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ABSTRACT This work introduces a scalable, cloud-agnostic and fault-tolerant data analytics platform for
state-of-the-art autonomous systems that is built from open-source, reusable building blocks. As the baseline
for further new reference architectures, it represents an architecture blueprint for processing, enriching and
analyzing various feeds of structured and non-structured input data from advanced Internet-of-Things (IoT)
based use cases. The platform builds on industry best practices, leverages on solid open-source components
in a reusable fashion, and is based on our experience gathered from numerous IoT and Big Data research
projects. The platform is currently used in the framework of the National Laboratory for Autonomous
Systems in Hungary (abbreviated as ARNL). The platform is demonstrated through selected use cases from
ARNL including the areas of smart/autonomous production systems (collaborative robotic assembly) and
autonomous vehicles (mobile robots with smart vehicle control). Finally, we validate the platform through
the evaluation of its streaming ingestion capabilities.

INDEX TERMS Reference architecture, blueprint, data analytics, autonomous systems, IoT, IIoT, big data,
mobile robots, collaborative robots, smart control.

I. INTRODUCTION
Data is everywhere and the capability of fast processing and
data-based decision making is more and more distinguishing
top organizations from the rest. In the world of Internet of
Things (IoT), the capability of ingesting, analyzing and fast
response was always a basic requirement, however building
solutions that enable this is still not a straight-forward
process. Architecture blueprints allow the reuse of existing
knowledge and best practices when creating new solutions.
There are different definitions proposed, e.g., [1]–[4] with
the main ideas of (i) promoting re-usability, (ii) incorporating
best practices, (iii) using high or low abstraction levels,
and (iv) serving certain use cases. However, most existing
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architecture blueprints either are too abstract; not end-to-end;
not vendor agnostic or not open-source; or some combination
of the above. For example Microsoft Azure currently
offers 77 architecture blueprints for data analytics [5], and
AWS offers 55 reference architectures for big data and
data analytics [6]. These are all aimed at commercializing
their cloud-based services, respectively. On the contrary,
the ‘‘Industrial Internet Reference Architecture’’ [7] and
‘‘Reference Architectural Model Industry 4.0’’ [8] represent
the joint effort of several organizations and companies,
however, they are high-level concepts. In this work we
augment these results by presenting our cloud-agnostic and
open-source data analytics platform. It represents a reusable
architecture blueprint for processing, enriching and analyzing
different feeds of structured and non-structured input data.
The platform is defined both at a high-level, and also we
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present a current implementation used for IoT and Industrial
IoT (IIoT) use cases.

The main contributions of this work are as follows. First,
we propose a scalable, cloud-agnostic and fault-tolerant data
analytics platform for advanced IoT use cases. The platform
is built from different reusable building blocks and itself is a
reusable architecture blueprint. It is designed for processing,
enriching and analyzing different feeds of structured and
non-structured input data. It is built on our previous
results [9]–[11], and it is continuously adapting to the
requirements of existing and new use cases. For each major
block (represented by stages in our architecture) we rely
on stable open-source components that have also multiple
commercial platform-based alternatives when needed.

Second, we demonstrate the value of the platform through
two use cases. The first use case being the guaranteeing safe
motion of mobile robots for logistic and transport process
using cloud-aided learning. The second presented use case
addresses IIoT data collection and enrichment from a robotic
assembly scenario over a service-oriented manufacturing
execution system, in which the collaborative robotic arm near
real time-data provision provides the foundation necessary
for a better understanding of the while process.

The paper is organized as follows. Section II introduces
related works in the fields of similar data analytics platforms
developed either for the use cases within an organization
or as a blueprint or reference architecture available from a
public cloud provider. Section III details the design decisions
and the architecture of the platform. This includes the
iterations of services used for the different part of the
data pipeline within the platform, the deployment methods.
Section IV introduces the two use cases from the ARNL
project that utilize the platform for data collection and as
a cloud-based extension of their own infrastructure. This
includes the custom components developed and the interfaces
used. Finally, section V concludes the paper and discusses
future work.

II. RELATED WORKS
We evaluate related works for data analytics platforms
in three categories. We discuss reference architectures
using either (i) high; or (ii) low abstraction levels. Next,
we discuss (iii) implementations and relate them to reference
architectures. We note here, that we relate the presented
related works concepts to our solution in section III.

High abstraction level architectures typically contain
approaches and system design principles, but lack concrete
implementation references. Contrary, low-level architec-
tures focus on the implementation details, typically using
platform (PAAS) and software (SAAS) based services of
a particular cloud provider, and/or rely on open-source
services.

An example of a high-level reference architecture is
the Lambda Architecture [12]. It introduced two parallel
pipelines on the same data sources. One pipeline for
streaming (‘‘speed layer’’) and one for batch processing

(‘‘batch layer’’). An extra layer (‘‘serving layer’’) stores
the output and responds to ad-hoc queries. The batch
layer utilizes a distributed processing system to process all
available data. As processing takes time, the batch layer can
push fewer updates. Additionally, to fix errors the system
needs to recompute the complete dataset. The speed layer
processes the most recent data and provides a (near) real-
time view of the data. In its original form, it did not aim
for completeness as it tried to fill the gap caused by the
batch layer’s lag. However, real-time data is a requirement
for today’s data platforms. Finally, the serving layer stores
output from the batch and speed layers. Additionally, it also
responds to ad-hoc queries.

The Kappa Architecture [13] aims to be a simplification
and evolution of the Lambda Architecture by removing
the batch processing component. In the Kappa Architecture
the canonical data store is an append-only immutable log.
It is used instead of a relational database management sys-
tem (RDBMS) or noSQL store like Apache Cassandra [14].
From this log, data is streamed through the processing
pipeline and fed into supplementary stores for serving. All
data is moved through the stream processing system quickly
eliminating the need for the batch layer.

The Open Group Architecture Framework (TOGAF) [4] is
a widely used framework for general enterprise architecture.
It includes an approach for designing, planning, delivering,
and governing an enterprise information technology architec-
ture. It distinguishes two building block types: Architecture
Building Blocks (ABBs) and Solution Building Blocks
(SBBs). ABBs are higher level architecture models. They
encapsulate a set of technology, application, business and
data requirements and steer the development of SBBs. Addi-
tionally, they incorporate the relationship and interoperability
with other building blocks, and should be reusable. SBBs on
the other hand, are lower level components and are directly
guided by ABBs.

As discussed in section I, public cloud providers publish
low-level reference architectures for different use cases to
help commercialize their services. One such provider based
architecture is the Azure IoT Reference Architecture [15].
It defines three data paths for data analytics. The hot path
represents near real-time insights using stream analytics;
the warm path uses fine-grain methods, but incurs a higher
latency; finally the cold path represents batch processing
performed at greater intervals. Microsoft also provides more
generic data processing architectures, for example in [16]
Apache Kafka [17] is used as a streaming source to ingest
data. In these architectures as a best practice for ingestion,
data is always fed into a streaming service. For example,
in the discussed Azure IoT Reference Architecture, data
ingested into Azure EventHubs, which is the Azure platform
equivalent of Apache Kafka.

FIWARE [18] provides reference architectures, con-
sisting of several building block like components that
facilitate architecture building. FIWARE is a framework
of open-source components for data management, for
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developing interoperable smart solutions. As part of the
framework FIWARE provides different components such
as the ‘‘Orion context broker’’ for data management, IoT
agents for connecting smart devices, components for storing
historical data such as ‘‘Comet’’, and also components
for data analytics among many others. Additionally to a
standards-based platform, FIWARE provides a complete
ecosystem as well. It was originally driven by the European
Union to develop a platform for the Future Internet.

Isah and Zulkernine [19] present a fault-tolerant and
scalable data management framework for many feeds of
structured and unstructured data. The presented framework
consists of reusable building blocks. Additionally, the authors
demonstrate the framework using a real-world data streaming
case study. They rely heavily on Apache NiFi [20] to
provide a dataflow that integrates Apache Kafka [17] and
HDFS [21]. Their architecture is stream processing only, and
is an implementation of the Kappa architecture, although not
referenced by the authors.

Airbnb built theMinerva [22]–[24] metric platform to stan-
dardize data analytics at scale within the company.Minerva is
an internal plaform at Airbnb, and is used across the company
as the single source of truth. More than 12000 metrics,
4000 dimensions are in Minerva. More than 200 data sources
originating from different teams like core product, payment
and different organisations like product management, finance
and engineering are integrated. Minerva is built using
open-source products: Apache Airflow [25] for workflow
orchestration, Apache Spark [26] as computation engine, and
Apache Druid [27] and Presto [28] for data consumption. The
platform provides analytics, reporting and experimentation
capabilities for Airbnb. Data is defined at a single place.
Anyone can look up definitionswithout confusion.Minerva is
focused on metrics and dimensions as opposed to tables and
columns. When a metric is defined its authors are required
to provide self-defining metadata. At heart of the Minerva’s
configuration system are event and dimension sources. These
correspond to fact and dimension tables in a star schema [29]
design. Users can select the metric they would like to
explore and then are transferred to an internal component
called Metric Explorer. This allows basic investigation of the
data. For deeper insights Apache Superset [30] is available
within the platform to explore the data. Additionally, Minerva
provides a metric-serving API layer between upstream data
models and downstream consumer applications.

III. DATA ANALYTICS PLATFORM
Our goal was to build a reusable, open-source, vendor
agnostic and end-to-end platform for IoT data analytics using
industry best practices.We designed the platform to primarily
support the ingestion of high-frequency time series data. All
ingested data is stored in raw format. This allows to execute
new and improved versions of our data processing tasks on
the complete dataset. The platform provides data exploratory
tools and also capabilities to move developed data processing
services into production. Data access is provided through

standardized interfaces such as Amazon S3, Apache Kafka
and ODBC for data warehouse access.

The platform is container based. We use Docker for
convenience purposes when a full virtual machine (VM)
would be dedicated to a service component. In this case
a single container is running on a dedicated VM managed
via Terraform [31] and Ansible [32]. We use Kubernetes in
all other cases. However, we allow exceptions for custom
components of use cases (see figure 1) that may require e.g.,
Windows based VMs.

The platform is built using orchestration tools and utilizing
reusable building blocks. For the deployment of the platform
we are relying on Terraform and Ansible descriptors.
Terraform is responsible for the cloud communication
part. It manages and maintains all the cloud objects like
security groups, firewall rules, volumes and virtual machines.
Furthermore, it can prepare the Ansible host configuration
in the correct form as Terraform knows all the necessary
endpoints and properties. We use Ansible to manage the
basic configurations. It implements two different roles. First,
it distributes and manages access credentials on every host in
the platform. Second, it manages monitoring components on
each host.

The platform consist of two main parts. The first part
contains the custom components for the different supported
use cases, while the second part hosts the core components.
figure 1 depicts the architecture of the current version of the
platform. Custom components of each use case have access
to a dedicated set of resources assigned to that particular use
case. These components include for example VPN endpoints
connecting smart vehicles via cellular network; or Robot
Operating System (ROS) [33] based components for cloud-
based processing. The second part of the platform contains
the core components of the platform. There a single shared
instance of the core components serves all use cases.

The platform is stream processing based for delivering
ingested data to the end user. It is similar to the presented
Kappa Architecture (see section II). However, we retain
the capability of executing batch jobs to support existing
workloads. Our platform implements the hot-warm-cold path
for data presented in the Azure IoT Reference Architecture
(see section II). The hot path provides a low-latency pipeline
relying mainly on MQTT and Apache Kafka for ingestion;
with Logstash, Elasticsearch and Kibana (the ‘‘Elastic
stack’’ [34]) for the real-time analytics stage. The warm path
is used for more complex processing and delivery to the
data warehouse for further analytics. The warm path also
relies on Apache Kafka, however, supports non-structured
data uploads using an Amazon S3 compatible interface as
well. Apache NiFi [19], [20] and ksqlDB [35] is used for data
transformation and enrichment, while TimescaleDB [36] acts
as the data warehouse. We use dbt [37] in the data warehouse
for batch workload on a as-needed basis, thus, implementing
the cold path.

A typical analytics platform should consists of three
main stages at least [38]. These include (a) ingestion,
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FIGURE 1. Logical architecture of the data analytics platform running on ELKH Cloud. Arrows represent the data flow
between core and custom components, including the different stages of the platform.

(b) processing, and (c) storage. Contrary, the core part of our
platform consists of five stages. These stages are (i) ingestion
and staging; (ii) (pre-)processing; (iii) data warehousing; (iv)
real-time analytics; and (v) business intelligence (including
visualisation). See figure 1 for more details. Our platform
implements a hot, warm and cold path (see Azure IoT
Reference Architecture in section II and in [15]). The warm
path utilizes stages i → ii → iii → v, while the hot path
is implemented by stages i → iv → v; see more details in
figure 1. The cold path involves the same stages as the warm
path (i → ii → iii → v), and executes batch workloads
using data in the data warehouse. Additionally, we provide
a dedicated business intelligence stage (v) that is responsible
both for visualization and data insights. Next, we are going to
discuss the stages in detail.

The ingestion and staging stage is responsible for accepting
and storing incoming data. The platform supports both
time-series and blob (unstructured) data. Currently, MQTT
and native Kafka for streaming data; Amazon S3 for
non-structured or blob data; and Open Database Connec-
tivity (ODBC) for relational data are supported. In our
experience MQTT is common ground for IoT devices and
similarly, S3 is for blob data. ForMQTT there is no restriction
on the format and structuring of data, JSON payload and/
or Sparkplug-B [39] structuring is preferred. We currently
use Eclipse Mosquitto [40] as MQTT broker for ingesting
data. The throughput of Mosquitto is limited by single-thread
CPU performance [41]. Currently this does not cause a
bottleneck for the use cases of the platform. However,
we are investigating alternative, distributed solutions such as
EMQX [42]. Additionally, the first stage of the platform acts
as a staging area for all incoming data. Data here is kept in its
raw source format, thus this area is effectively the data lake
of the platform.

The processing stage is responsible for enriching,
transforming and transferring data to persistent storage and

real-time analytics. For this we rely mainly on a set of
services. First, we use Apache NiFi for orchestrating the
dataflow between the building blocks of the architecture.
Additionally, ksqlDB and custom Kafka micro-services
are responsible for additional data transformation and
enrichment within Apache Kafka.

Apache NiFi is responsible for ingesting data from the
MQTT broker acting as the MQTT interface of the platform.
NiFi is also a Kafka producer and pushes the ingested data to
the desired Kafka topic. Additionally, it is a Kafka consumer,
it reads data from the topic, performs simple conversions
(e.g., flattening JSON structures and type conversions) and
pushes the results to the data warehouse, TimescaleDB [36] in
our case. An example data-flow is shown in figure 2. Apache
NiFi relies on the ‘‘Zero-Leader Clustering paradigm’’, this
means that each node in the cluster has the same data flow and
performs the same tasks on the data. The cluster automatically
distributes the data between the nodes. In case of running
multiple dataflows (e.g., different use cases) on a single
cluster, all nodes instantiate all components, meaning the
CPU and memory footprint is increased on all nodes. Thus,
all nodes in the cluster must be scaled up vertically, however,
this is not always feasible. The best-practice is to separate
each dataflow to its dedicated cluster [43]. Based on a sizing
guide by Cloudera [44] the throughput of NiFi scales nearly
linearly when introducing additional nodes. However, the
guide only reports results up to 9 nodes. We are currently
utilizing up to 3 nodes in our cluster, and this cluster is shared
between all use cases. We are currently not impacted by the
vertical scaling limit, but are in the process of moving each
use case (dataflow) to its dedicated NiFi cluster.

Additionally, NiFi is used both for data enrichment and
pre-processing purposes. Enrichment is used during transfer
from the MQTT broker into the streaming layer (Apache
Kafka), and from Apache Kafka to the Data Warehouse
(TimescaleDB). When moving data into Kafka we always
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FIGURE 2. The NiFi dataflow used in the collaborative robotic assembly
use case (see section III-A for more details) for transformation and
streaming into the data warehouse.

augment it with metadata from the source system. In case
of MQTT this means the broker and topic name, Quality
of Service (QoS) level, and whether the message is retained
and/ or a duplicate. Next, when moving between from
Apache Kafka, metadata from Kafka is added such as the
topic name, partition and offset numbers, and the Kafka
ingestion timestamp. These enrichment cascade into the final
destination and enable data lineage, meaning understanding
and recording the flow of data. Additionally, it enables
to replay and re-process the data using the ingested raw
version. Pre-processing with Apache NiFi involves light
transformations. With our use cases (see sections III-A
and III-B) we ingest data in JSON format and use the JOLT
transformer of NiFi to e.g., convert between data types, flatten
nested structures, and include additional metadata.

ksqlDB allows working with Kafka based streams using
an SQL-like language with the scalability of Kafka Streams.
In turn Kafka Streams is a client-side Java library that
abstracts the low-level Kafka APIs (Producer and Consumer).
It utilizes a streaming approach: it ingests from sources,
performs transformations on the ingested data, and finally
forwards data to sinks. Additionally, it allows scaling by
automatically handling the assignment and balancing of the
workload based on the number of partitions and application
instances running (via Kafka consumer groups). However,
as it is a library it does not contain a resource manager
or scheduler, as the application developer should bring its
own. This means that Kafka Streams applications are suited
for containerization, especially deploying on Kubernetes.
We perform additional stream-based transformations using
ksqlDB running on a Kubernetes cluster within the platform,

and support Kafka Streams-based custom micro-services as
well.

The Data Warehouse stage is responsible for storing and
serving data. We rely on TimescaleDB [36] for storing time-
series data. It is an extension on top of PostgreSQL, which is
in turn used for storing relational data and data warehousing
functionality overall. This allows storing both relational and
time-series data in a single data store. The data warehouse is
based on a relational database (PostgreSQL - TimescaleDB),
thus, incoming data must be transformed into this schema.
We rely on the ConvertJSONtoSQL processor of NiFi for
JSON type messages, see ‘‘5. Convert JSON To SQL’’ in
figure 2 for more details. We would like to note here, this is
pure transformation as enrichment is done in a previous step
using the JoltTransformationJSON processor, see ‘‘4. Jolt
Transform JSON’’ in figure 2 for more details. The resulting
data forms the base core dataset for each use case. Using
this dataset we perform further near real time processing in
TimescaleDB, e.g., aggregate using different time periods;
and also run offline batch workloads as needed.

The Business Intelligence (BI) stage is responsible for
providing dashboard and visualization capabilities. Currently,
Apache Superset is extensively used on top of the data
warehouse, with Grafana as second choice, and Kibana in
the hot path, see figure 3 for more details. Additionally,
both ad-hoc data queries and self-service data exploration
are supported either via Superset or via Jupyter notebooks.
In general, any visualization or BI tool (such as Microsoft
Power BI) can be connected that supports the ODBC
interface. We choose Grafana as it can be extended easily
with custom charts, and allows speeding up visualization by
switching to different aggregations when using PostgreSQL
(TimescaleDB) [45] as shown in figure 6 for the Collaborative
Robotic Assembly (CRA) use case (see section III-A formore
details about the use case). Kibana has extensive charting
capabilities, however, as we rely on the Basic license of
Elasticsearch, we do not have access to all features such as
visualization layers for creating tracks from geospatial data.
Additionally, our finding is that the OpenStreetMap based
maps used by Kibana are less accurate than the commercial
offerings such as Google Maps. This can be seen in the top
right image of Figure 3 where circle is drawn using GPS
vehicle data in what is seemingly an empty area. However,
in reality there is a roundabout there with connected roads.

For data lineage and life-cycle management we rely on
metadata and a data catalogue. We allow to differentiate
experiments within each use case by assigning an unique
identifier to the incoming data. Additionally, data at each
stage is enriched with additional metadata such as the time
of ingestion at the stage and various stage specifics (e.g.,
partition and offset in Kafka, topic in MQTT). We use a
data catalogue to hold additional metadata that provides
further description for the experiment for later reference.
Currently, raw data is kept in the staging environment
indefinitely by default, and removed on a per experiment
or use case basis. In the data warehouse we use the
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FIGURE 3. Data exploration and visualization using Apache Superset for the collaborative robotic assembly use case (left
and bottom); and exploring GPS vehicle data using Kibana (Elasticsearch) for another use case (top-right).

aggregation feature of TimescaleDB to down-sample the
data as allowed by the experiment and use case. Higher-
frequency data can be removed later as it can be reproduced
when needed from the raw data stored in the data lake
(ingestion stage). The removal depends on the use case and
experiment.

The platform uses Prometheus [46] for monitoring its
services and infrastructure. Prometheus relies on so-called
‘‘exporters’’ for monitoring components and services. These
exporters are created for a specific purpose, such as
monitoring the resource usage of containers [47], hosts [48],
or services such as Java-based applications [49] among
others. Prometheus provides a rule based engine for defining
alerting rules. These alerts, when triggered, are forwarded to
the Alertmanager component of Prometheus. Alertmanager
is able to de-duplicate and group together alerts, and then
use different media (e.g., email, slack or webhooks) for
alert notifications. Finally, we use Grafana for charting the
different monitored metrics.

The platform is deployed on the federated, community
cloud of the Eotvos Lorand Research Network, called ELKH
Cloud. The goal of ELKH Cloud is supporting Hungarian
scientists with elastic, virtualized computing resources. This
science cloud provides a combined 5904 vCPUs, with 28TB
RAM, 1248TB HDD and 338TB SSD storage. It also offers a
total of 68 GPUs with 2400GB RAM, and 584TFlops double
precision, 1174TFlops single precision and 13768TFlops
FP16 Tensor performance. The presented platform is
deployed in the site of the Institute of Computer Science and
Control (abbreviated as SZTAKI) of the federated cloud. This
site contains (among others) 10 compute nodes, each with 2x

Intel Xeon Gold 6230R 26-Core CPUs and 768GB of RAM.
Additionally, there are 6 HDD and 6 SSD storage nodes,
each with 192TB and 92TB of raw storage, respectively.
The cloud is based on OpenStack Wallaby, and the storage
backend is built using Ceph Pacific. All virtual machines have
10Gbps networking by default, with optional configuration
settings for 30-35Gbps. The ELKH Cloud is connected to the
Hungarian academic backbone with 100Gbs network.

We currently allocate 106 vCPU cores, 264 GB of RAM
and 4 TB of SSD storage for the platform. The benchmark
platform which is described in section IV is deployed in
this allocated resource pool as well. The first version of
the platform is deployed on the cloud of the Hungarian
Academy of Sciences, called MTA Cloud. This cloud is the
predecessor of the ELKH Cloud with the same purpose but
with less resources. This initial version of the platform is
using 13 virtual machines with 48 vCPUS, 96GB of RAM
and 480GB HDD storage.

A. USE CASE: COLLABORATIVE ROBOTIC ASSEMBLY
Collaborative Robotic Assembly (CRA) refers to the joint
assembly process of workpieces performed by human oper-
ators and collaborative robotic systems, the core elements of
a common Cyber-physical System (CPS). The advantage of
the application of operators with high situation recognition
capability and flexibility supported by the accuracy and speed
of the robot arms can be enormous, if the safety is guaranteed.
This synergistic relationship can only be achieved if such
system can provide the necessary amount of information both
in real time for monitoring, and in the long run to improve
efficiency by analysis and evaluation.
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FIGURE 4. Schematic representation of typical collaborative robotic
assembly scenario.

Figure 4 schematically enumerates the actors and possible
data sources in a CRA scenario: i.) the human operators and
their tools with network connection; ii.) the collaborative
robotic arm; and iii.) the smart workpiece and/or fixture. For
this specific use-case, the focus is on the robotic arm, because
the sheer amount of data it can provide is sufficient for testing
the platform. The robotic arm is one of the Universal Robots’
UR-series, which can provide 84 different parameters (from
which eighteen are six-element float arrays) at 125Hz via the
Real-Time Data Exchange (RTDE) interface.

These parameters include—without claiming to be
exhaustive—mechanical properties (e.g. position, speed
and acceleration), thermal metrics, energy consumption
indicators (e.g. currant and voltage), status information and
I/O states. We can even enrich the data with difference
formation of targeted and realized values to gain the scale of
errors. This is a sufficient amount of data to make meaningful
analysis from which relevant information can be indirectly
obtained about the performance of the operators, as well.

The platform’s visualisation features of the CRA presents
the time distribution of data proportional to energy consump-
tion of the robotic arms and so to a much wider concept of
sustainability for the assembly phases considered (visible in
figure 6). This is one of many physical aspects of a CRA that
can be represented and analyzed on the basis of the provided
data and the usage of the platform.

The CRA is connected to the data analytics platform by
means of an MQTT-capable Service Interface Adapter (SIA)
developed on top of the CRA CPS controller. It can
be referred to as ‘‘dew’’ (as defined in research work
from [50]): this is the very first entry-point in ‘‘traditional’’
manufacturing systems where legacy devices are converted
into network-able, embedded components for the distributed
production scenarios of Industry 4.0; the lowest-level cloud
deployable component of a much wider manufacturing
execution system architecture, as briefly explained in the
following subsection.

1) MANUFACTURING EXECUTION SYSTEM AS A SERVICE
The Manufacturing Execution System as a Service (MESS
in the following) is a new attempt to model, integrate, and

FIGURE 5. MESS overall architecture with highlights on use-case involved
components and communication (blue bold dashed lines).

orchestrate essential CPS services which are at the basis of
modern, digitized manufacturing facility. The architecture of
the MESS facilitates a novel, generic, and simple way for
the collaboration of distributed, autonomous manufacturing
entities. As suggested by the acronym, the MESS has
been designed as a set of cloud-deployable services where
the specific layer’s requirements permit it, taking into
account aspects such as service availability, latency time for
communication and data exchange rates, primarily.

Main components of the MESS are depicted on figure 5
whereas their major characteristics are briefly introduced
hereafter (for a comprehensive presentation of the MESS
please refer to [51]).

The MESS enables service-oriented orchestration and
production improvement by supporting and improving the
communication among the CPSs inside the facility, as well
as between the production and the other activities in the
enterprise (such as process planning, process simulation,
resource planning and sharing, etc.). This is fundamental in
order to provide updated communication and information
analysis to the management, offer a clear and simple interface
to the end-users, and to monitor and operate the system
capability. Briefly, the MESS is expected to provide an
interoperable, reconfigurable and reliable information system
to the overall production and resource sharing activity.

The MESS Core is essentially a time-invariant, event-
based sequence control of processes, based on the monitored
statuses of resources (e.g., management of production
processes). It controls the synchronization with the CPSs
and acknowledges the other system components about the
occurring events.

Fundamental element of the MESS architecture is the
Cyber-physical System (CPS) which is in charge of perform-
ing the actual production activities. A CPS can be abstracted
to almost anything: a robot, a human worker with network
connected device, a camera, a PLC controlled manufacturing
unit, a pool of tools, etc. To the MESS, a CPS is like a
black box that makes the physical layer seamless, providing a
set of production related capabilities and physical dimension
values. The production capabilities of the CPS can be reached
by the MESS Core directly or through a digital counterpart
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FIGURE 6. Custom Grafana-based dashboard for visualizing CRA use case data at different resolutions.

(Digital Twin) with standardized interface. From the point of
view of an external component (i.e., user interface, scheduler,
and so forth – out of scope in this paper), only these twinned
CPSs are discoverable and actionable by the MESS, while
physical devices are kept hidden for security and competency
reasons.

Devices represent the endpoints of the MESS and are
generally controlled by their own specific software, with its
own information and service model. In order to connect to the
MESS, on the other hand, a CPS needs to adapt its arbitrary
service model to the one prescribed by the MESS, which
simplifies and standardizes this mechanism. This crucial
aspect of a device integration at the lowest level (entry-point)
of the architecture is guaranteed by the Service Integration
Adapter (SIA). SIA is (also) the point where CPS data can
be captured and provided at a rate closest to the physical
capability of a device (in our use-case the UR robots can
provide data of their physical operations at 125Hz) and so
generate big-data streaming for successive analytical IIoT
data services (figure 5). The goal of the SIA is basically to
enable the device controllers to communicate with the MESS
framework through the MESS Production Administration
Shell (PAS), which is in charge of the CPS digital twinning
with the MESS Core. The SIA is a. Net library written in C#
language. Besides HTTP and UDP connection capabilities,
it is also equipped with MQTT technology, a standardized
back-bone for IIoT data provision for additional integration
and analytics services (as part of this use-case). The great
advantage of this CPS twinning solution is that, regardless
of the specific method chosen by the designer for the CPS
integration, once the SIA is connected to the PAS (and to
the MESS Core), the overall system will seamlessly provide
a standardized OPC UA [52] equivalent transformation of
the CPS service and information model to the external

world. MESS Core (cloud), PAS (edge/cloud) and SIA
(dew/edge) are all components of a ‘‘fluid’’ manufacturing
architecture [50].

B. USE CASE: HARDWARE-IN-LOOP SMART VEHICLE
CONTROL
Cloud computing for automated vehicles has high rele-
vance in control applications, which require high com-
putational effort, e.g., learning and coordinated control
features. Typical example on Vehicle-to-Cloud connection
is route planning, where comfort-based [53] and safety-
based [54] route planning approaches on the cloud with
access to real-time information on the environment are
implemented. Another example is real-time computation
of a stochastic model predictive control intervention for a
suspension system [55]. In case of high number of vehicles
connected to the cloud, the problem of best quality service
against stochastic communication delays and task deadline
in automotive context is a hot topic, see e.g., [56]. Another
important application of Vehicle-to-Cloud connection is
the coordination of automated vehicles in non-signalized
intersections, one- and double lane roundabouts [57]. Due
to the requirements of real-time information on the traffic
scenario and of enhanced performance level on vehicle
dynamic requires the application of learning-based methods
for the motion of the automated vehicle, see e.g., [58].
Nevertheless, it is necessary to develop control structures,
which can provide guarantees on safety performances, e.g.,
collision-free motion in roundabouts.

This demonstration provides a hierarchical control for
automated vehicles, with which their safe and efficient
motion in roundabouts can be guaranteed. The control
hierarchy contains vehicle level and cloud level. The aim of
the cloud-level is to achieve enhanced control performances
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FIGURE 7. Illustrations on the methodology of the vehicle control.

using the high computation capacity of the cloud. Thus,
reinforcement learning on the cloud level for achieving
maximum speed of the vehicles is implemented. Moreover,
on the vehicle level the safety requirement, i.e., collision
avoidance, is guaranteed. The advantage of the solution is
that safe performance specifications even at the degradation
of the communication in the network can be guaranteed.
Significant novel content of this work is the implementation
of the method using indoor test vehicle environment with
cloud connection.

The architecture of the hierarchical control with each
levels is illustrated in figure 7(a). The goal of the control
is to provide single motion input u(k) for a given individual
vehicle, i.e., longitudinal acceleration command a1(k), with
which the vehicle moves along its route. u(k) is computed by
the supervisor, such as u(k) = uK (k) + 1(k), where uK (k)
is the output of the robust controller on the vehicle level.
1(k) ∈ 1̂ is an additional term of the control input and
1̂ is the finite domain of 1(k). In the control architecture,
uL(k) is a candidate control input, which is suggested by the
reinforcement (RL)-learning-based controller. The value of
1(k) is a result of an optimization process in the supervisor,
which minimizes the difference between u(k) and uL(k) and
guarantees collision avoidance between the automated and
the other vehicles [59].

The constraint between the vehicles through a method of
conflict points is formulated. Roundabout can be handled as
a complex scenario with intersection and vehicle following
tasks, i.e., safe motion requires the modification of the

FIGURE 8. Simulation example.

conflict point during themotion of the vehicle, see figure 7(b).
In case of entering into the roundabout the conflict point can
be defined as the crossing of the vehicle routes. After entering
into roundabout, automated vehicle must follow preceding
vehicle. In this case, the actual position of the preceding
vehicle is the continuously varying conflict point. The aim
of the constraint is to keep safety distance ssafe between
automated and other vehicles, e.g., further automated vehicles
or human-driven vehicles: s21(k+1)+s

2
2(k+1) ≤ s

2
safe, where

k + 1 represents the next time step.
The effectiveness of the proposed method through a

Hardware-in-the-Loop (HiL) simulation with three 1/10
sized wheeled RC vehicles is demonstrated, see figure 8.
The candidate control input uL(k) from ELKH Cloud and
the position of the automated vehicle through Wi-Fi on the
Robot Operating System (ROS) network are transmitted.
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FIGURE 9. High-level architecture presenting the local to cloud
connection and components.

In the presented example the vehicle enters into roundabout,
takes a round and exits at the same direction. figure 8(a)
shows the moment when the vehicle decides to enter into
the roundabout. During its route three simulated virtual
vehicles also move in the roundabout. Thus, the automated
vehicle has interactions with all vehicles. figure 8(b) presents
the recommended RL-based control input uL , which is
transmitted by the cloud. It shows that uL facilitates the
entrance of the vehicle into the roundabout, i.e., traveling
time is reduced, which is the goal of the RL-based agent.
figure 8(c) illustrated the distance of the vehicle from its
actual conflict point, i.e., from the surrounding vehicles.
It can be seen that ssafe = 1m during the entire simulation
can be guaranteed.

ELKH Cloud hosts the cloud level control of the HiL
environment as presented in figure 9. The connection between
the local environment and the cloud-based one is provided via
a secure OpenVPN site-to-site VPN connection (OpenVPN
server). The Reinforcement Learning Toolbox of Matlab
is running on a dedicated Windows-based virtual machine
(Matlab agent) due to performance considerations. The
Python-based RL agent is being evaluated as an alternative
to Matlab and deployed on a separated Ubuntu-based
virtual machine (Python agent). These machines can directly
communicate with the Hil environment through the VPN con-
nection with ROS protocol. Lastly, the ingestion component
(ROS ingestion) is running on another Linux based virtual
machine. This component acts as a ROS-MQTT bridge for
ingesting data from the HiL environment with ROS protocol
and forwarding it to the Kafka streaming component via
MQTT protocol for further analysis.

IV. EVALUATION OF THE PLATFORM
We wanted to evaluate the performance of the platform
for additional use cases. During the next period of the
Autonomous National Lab project additional use cases will

be introduced. Data will be ingested from outdoor sources
that include data originating from multiple autonomous cars.

We wanted to evaluate the platform as a whole, and also
the ingestion stage separately. The evaluation of the platform
as a whole provides a clear view of the limitations and
bottlenecks, if any. Additionally, the most critical part of the
platform is the ingestion & staging part. Any bottleneck here
will result in a data loss, while the later stages typically only
introduce latency for the system as a whole.

A. METHODOLOGY
For the ingestion stage, we evaluated the Kafka ingestion
endpoint. We measured different number of data sources
using different rate of transmission and message sizes.
This includes the number of concurrent data sources, the
sustainable message transfer frequency and message size for
these. We also evaluated the scalability of the endpoint in
terms of expected performance uplift by increasing the cluster
size. We did not increase the hardware resources allocated to
the cluster nodes as there is a limitation stemming from the
cloud infrastructure, and we rather go wide than tall.

We decided to use a loader cluster to generate load
for the Kafka cluster in a controlled way. The whole
ingestion part, including the Kafka cluster and the Kafka
load generator cluster, is monitored by Prometheus and its
Node exporter. The Node exporter of Prometheus collects
the most relevant metrics data from the virtual machines
and makes it available at an HTTP endpoint. Prometheus
scrapes the metrics from the HTTP endpoint and stores it
for visualisation and later use. The Kafka cluster uses the
m2.xlarge VM flavor, which contains 8 vCPUs and 16 GB
of RAM. The loader cluster utilises the m2.large VM flavor,
which includes 4 vCPUs and 8 GB of RAM. Both clusters
are based on Ubuntu 20.04 operating system and uses Kafka
version 3. The deployment of the temporary load cluster was
done via Terraform. Terraform makes the benchmark process
more straightforward, easy to replicate and customizable as
needed. The benchmark started with a Python script that uses
Ansible as a core component to distribute the benchmark
configuration and start the benchmark process on the load
cluster.

We created two different scenarios covering the two main
aspects, the throughput and latency of data ingestion systems
during the benchmark measurement. In addition, we inves-
tigated and measured the ingestion scalability with cluster
sizes of three and five nodes. These measurements help
to analyze the system’s scalability and identify bottlenecks
in the system. Our preliminary tests show that one thread
cannot use all of the available CPU power on the loader
hosts. Therefore, we created two active benchmark processes
on the loader cluster during the throughput optimized
scenario. We created the configuration based on the vendor
guideline [60] to create those scenarios and fine-tune the
Kafka cluster to achieve better results. The benchmark aimed
to measure the system throughput and latency. Therefore the
throughput is not limited on the Kafka loader components.
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TABLE 1. The different configuration parameters during the two
scenarios.

In the configuration, ‘‘−1’’ denotes that the throughput is
not limited. Bootstrap.server points to one of the Kafka
endpoints, and Kafka distributes the traffic between the
nodes. Buffer.memory can adjust how much memory is
allocated during the producer benchmark. We do not expect
to use many partitions during the use-cases, so we are
using 32 MB buffer memory regarding the guideline. One
of the best ways to optimize throughput is to increase the
producer batch size via the Batch.size option. Larger batch
sizes result in fewer processing requests on the broker side
and fewer requests to generate on the loader side, i.e.,
the system can achieve higher throughput with lower CPU
utilization and spare the network bandwidth. We used 100 kB
batch size during the throughput optimized strategy, and in
the latency optimized scenario, we used 32 kB. According
to the guideline, the second-best parameter to increase
the throughput is to increase Linger.ms value. Linger.ms
parameter sets the waiting time for the batch to fill up with
messages. In the throughput benchmark, we increased the
default value to 10 ms. Compressing data batches improves
throughput and reduces the load on storage but might not
be suitable for low-latency applications where compression
or decompression costs are inevitable. In our throughput
optimized experiment, we used the lz4 compression method.
Replication.factor ensures that messages are copied and
stored on multiple brokers. We used a replication factor of
three during the measurements. Kafka’s topics are divided
into several partitions. While the topic is a logical concept
in Kafka, a partition is the smallest storage unit that
holds a subset of records owned by a topic. ACKS defines
the number of acknowledgements the producer requires
the leader broker to have received before considering a
request complete. In a low latency application, it is not
reasonable to get an acknowledgement from every node.
However, one acknowledgement can assure that the data is
processed, and Kafka will synchronize the data to achieve the
desired replication factor. Table 1 summarizes the different
configurations used for the measurements.

B. RESULTS
Figure 10 represents a typical benchmark load on one of the
Kafka cluster node. CPU load graphs 10 (a, b) represent the
CPU load on one of the Kafka nodes. The first peek shows
the active data handling and synchronization process across

TABLE 2. Ingestion stage evaluation results using a three node Kafka
cluster for ingestion (latency optimized).

TABLE 3. Ingestion stage evaluation results using a three node Kafka
cluster for ingestion (throughput optimized).

the cluster. As soon as the peak load decreases, the loader
cluster has finished the data sending, and the rest of the load,
which is around 15-25% corresponds to the synchronization
process between the Kafka cluster. We can observe the same
behaviour on the network 10 (c) and disk performance 10
(e, f) graphs. The active data handling and processing stages
are the more resource-demanding tasks compared to the data
synchronization part. Memory 10 (d) and disk-related 10 (e,
f) graphs show that the data is written directly to the disk.
Thus, we can achieve approximately constant throughput
speeds. Disk graphs point out the system bottleneck, which
is the cloud underlying storage performance. The peak node
performance values were the following: CPU utilization
50.9%, 3.74 Gb/s input and 1.49 Gb/s output network traffic,
468.6 MB/s write, and 91.96 MB/s read performance for the
storage.

For each measurement, tables were presented based on the
median and P90 values obtained by repeating the experiments
five times. Table 2 represents the benchmark on three
Kafka nodes in latency optimized configuration. The rows
represent the different packet sizes, and the columns are
the median and the 90th percentile of the measured values.
Table 3 represents the measurements for three Kafka nodes in
throughput optimized configuration and table 4, 5 represents
five node Kafka cluster with the configuration fine-tuning
explained earlier.
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FIGURE 10. A typical resource usage pattern during the benchmark process in one of the Kafka node. (a) Total CPU usage of the
system (percentage); (b) System load over a period of time (1m, 5m, 15m); (c) Received and transmitted network bandwidth usage
per second; (d) Total memory usage of the system (percentage); (e) Disk read and write speed; and (f) The time spent on I/O in the
natural time of each second.

TABLE 4. Ingestion stage evaluation results using a five node Kafka
cluster for ingestion (latency optimized).

Figure 11 presents the relation between throughput and
records size. For Y-axis logarithmic scale is used in this
chart. Figure 12 shows the relation between bandwidth

TABLE 5. Ingestion stage evaluation results using a five node Kafka
cluster for ingestion (throughput optimized).

throughput performance and records size. Based on our
measurements, the peak throughput speed in the cluster was
883.56 MB/s with 8,192 byte records. Between the record
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FIGURE 11. Effect of batch size on throughput in records/s in Kafka —
higher is better; Note: The scale on the y-axis is logarithmic.

FIGURE 12. Effect of batch size on throughput in bandwidth in Kafka —
higher is better.

FIGURE 13. Effect of batch size on throughput in records/s in Kafka —
lower is better; Note: The scale on the y-axis is logarithmic.

sizes of 2,048 and 32,768 in the same scenario, the reduction
in the throughput speed is negligible. Figure 13 represents the
values of the latency during the benchmark using logarithmic
scale for the Y-axis. Interestingly, during the experiment,
we got higher latency values between the record sizes of
256 and 8,192 in the latency optimized configuration.

Table 6 and 7 show the scalability measurements of the
Kafka cluster. The tables show the difference in the through-
put and latency using a three and five node sizedKafka cluster
for the different scenarios. The green backgrounds in the
table cell mark the system property improvement, and red
backgrounds signify the values’ deterioration. Table 6 data
shows that latency configuration fine-tuning is not scaling
very well in terms of latency in case of small record sizes.
As a matter of throughput, scale-up provide ≈40% higher
throughput. Table 7 data indicates better scalability where
throughput increased≈67% and latency decreased≈14, 55%
during the measurements.

TABLE 6. Evaluation of the speedup of the latency optimized Kafka
clusters using three vs. five nodes.

TABLE 7. Evaluation of the speedup of the throughput optimized Kafka
clusters using three vs. five nodes.

As a summary, using the throughput optimized configura-
tion our system is able to achieve overall better throughput
with acceptable latency, and with overall better scalability.
Based on the performance measurements, we found that
processor and memory utilization do not pose a bottleneck
in the system. The most resource-demanding state of the
system utilizes ≈50.9% CPU. This suggests that it may
be worthwhile to choose another type of flavor for better
cloud resource utilization. Further, we investigated the
resource-demanding states in the system and endeavour to
gain better utilization on the cloud side.

Based on the outcome of the benchmarks, we can
determine the system’s performance conditions and fine-tune
the values based on the needs of the experiments. As a
result, we were able to better understand the performance
characteristics of our system, and what it is possible when
scaling our current architecture.

V. CONCLUSION
In this paper we introduced a scalable, cloud-agnostic and
fault-tolerant data analytics platform for advanced IoT use
cases. Additionally, our work relies on stable open-source
components to build a reusable architecture blueprint also
known as reference architecture. The applied components
have commercial and/or cloud-based alternatives that can be
swapped in as needed. Additionally, we demonstrated the
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value of the platforms through two uses cases. The first use
case being the guaranteeing safe motion of mobile robots
for logistic and transport process using cloud-aided learning.
The second presented use case addresses Industrial IoT (IIoT)
data collection and enrichment from a robotic assembly
scenario over a service-oriented manufacturing execution
system, in which the collaborative robotic arm near real
time-data provision provides the foundation necessary for a
better understanding of the while process.

Current limitations include the reliance on single core
performance forMQTT-based ingestion due to the limitations
of Eclipse Mosquitto. However, for the ingestion stage our
main limitation is the Kafka ingestion cluster. Based on our
evaluations, we understand what further system adjustments,
including allocation of more system resources, and cluster
sizing is required there. Based on the outcome of the
benchmarks, we understand performance conditions of the
system and can fine-tune the values based on the needs of the
experiments. As a result, we were able to better understand
the performance characteristics of our system, including the
scalability of the current architecture.

We are implementing our findings in anticipation of
new use cases and increasing traffic volume from existing
ones. Further, we plan to introduce dedicated Apache NiFi
clusters for the use cases, allowing better separation of
workloads. For the data warehouse we are not expecting
issues, however, TimescaleDB supports clustering via the
standard PostgreSQL replication and also supports dis-
tributed hypertables [61]. We are investigating the latter
for a future use case involving live data collection from
autonomous vehicles over 5G cellular network.

Finally, we are working on releasing the complete platform
and infrastructure descriptors as an open-source reference
architecture using Occopus [62] and MiCADO-Edge [63]
cloud-agnostic orchestrators.
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