuitive or practical scheme. For example, Wall (2004) found that for the SAR model 
Missouri and Tennessee are constrained to be the least spatially correlated states, than 
Tennessee and Arkansas, although all of them are first-order neighbours. Martellosio 
(2009) shed some further light on how the correlation structure of the SAR model depends 
on W and	ߩ and explained this inconsistency using graph theory. He showed that implied 
correlation between two spatial units depends on a particular type of walks (in a graph 
theoretic sense) connecting the units. When |	ߩ| is small, the correlation is largely 
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determined by short walks; however, for large values of |	ߩ|, longer walks have more 
importance. Since ߩ can be estimated only after W has been chosen, one cannot control the 
correlation properties by specifying W. Defining W based on graph, his work explains the 
inconsistency of ranking of implied correlations between pair of locations as ߩ changes.  

The SAR model 

Let ሼyሺA୧ሻ:	A୧ ∈ ሺAଵ …A୬ሻሽ be a Gaussian random process where ሺAଵ …A୬ሻ are n different 
locations. The value of the variable y in location  A୧ depends on the values in its 
neighbouring locations	A୨. One way to model this dependence is by the simultaneous 
autoregressive (SAR) model: 

y=ρWy+Xβ+ε  (1) 

where y is a n×1 vector observation on the dependent variable, ρ is the spatial 
autoregressive parameter, W ≡ ቀ൫w୧୨൯ቁ is n×n spatial weight matrix representing degree 
of potential interactions between neighbouring locations (geographic/economic/social), X 
is n×k matrix of observations on the explanatory (exogenous) variables, β is k×1 vector of 
regression coefficients and ε is a n×1 vector of error term with ε~ሺ0, σଶI୬ሻ.  

Spatial effects are incorporated using the row-standardised weight matrix W. One 
common way to do this is to define ܹ ൌ ሺw୧୨ሻ is 

௜௝ݓ ൌ ൜
1		if	A୧	shares	a	common	edge	or	border	with	region	A୨	ሺi ് jሻ

0		otherwise
ൠ 

The other ways to define the neighbourhood structure W is to express weights as 
functions of the distance between two points or as functions of the length of borders. For 
ease of interpretation, the weight matrix is often standardised so that the elements of each 
row sum to one. Ensuring that all the weights are between 0 and 1, facilitates the 
interpretation of operations with the weight matrix as an averaging of neighbourhood 
values. It also ensures that the spatial parameters of different models are comparable. This 
is not intuitively obvious, but relates to constraints imposed in a maximum likelihood 
estimation framework, specifically the spatial autocorrelation parameter must be in the 
interval [1/߱௠௜௡,1/߱௠௔௫], where ߱௠௜௡ and ߱௠௔௫ are, respectively, the smallest and 
largest eigen values of W [Cliff and Ord (1980)].  For a row-standardised matrix, the largest 
eigen value is always +1, and this facilitates the interpretation of ρ as “correlation” 
coefficient. 

It is easy to see that the implied covariance matrix of y for model (1) is given by  
Var(y) =σ²(I-ρW)-1(I-ρW)'-1  (2)  

Using (2), the pair-wise correlations	ܿݎݎ݋൫ݕ௜, ௝൯ݕ ൌ  ௜௝, i, j=1,2,…, n, i≠j can beߩ
calculated. However, these ߩ௜௝ values can apparently have "no connection" with the values 
of ݓ௜௝ and ρ. To demonstrate this, we use the widely applied cigarette sales data on 46 US 
States. We show that a single value of ρ can imply a large band of values of ߩ௜௝ with the 
same ݓ௜௝values. The findings confirm the results of Wall (2004). We then construct a W 
matrix that is “consistent” with the underlying correlation structure of y. Finally, we further 
investigate the behaviour of implied correlations for the same model using the constructed 
W matrix, and show that the use of the weight matrix eliminates all the unintuitive 
behaviour of implied correlations.  
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An example 

In order to analyse the spatial interaction and implied correlation structure of the SAR 
model, the 1963–1992 cigarette sales data on 46 US States, that has been widely used for 
panel data analysis by Baltagi and Levin (1992) and Baltagi, Griffin and Xiong (2000), 
and later by Elhorst (2005) for spatial panel analysis, is considered. The underlying model 
is: 
								logሺܥሻ ൌ ߙ ൅ ܹߩ logሺܥሻ ൅ ଵߚ logሺܲሻ ൅ ଶߚ logሺܻሻ ൅ ଷߚ logሺܲ݊ሻ ൅ ߳,   (3) 

where C is real per capita sales of cigarettes to persons of smoking age (14 years and older), 
measured in packs of cigarettes per capita; P is the average retail price of a pack of 
cigarettes measured in real terms; Y is the real per capita disposable income, and Pn denotes 
the minimum real price of cigarettes in any neighbouring state. This last variable is a proxy 
for the casual smuggling effect across state borders, and acts as a substitute price attracting 
consumers from high-tax states to cross over to low-tax states. As in Elhorst (2005), we 
follow the conventional form of row-standardised first-order neighbourhood weight 
matrix, and in Table 1 present the estimation results based on 1992 cross-section data of 
the 46 states. 

Table 1 

Estimation Results of Model (3) (Standard errors are in parentheses) 

Parameters OLS 
SAR(W=row-standardised 

 first-order contiguity) 

β 1 –1.24(0.31) –1.15 (0.29) 
β 2 0.17(0.32) 0.27(0.30) 
β 3 1.03(0.19) 0.74(.15) 
Ρ N/A 0.28(0.14) 
 ଶ 0.05 0.04ߪ
Log Likelihood  25.78 
R2 0.15 0.18 

To illustrate the behaviour of the implied correlation structure from the estimated SAR 
model, in Figure 1, the histogram covers of all the implied first-order neighbour 
correlations and demonstrates a wide variation. The smallest correlation is 0.09 that occurs 
between Missouri and Tennessee and the largest correlation, equal to 0.37, occurs between 
New Hampshire and Maine. Wall (2004) also noted smallest and largest implied 
correlations exactly for these states, although she used different data (1999 US statewide 
average SAT verbal scores) and model. The common feature between Wall’s and this 
example is the W matrix, more specifically, Maine has only one neighbour, i.e., New 
Hampshire, and Tennessee and Missouri have 7 and 8 neighbours, respectively. Also, the 
qualitative nature of the histograms of Wall (in her Figure 3 with ρ =0.60) and this paper 
are very similar. Therefore, it can be stated that implied correlation is simply a function of 
the first-order neighbours each state has.  

To elaborate further on the implied correlations of Missouri and Tennessee with their 
8 and 7 neighbours, respectively, from Table 2 it should be noted that Missouri is more 
correlated with Kansas than with Tennessee, and Tennessee is more correlated with its 
neighbour Alabama than with Missouri. Such peculiarity arises mainly due to the nature of 
covariance matrix (2) that involves inversion of the sparse matrix ሺܫ െ  .ሻܹߩ
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Figure 1 

Histogram of implied correlations 

 

The relative ranking of the states using implied spatial correlation almost coincides 
with that of Wall (2004). These two datasets have no connection economically, and ranking 
of implied spatial correlation is determined by the prior fixed weight matrix. 

Table 2 

Implied correlation between first-order neighbours of Missouri and Tennessee 

Missouri Tennessee 

1st order neighbours Implied correlation 1st order neighbours Implied correlation 

Arkansas 0.0965 Alabama 0.1354 

Illinois 0.1062 Arkansas 0.1036 

Iowa 0.0977 Georgia 0.1256 

Kansas 0.1516 Kentucky 0.0931 

Kentucky 0.0879 Mississippi 0.1325 

Nebraska 0.1108 Missouri 0.0873 

Oklahoma 0.1110 Virginia 0.1044 

Tennessee 0.0873   

Figure 2 demonstrates that the relationship between the implied correlation and number 
of neighbours is not that simple. If number of neighbours is less, then implied correlation 
is strong. There is a band in which the implied correlations vary for a given number of 
neighbours, with less heterogeneity for an extreme number of neighbours. 
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Figure 2 

Implied correlations of SAR model  

 

The paper now focuses on how implied correlations behave as functions of true 
parameter ρ (i.e., irrespective of data). From Figures 3a and 3b, it can observed that for any 
given ρ, there is a high variability in correlations among all the pairs of observations. For 
example, when ρ=0.1, the implied correlations vary from 0.03 to 0.13; while for ρ=0.6, 
they vary from 0.25 to 0.73. From Figure 3a, this can be observed from the red arrows as 
marked. As ρ increases, the implied correlations of all locations increases monotonically, 
which matches the behaviour of autoregressive models in a time series, i.e., correlation 
increases with the autoregressive parameter. However, as observed in Figure 3b, the most 
unintuitive behaviour is that as ρ changes, there are many lines that cross each other, 
implying the inconsistency of ranking of relative implied correlations. For example, when 
ρ=0.2 the correlation (Missouri, Arkansas) =0.17 and correlation (Tennessee, Arkansas) 
=0.24. However, when ρ=0.7, then correlation (Missouri, Arkansas) =0.33 and correlation 
(Tennessee, Arkansas) = 0.26. Wall (2004) reported the same phenomenon. Therefore, the 
implied correlations of SAR model with first-order neighbour W matrix do exhibit some 
unintuitive and impractical behaviour. The marked area in the Figure 3b shows the crossing 
of implied correlation lines.  
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Figure 3a 

Implied correlations of the SAR model (as a function of ρ) 

 

Numerical optimization 

It is a general understanding that the weight matrix captures the “spatial dependence” of the 
observations as Ord (1975) stated that the (i, j)th  element of W “represents the degree of 
possible interaction of location j on location i”. However, each element of (I-ρW)-1(I-ρW)'-1 
provides the correlation structure of y. As evident from Wall (2004) and from Fig. 3a, if one 
expresses the spatial dependence in terms of neighbourhood matrix W, then the covariance 
from (I-ρW)-1(I-ρW)'-1 does not have a strong connection to the spatial correlation. 

Figure 3b 

Crossing of implied correlation lines 

 

The choice of spatial weights is a central component of spatial models as it imposes a priori 
structure on spatial dependence. Although the existing literature contains an implicit 
acknowledgement of the issues of choosing an appropriate weight matrix, most empirical 
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studies treat W to be a known, fixed and arbitrary spatial weight matrix (Giacomini and 
Granger 2004). It is proposed to construct the weight matrix using past time-series data to 
remove the odd features of implied correlations discussed previously. 

Suppose the dependent variable ݕ௜	is observed over n locations, where i=1…n for 
t=1,…,T in the past T periods. Given ݕ௜ for T periods, we estimate the variance-covariance 

matrixܸሺݕሻ ൌ 	Σ, whose (i,j)th element is given by 	
ଵ

்
∑ ሺݕ௜௧்
௧ୀଵ െ 	ത௜ሻݕ

ሺݕ௝௧ െ పഥݕ ത௝ሻ, whereݕ ൌ
ଵ

்
∑ ௜௧்ݕ
௧ୀଵ 	and	ݕఫഥ ൌ

ଵ

்
∑ ௝௧்ݕ
௧ୀଵ . Our objective is to investigate the 

implied correlation structure of a SAR model at the current time, therefore, construction of  
the weight matrix based on past T periods helps us to avoid the endogeneity issue. 

We solve the following system for W 
ܫଶሺߪ െܹሻିଵሺܫ െܹሻିଵᇱ ൌ Σ, 

We can take ߪଶ ൌ 1, which will have no consequence for our solution to W. Also, since 
W is row standardised, the solution will be invariant to ρ. Therefore, without loss of 
generality we solve 

ሺܫ െܹሻିଵሺܫ െܹሻିଵᇱ ൌ Σ, 
i.e., 

ሺܹܹᇱሻ െ ሺܹ ൅ܹᇱሻ ൌ Σିଵ െ  (4)      .ܫ
We need to find W that solves the equation (4) subject to 
i) ݓ௜௜ ൌ 0	 
ii) ݓ௜௝ ൒ 0	 
iii)∑ ௜௝௝ݓ ൌ 1 
ii) and iii) imply the range of ݓ௜௝, i.e., 0 ൑ ௜௝ݓ ൑ 1. Alternatively, our objective is to 

find a solution to a constrained system of nonlinear equations: 
ሻݓሺܨ ൌ ܫ ൅ ሺݓ ∗ ᇱሻݓ െ ሺݓ ൅ ᇱሻݓ െ Σିଵ ൌ 0,			w ∈ W,    (5) 

where ܹ ⊆ ܴ௠ା is a nonempty, closed and convex set and ܨ: ࣩ ⟶ ܴ௠ is a given mapping 
defined on an open neighbourhood ࣩ of the set W. Here ݉ ൌ ݊ଶ, where n is the number of 
locations. ܹ ∗	is the set of solutions to (5). To solve (5) we consider the related optimization 
problem:  

min 	݂ሺݓሻ			subject to the constraints as above, where  ݂ሺݓሻ ≔  ሻ||ଶ, and ||. || isݓሺܨ||
the Euclidean norm.  

The Levenberg (1944) and Marqaurdt (1963) algorithm (LM) that interpolates between 
the Gauss-Newton algorithm and method of gradient descent is used, as in many cases, the 
LM algorithm is more robust than Gauss-Newton as it finds a solution even if it starts very 
far off from the optimal values.  It is an iterative procedure where in each step w is replaced 
by w+d. To determine the increment vector d, the function F(w+d) are approximated by 
their linearisation using Taylor Theorem  i.e., ܨሺݓ ൅ ݀ሻ ൎ ሻݓሺܨ ൅ ܬ ∗ ݀, where  

ܬ ൌ  is the gradient of F with respect to w.  At its minimum, the gradient of ݓ߲/ሻݓሺܨ߲
f with respect to d will be zero. The above 1st order approximation gives 

݂ሺݓ ൅ ݀ሻ ≔ ݓሺܨ|| ൅ ݀ሻ||ଶ ൎ ሻݓሺܨ|| ൅ ܬ ∗ ݀||ଶ. 
Taking derivative with respect to d and setting the result equal to zero gives 
ሺܬ்ܬሻ݀ ൌ െܨ்ܬሺݓሻ, where J is the Jacobian term. This gives us a set of linear equations 

that can be solved for the increment vector d. The Levenberg-Marquardt contribution is to 
replace this equation by a ‘damped version’, 

ቀܬ			
		ܬ் ൅ ߤ ∗ ݀݅ܽ݃൫ܬ			

൯ቁ		ܬ் ݀ ൌ െܬ			
 .ሻݓሺܨ	்
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The main difference between Gauss-Newton and the LM algorithm is in terms of 
normal equations. In the LM algorithm, the normal equations are modified in such a way 
that the increment vector d is always rotated towards the direction of steepest descent. 

In a more formal way, LM type method for this system of equations generates a 
sequence ሼݓ௞ሽ	 by setting	ݓ௞ାଵ ൌ ሺݓ௞ ൅ ݀௞ሻ, where ݀௞	 is the solution to the linearised 
sub-problem: 
௞ሺ݀ሻߠ		݊݅݉													 ൌ ௞ሻݓሺܨ|| ൅ ௞݀||ଶܬ ൅ ,௞||݀||ଶߤ .ݏ ௞ݓ												ݐ ൅ ݀ ∈ 	ܹ  (6 

Here, ܬ௞		is an approximation of Jacobian of ܨᇱሺݓ௞ሻ and ߤ௞ is the positive parameter. 
Note that 	ߠ௞ሺ. ሻ is a strictly convex quadratic function; hence the solution ݀ ௞ of (6) always 
exists uniquely. Since our constraints are of box constraints type, any iterate	ݓ௞ can be 
projected easily into the feasible region W. The feasible region of W is such that any w ∈
ܹ has the structure defined by the above constraints. Therefore, we set ݓ௞ାଵ ൌ ௐܲሺݓ௞ ൅
݀௨௞ሻ, ݇ ൌ 0,1, … .,	where ௐܲ is the projection matrix and ݀௨௞ is the unique solution to the 
unconstrained sub-problem: 

݀௨			௞ሺ݀௨ሻ,ߠ		݊݅݉ ∈ ܴ௠. 
We call this the projected LM method since the unconstrained step gets projected onto 

the feasible region W. The projected version of LM algorithm needs significantly less time 
per iteration since the strict convexity of the function 	ߠ௞ሺ. ሻ ensures that a global minimum 
is reached at ݀ ௨

௞ if and only if ׏		ߠ௞൫݀௨
௞൯ ൌ 0, i.e., if and only if ݀௨

௞ is the unique solution 
of the system of linear equations [For detailed discussion on the Levenberg-Marquardt 
Method, see Numerical Optimization by Nocedal and Wright (2006)]: 

ቀܬ௞			
		௞ܬ் ൅ 			௞ܬ௞݀݅ܽ݃൫ߤ

൯ቁ		௞ܬ் ݀௨ ൌ െܬ௞			
 ௞ሻ.        (7)ݓሺܨ	்

The step-by-step algorithm is as follows: 
S1) Choose ݓ଴ ∈ ܹ, ߤ ൐ 0, ݒ ൐ 1, ߛ ൐ 0 and set ݇ ൌ 0, tolerance = 1݁ െ 10. 
S2) If ܨሺݓ௞ሻ ൏ tolerance,	then Stop, otherwise go to S3. 
S3) Compute ܬ௞			=	ܨ′ሺݓ௞ሻ. 
S4)	ܵ݁ݐ		ߤ௞ ൌ ௞ and compute ݀௨ݒ/ߤ

௞  as a solution to (7).   
S5) If ||ܨሺ ௐܲሺݓ௞ ൅ ݀௨௞ሻ|| 	൑ ௞ାଵݓ then set	௞ሻ||,ݓሺܨ||ߛ ൌ ௐܲሺݓ௞ ൅ ݀௨௞ሻ, update k to 

k+1 and go to S2; Otherwise go to S6. 
S6) Set ߤ௞ ൌ ߤ ∗ ௞ and compute ݀௨ݒ

௞ as a solution to (7).   
S7) If ||ܨሺ ௐܲሺݓ௞ ൅ ݀௨௞ሻ|| 	൑ ௞ାଵݓ then set	௞ሻ||,ݓሺܨ||ߛ ൌ ௐܲሺݓ௞ ൅ ݀௨௞ሻ, update k to 

k+1 and go to S2.  
Note, if any kth iteration comes to S6, then for k+1th iteration onwards, it will flow 

as		S2 → S3 → S6 → S7. This is due to the choice of dampening factor as suggested by 
Marquardt (1963). If there is no reduction in residual by setting μ୩ ൌ μ/v୩, then the 
dampening factor is increased by successive multiplication by v until a better point is found 
with the new dampening factor μ୩ ൌ μ ∗ v୩ for some k. However, if the use of μ୩ ൌ μ/v୩ 
results in the reduction of residuals, then this is taken as a new value of  and the process 
continues. In other words, as μ୩ gets small, the algorithm approaches the Gauss-Newton 
algorithm, if μ୩	becomes large with successive iterations, it approaches the steepest 
gradient algorithm. The Levenberg-Marquardt technique is a “blending" between these two 
extremes, and uses a steepest descent type method until our objective function approaches 
a minimum, and then gradually switches to the quadratic rule. It tries to guess the proximity 
to a minimum by how the error is changing. The intuition is simple; i.e., if error is 
increasing, then our quadratic approximation is not working well and we are likely not near 
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a minimum, so we should increase 	ߤ௞ in order to blend more towards simple gradient 
descent. Conversely, if error is decreasing, our approximation is working well, and we 
expect that we are getting closer to a minimum so ߤ௞ is decreased to bank more on the 
Hessian. The algorithm we used is very similar to the projected LM algorithm of Kanzow-
Yamashita-Fukushima (2002). As long as F is affine and twice continuously differentiable, 
any accumulation point of the sequence {ݓ௞} generated by our algorithm is a stationary 
point of (6).  

Application of the proposed solutions 

The SAR model for the year 1992 is estimated using the proposed weight matrix in Section 
5.1. In order to avoid endogeneity problem, the W matrix using the data on C (Cigarette 
sales) from 46 states for the period 1963-1991.  The model is the same as in Equation (3). 

Table 3 provides the estimates of the SAR model using the standard W matrix, and the 
numerically solved W using the Levenberg-Marquardt algorithm. 

   Table 3 

Estimation Results of Model (3) (Standard errors are in parentheses) 

Parameters 
SAR(W=Constructed using 

the LM algorithm ) 
SAR(W=row-standardised 
 first-order contiguity) 

β 1 –1.10 (0.29) –1.15 (0.29) 
β 2 0.18 (0.29) 0.27 (0.30) 
β 3 0.55 (0.17) 0.74 (0.15) 
Ρ 0.45 (0.16) 0.28 (0.14) 
σ² 0.03 0.04 
Log Likelihood 26.37 25.78 
R² 0.27 0.18 

It is clear that the estimated SAR model using the proposed W matrix is as good as (if 
not better than) the standard W in terms of log likelihood values. 

Figure 4 plots the first-order implied correlation as a function of weights from the 
estimated W. Out of 46*46=2116 pairs of locations, the 188 first-order neighbour 
correlations are plotted. First, arrange the weights of 188 pairs of first-order neighbours are 
arranged in ascending order, and then the implied correlations are sorted out in ascending 
order as well. From Figure 4, note that the implied correlations have a very slow increasing 
trend with weights. There is also little variation in contrast to Figure 2 (where number of 
neighbour increases means weight decreases), which displayed much higher variation.  

Implied correlations of the SAR model for different values of ߩ are plotted in Figure 5. 
In contrast to Figure 3, now for each value of	ߩ, the band of variation of implied 
correlations is very narrow in Figure 5. For example, when ρ=0.1, the implied correlations 
vary only between 0.004 and 0.006; while for ρ=0.6, they vary from 0.09 to 0.11. Also 
now there is no crossing, and thus the inconsistency of the ranking of implied correlations 
seen in Figure 3, is absent in Figure 5. 
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Figure 4 

First-order correlations of SAR model (W=Constructed) 

 

How implied correlations behave as function of ρ is examined in Figure 5. 
Figure 5 

Implied correlations of SAR model (as a function of ρ)  
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To address the implied heterogeneity of the SAR model, in Figure 6, the 46 diagonal 
elements of Σ as a function of the number of first-order neighbours are plotted. Using the 
first-order contiguity matrix leads to substantial variation of implied variances of yi (that 
decreases with the number of neighbours). In contrast, the proposed W matrix leads to 
much less variation.  

Figure 6 

Variance comparison of 46 US States  

 

Conclusion 

The paper first demonstrates the unintuitive and impractical nature of the implied 
correlations implied by the estimated SAR models with row-standardised neighbourhood 
matrix. It then proposes a simple methodology for estimation of spatial weight matrix that 
yields very intuitive results in terms of implied correlations. Finally, the proposed 
methodology is illustrated using real data on cigarette sales. Although the methodology is 
applied only for the SAR model, it can be easily extended to the CAR model. For CAR, 
Var(y) =ߪଶሺܫ െ  ሻିଵ, which is a variation of Equation (2). Therefore, the procedure canܹߩ
be applied to yield a W that is consistent with the underlying dependence structure. Another 
interesting extension that the authors would like to address in future is the influence of W 
on the impact (direct and indirect) factor, which can be obtained from Equation (1) as 
డ௬೔
డ௫ೕೖ

ൌ ԭ௞ሺ݅, ݆ሻ, where ԭ௞ ൌ ሺܫ െ ,௞ߚሻିଵܹߩ ݅, ݆ ൌ 1,2, … , ݊ and 

݇ ൌ 1,2, … ,  This has a simpler structure than the implied covariance matrix in Equation .ܭ
(2), and thus, as the referee conjectured, the two W matrices (binary contiguity and the 
“estimated” one) may give similar results.  
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