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Liver plays an important role in metabolic processes, therefore fast diagnosis and potential surgical plan-
ning is essential in case of any disease. The automatic liver segmentation approach has been studied dur-
ing the past years and different segmentation techniques have been proposed, but this task remains a
challenge and improvements are still required to further increase segmentation accuracy. In this work,
an automatic, deep learning based approach is introduced, which is adaptable and it is able to handle
smaller databases, including heterogeneous data. The method starts with a preprocessing to highlight
the liver area using probability density function based estimation and supervoxel segmentation. Then,
a modification of the 3D U-Net is introduced, which is called 3D RP-UNet and applies the ResPath in
the 3D network. Finally, with liver-heart separation and morphological steps, the segmentation results
are further refined. Segmentation results on three public databases showed that the proposed method
performs robustly and achieves good segmentation performance compared to other state-of-the-art
approaches in the majority of the evaluation metrics.
� 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Liver plays an important role in metabolic processes, therefore
fast diagnosis and potential surgical planning is essential in case
of any disease. To achieve this, usually abdominal Computed
Tomography (CT) scans are acquired, therefore a high amount of
diagnostic data should be processed quickly. Computer aided diag-
nosis is often required to accelerate the process, where accurate
liver segmentation is one of the main steps. Automatic liver seg-
mentation has been studied during the past years and different
techniques have been proposed, but improvements are still
required to further increase segmentation accuracy, as the task is
very complex. Beside the large variability of the liver’s shape and
size, potential pathological changes inside the organ and heteroge-
neous image data with different characteristics also mean a great
challenge.

In the past few years, semi-automatic and fully automatic liver
segmentation methods were mainly published [1]. These segmen-
tation approaches could be divided into three main groups: image
based, shape prior based and learning based techniques.
Image- (or pixel-) based approaches mainly exploited the typical
image characteristics of the liver region first, using a priori knowl-
edge, like an atlas-based registration step [2] to determine the
potential organ area. This was followed by various classification
steps for segmenting the final liver area, such as thresholding,
region growing [3], edge detection [4], some kind of atlas-based
or graph-based method [5] or active contour based outline detec-
tion [6,7].

In [8], a complex image based segmentation process was intro-
duced for surgical planning, also extracting liver vessels and classi-
fied liver segments. Similarly to our introduced method, a
histogram analysis was applied to define the potential liver area.
The method was quite complex and it was quite accurate, however,
required higher computational time (average liver segmentation
time was 55 s). In a similar manner, [9] used region growing and
level-set active contour together with a novel signed pressure
function integrating both local and global information. Despite its
high performance, the method required user interaction for initial
seed point definition, which limited its usability in case of large
databases.

Graph cuts were also widely used tools for liver segmentation,
as they could handle regional and shape image features and
boundary regularization [10,11]. In earlier works, human interven-
tion was required for initialization [12,13], but later different
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automation steps were proposed, either estimating the potential
liver location [14] or using neighboring organs (like the heart
and the kidneys) [5] to select foreground/background points
automatically.

The shape-based models, such as [15], required an average
shape model, which was typically built using a larger database.
The disadvantage of such models was their adaptability to large
deformations. To eliminate this, a statistical shape model was
introduced in [16], which combined learned shape priors with dif-
ferent local constraints for robust model initialization, followed by
a multi-tiered model adaptation. The adaptation process was fur-
ther improved in [17], where potential boundary points were clas-
sified into genuine and dubious groups, and the latter ones were
then refined. A more challenging issue for these models was the
liver segmentation in heterogeneous data with different modali-
ties, in [18], a robust multi-variability 3D model for CT and Mag-
netic Resonance Imaging (MRI) modalities was introduced, built
on the liver shape variance.

Pixel-based and shape-based elements can be fused, as in [19],
where the initial liver region was detected using atlas label propa-
gation and fusion, followed by a graph cut framework. Similarly, in
[20] the authors fused a novel level set framework for initial seg-
mentation, sparse shape composition for refinement and graph
cut for further optimization. Although the method’s performance
was outstanding, the average running time for one CT volume
was 16:6 minutes, which made real application difficult.

As our aim was to propose a fast method even for smaller data-
bases including heterogeneous data (i. e. scans from different hos-
pitals in a real life application), shape models with large shape
variability could not be built, therefore we preferred image-based
methods throughout our work.

Learning-based methods were lately introduced for medical
image analysis and attracted great attention, as they had the ability
to extract multiple features and to make segmentation more accu-
rate. Different neural networks were introduced for medical image
analysis, including Convolutional Neural Networks (CNNs) [21,22],
Fully Convolutional Neural network (FCN) [23–26], Deep Belief
Network [27], etc. Probably, one of the most popular CNN architec-
ture is the U-Net model [21], which was published for medical
image analysis in different application fields. Since then, many
modifications of the original network were introduced for various
applications [28,29,22,23,30]. Recently, the U-Net architecture was
also used for liver segmentation [31–34], however, the majority of
the proposed modifications performed a slice-by-slice 2D segmen-
tation, which made the computational time higher and did not
exploit potential interslice information. Learning-based models
were also fused with pixel-based techniques for refining the seg-
mentation result, like in [23], where a 3D deeply supervised net-
work was proposed, and the output probability mask was further
refined with a fully connected conditional random field model
(CRF). Similarly, the CRF was also applied in [24] for refinement,
after using cascaded fully convolutional neural networks for liver
and lesion segmentation. Active contour method was used for
refinement in [27], where deep belief network was combined with
deep neural network to perform a complex training in two steps. In
a recent work [35], improved Faster R-CNN [36] was applied for
approximating the liver location as a first step, then a liver seg-
mentation with DeepLab in the second stage.

The latest advances in medical image processing applications
are the transformer-based architectures. Self-attention-based
architectures, in particular Transformers [37], are the leading
model in natural language processing [38]. Their dominant
approach is two-step: first, a pretraining on a large text corpus,
then a fine-tune on a smaller task-specific dataset. Inspired by
their success, there is a continuous effort to introduce them also
in computer vision. Either combining themwith CNN-like architec-
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tures [39], or replacing convolutions entirely [40]. Transformer-
based architectures are also introduced in medical image process-
ing, following mainly the fusion model by combining a Trans-
former into the U-Net architecture [41–44]. Usually, these
models are trained on larger data sets and require huge hardware.
They prefer training databases where either the major part of the
image is annotated (such as the BTCV Synapse Multi-organ CT
Database or the MSD MRI/CT database), or the database itself is
quite huge (like the MICCAI BRATS challenge) to have enough
training data to learn the context. Published liver segmentation
methods are also evaluated on the mentioned multi-atlas data-
bases (the BTCV and MSD), and the results are quite promising
(DSC values from 92:2 to 98:5 for the BTCV, and 95:4 for the
MSD). However, no segmentation results are available at this point
for smaller datasets, like the ones we used in our evaluation, there-
fore, it is impossible to give a fair quantitative comparison with
those models.

In our work, we were inspired by the 3D extension of the orig-
inal 2D U-Net (called 3D U-Net) [22] and the modification pro-
posed by [30], where the MultiRes block and the ResPath were
introduced. Unlike [45], which adapted the 2D ResUNet followed
by a 3D postprocessing step, we have integrated the ResPath into
a 3D U-net based network for a one-step volumetric segmentation,
which is called the 3D RP-UNet.

As a novel contribution, we have introduced an end-to-end 3D
segmentation approach for heterogeneous CT data with improved
pre- and postprocessing steps, resulting in an accelerated, yet effi-
cient processing strategy even for smaller databases with different
image characteristics. The proposed preprocessing runs completely
in 3D and emphasizes the liver region by using probability density
function and supervoxel segmentation. After the learning-based
volumetric segmentation, some typical segmentation problems
are corrected by the proposed postprocessing, including a liver-
heart separation step. Beside the high segmentation accuracy and
the low computation cost, the introduced approach is also capable
of generalization and handles previously unseen data efficiently;
therefore it has the potential to be used in real life applications
as well.

Evaluation results on three publicly available datasets - MICCAI
Sliver07 [1], the 3D-IRCADb [46] and the VISCERAL Anatomy3
database [47] - show that the proposed method has strong perfor-
mance compared to the state-of-the-art approaches, regarding the
majority of the calculated six evaluation metrics.
2. Methodology

2.1. Preprocessing

We have improved our method, which was previously proposed
in [48] and motivated by [5] to run completely in 3D. The prepro-
cessing of the CT scan starts with a rescaling, based on its maxi-
mum Hounsfield unit value and the rescaled scan is then stored
in a 16-bit image (Fig. 1(b)). This way we acquired a wider range
of pixel intensities. After rescaling, to reduce computational com-
plexity, the volumes are resampled to 128� 128� 64. For further
processing of the CT scan, median filtering is used to reduce noise
while preserving edges, which is important for image segmenta-
tion [4].

Following [48], our presumption is that the liver is located in
the upper half of the volume (considering the orientation of the
slices shown in Fig. 1). To verify the validity of this presumption
for the actual CT scan, we checked the location of the spine using
the axial maximum intensity projection (MIP) of the bone mask,
inspired by [5]. If the spine is detected on the left side of the image
(thus, the liver is located in the lower half of the volume), it means



Fig. 1. The steps of preprocessing: (a) Original image, (b) Rescaled image (white rectangle indicates the image quarter where the liver is assumed), (c) Thresholded image, (d)
Morphologically modified image, (e) Supervoxel regions of the rescaled image, (f) Preprocessed image.
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that the whole scan is rotated. Therefore, the volume have to be
rotated with 180 degrees before further steps.

The image is then thresholded using the probability density
function (PDF). The input of the PDF estimation is one of the upper
quadrants of the volume (marked by a white rectangle in Fig. 1(b)
for one slice), depending on whether the scan is slightly rotated or
not. The degree of rotation was determined in the previous step,
using the axial MIP of the bone mask. Therefore, we expect that
the selected quadrant contains most of the liver voxels. To further
highlight the liver region, we also excluded the voxels with inten-
sity lower than 500 (based on our previous experiments), thus, one
of the PDF peaks is expected to represent the intensity range of the
liver.

Based on the analysis of the calculated PDFs, the CT scans could
be classified into two categories: high contrast or low contrast
(Fig. 2) [5,48]. The high contrast scans have more than one peak
Fig. 2. Probability density functions (PDFs) of the pixel intensity values. Left image is an e
high contrast scan. Blue dash line represents the lower boundary, while the black repre
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in their PDF (right image of Fig. 2), and the second peak represents
the liver intensity range. The low contrast scans have only one
peak (left image of Fig. 2), which corresponds to the intensity range
of the liver. Therefore, the boundaries of the thresholded intensity
range are defined by the location and the width (half-height) of the
corresponding peak. This thresholding method removes most of
the voxels of the other organs (as shown in Fig. 1(c)). The output
of this step is further refined by previously proposed cavity filling
and morphological opening. As an improvement, we further
extended these refinement steps with keeping the largest con-
nected component and a morphological dilation. The output of
these steps is shown in Fig. 1(d).

The obtained, thresholded volume may not include some liver
parts such as large vessels and lesions next to the boundary due
to higher or lower intensity, respectively, relative to the liver inten-
sity range. We propose 3D supervoxel segmentation to retrieve
xample for the PDF of a low contrast scan; right image is an example for the PDF of a
sents the upper boundary of the estimated liver intensity range.
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these falsely removed liver parts. The supervoxel algorithm is
based on the modified 3D version of the Simple Linear Iterative
Clustering (SLIC) algorithm [49]. SLIC is a novel k-means based
clustering algorithm, which can generate superpixels/ supervoxels
quickly and efficiently based on the intensity and the 2D/3D spatial
proximity. A weighted distance measure combines these features,
while simultaneously providing control over the size and compact-
ness of the superpixels or supervoxels. As a result, the calculated
supervoxels have nearly uniform size, while their boundaries clo-
sely match the true image edges.

In our work, we used the built-in Matlab function superpixels3
for computing 3D supervoxels. The function requires the 3D vol-
ume and the Nd desired number of supervoxels as input. It returns
the Na actual number of the calculated supervoxels together with a
3D label matrix. Fig. 3 shows the output of the clustering for differ-
ent Nd numbers of supervoxel regions. As it can be seen, when the
size of the supervoxel region is smaller (thus the Nd number of the
supervoxels is larger), the supervoxel algorithm can find the liver
border more precisely (Fig. 3(c)).

The supervoxel segmentation is applied to the rescaled and
resampled CT scan (Fig. 1)) and the refinement is performed by
removing only those supervoxel regions, that don’t contain any
voxel of the obtained thresholded volume. We have to set the Nd

number of supervoxel regions to relatively small, so that the super-
voxel regions include those possibly removed liver parts, but if we
set the Nd number to too small, the regions include unnecessary
non-liver tissues. Based on our experiments, the Nd number is set
to 410, but the Na actual number of the created supervoxel regions
is between 250;350½ �.

Lastly, the remaining image parts are rescaled again to enhance
the image contrast. As Fig. 1(f) shows, most of the non-liver tissues
are removed and the remaining organs can be more easily sepa-
Fig. 3. Examples of supervoxel segmentations produced by different Nd numbers of s
100;1000;5000, respectively. The image data inside the red box in (a)–(c) are displayed
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rated than in the original image (Fig. 1(a)). This preprocessed
image will be the input of the proposed CNN model.

2.2. 3D RP-UNet

The neural network, which was implemented in this work, is
a modified version of the 3D U-Net [22] (Fig. 4), which we call
the 3D RP-UNet. In the 3D RP-UNet (Fig. 5), we use up-
sampling in the expanding path, instead of up-convolution
(marked by green upwards arrows) to reduce the number of total
parameters and to have only trainable parameters. Furthermore,
we exchanged the skip connections with the ResPath, introduced
in [30]. The skip connection is a simple concatenation of the fea-
ture maps of the corresponding layers of the contracting and
expanding stage. This enables the network to propagate spatial
information lost during the pooling operations. Ibtehaz and Rah-
man states [30] that there is a flaw of the skip connections, since
there is a semantic gap between the corresponding layers of the
encoder-decoder stage. Therefore, the ResPath was proposed to
resolve this problem and instead of a simple concatenation, the
feature maps from encoder stage are passed through the ResPath,
and then concatenated with the decoder features. The ResPath is
a chain of convolutional layers with residual connections (illus-
trated in Fig. 6). The residual connections - earlier used for exam-
ple in [50] - are introduced into the ResPath since they increase
the convergence speed, reduce the number of convolutional
blocks and they are also proven to have great potential in the
medical image analysis [51].

As a novelty, we introduced the ResPath into a 3D U-Net net-
work (Fig. 5), so we used 3� 3� 3 convolutional layers and
1� 1� 1 residual connections. Additionally, the 3D RP-UNet con-
sists of 3 ResPaths with 3;2;1 convolutional blocks, respectively
upervoxels on one CT slice. The different numbers of supervoxels, from (a)-(c), is
in the top row.



Fig. 4. The architecture of 3D U-Net in [22]. Blue boxes represent the feature maps obtained from the convolution operations. The number above them represents the number
of feature maps.

Fig. 5. The architecture of the proposed 3D RP-UNet is an improvement of 3D U-Net [22]. Blue boxes represent the feature maps obtained from the convolution operations.
The number above them represents the number of feature maps.
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and the number of feature maps used in the blocks of the ResPath
are 64;128;256 respectively. Furthermore, we used dropout layer
with p ¼ 0:2 between the conv3d functions along the U-shape,
and skipped the Batch Normalization of the original 3D U-Net to
reduce GPU memory. Moreover, we changed the number of feature
maps in the expansive path due to limited GPU memory, thus the
number of feature maps in the proposed model is 256;128 and 64
before the up-sampling functions.
392
2.3. Postprocessing

The output of the neural network is a probability map with val-
ues between 0 and 1. To get a binary prediction mask of it, the
probability map was thresholded at the value of 0:5. In the
obtained binary prediction masks, in some cases, small overseg-
mentation could be observed at the heart (Fig. 7(a)) or the spleen
(Fig. 7(b)) (if the preprocessing wasn’t so accurate) and underseg-



Fig. 6. ResPath proposed in [30].

Fig. 7. Improvement of the prediction masks presented on preprocessed images: (a) and (b) Oversegmentation in the place of (a) heart and (b) spleen and (c)
undersegmentation inside the liver due to lesion. (d) - (f) Elimination of the missegmentation. Red contour represents the ground truth, while yellow contour shows the
segmentation results.
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mentation because of a lesion inside the liver (Fig. 7(c)). Thus, the
postprocessing focused on these problems.

First, we applied the liver-heart separation method, introduced
in [3] which was improved and accelerated in our previous work
[48]. Our improved version first determines the binary mask of
the air-filled parts of the 3D abdominal region with a thresholding
step (a sample 2D slice is shown in Fig. 8(b)). The orientation of the
Fig. 8. Illustration of the lung segmentation on a sample coronal slice: (a) Original imag
blobs); (d) Result of the segmentation.
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volume is assumed to be vertical and the lungs are connected to
the upper border (as shown in Fig. 8). Then, all the components
of the obtained 3D binary volume are categorized into the follow-
ing classes:

1. Components connected to left, right or bottom border of the 3D
abdominal region (marked in red in Fig. 8(c));
e; (b) Obtained binary mask of air-filled parts; (c) Filtered regions (yellow and red



Fig. 9. The separating curve between the heart and liver. Leftmost point is presented in green and the rightmost point in yellow.

V. Czipczer and A. Manno-Kovacs Neurocomputing 505 (2022) 388–401
2. Components not connected to any borders (yellow in Fig. 8(c)).
3. Components not categorized into the previous two classes

(white in Fig. 8(c)).

After the classification, the components categorized into the first
two classes (marked in red or yellow in Fig. 8(c)) are eliminated.
The remaining components in the 3D binary mask are expected to
represent the lung mask (Fig. 8(d)), which is applied for separating
the liver and the heart. A curve is defined between the right and left
lobe for each coronal slice. The curve starts from the rightmost
point of the patient’s left lobe (marked in green in Fig. 9) and from
right to left, each point of the curve is chosen based on the location
of the largest gradient value found in the local environment of the
previous point. The process is finished when it reaches the leftmost
point of patient’s right lobe (marked in yellow in Fig. 9). The set of
these curves defines a surface, which connects the two lobes and
separates the heart (above the surface) and the liver (under the sur-
face) [3]. Lastly, the curves located in neighboring slices are aver-
aged to provide a smoother separating surface.

Above the surface defined by the liver-heart separation, we set
every voxel of the binary prediction mask to zero. Then, we only
keep the largest connected component to remove the non-
connecting blobs such as the one in Fig. 7(b). In the next step, mor-
phological closing operation is applied to smooth the surface of the
predicted liver mask and we only keep those voxels that is inside
the original thresholded probability map. Lastly, cavity filling is
applied on the binary mask on each axial slice to fill in the holes
caused by the potential lesions inside the liver (Fig. 7(c)). This step
gives the final liver mask.

3. Results

3.1. Datasets

During this work, we used three different, publicly available
databases: the MICCAI Sliver07 [1], the 3D-IRCADb [46] and the
VISCERAL Anatomy3 database [47].

The MICCAI Sliver07 database contains 20 clinical contrast-
enhanced (portal venous phase) abdominal CT volumes acquired
using a variety of scanners, including ground truth images with
expert segmentation. Most of the data is pathological. The number
of slices, in-plane resolution, and interslice resolution varies
between 64 and 394; 0:58 and 0:81 mm, and 0:7 and 5:0 mm,
respectively. 3D-IRCADb database is also composed of 20 venous
phase enhanced CT scans with hepatic tumors in 75% of the cases.
On the IRCADwebsite, a detailed description is added for each scan,
including liver size (width, depth, height) or the liver’s average den-
sity. It also lists what could cause segmentation errors, including
the contact with neighboring organs, an atypical shape or the den-
sity of the liver or even artifacts in the image. The number of slices,
in-plane resolution, and interslice resolution ranges between 74
and 260; 0:561 and 0:873 mm, and 1:0 and 4:0 mm, respectively.

The VISCERAL Anatomy3 database includes 79 samples with
manual liver segmentation, from which we only use the 20
394
contrast enhanced CT images. It differs from the above-
mentioned 2 databases, as all the CT images include the thorax
and each liver in the database is non-pathological.

The segmented liver regions were defined to include the entire
liver tissue and all internal structures, including vessels, tumors,
and cirrhosis.
3.2. Evaluation measures

The results of the different methods were quantitatively evalu-
ated using 6 different metrics by comparing them to the manual
segmentation done by experts. The 6 metrics, often used in the
state-of-the-art, are the followings:

Dice similarity coefficient (DSC) measures the similarity of
two binary image:

DSC ¼ 2TP
2TP þ FP þ FN

ð1Þ

Volumetric overlap error (VOE) [%]:

VOE ¼ 100 1� A \ B
A [ B

� �
ð2Þ

Relative volume difference (RVD) [%]:

RVD ¼ 100
Aj j � Bj j

Bj j
� �

ð3Þ

Average symmetric surface distance (ASD) [mm]:

ASD ¼ 1
SðAÞj j þ SðBÞj j

X
SA2SðAÞ

dðSA; SðBÞÞ þ
X

SB2SðBÞ
dðSB; SðAÞÞ

 !
ð4Þ

Root mean square symmetric surface distance (RMSSD)
[mm]:

RMSSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
SðAÞj j þ SðBÞj j

X
SA2SðAÞ

d2ðSA; SðBÞÞ þ
X

SB2SðBÞ
d2ðSB; SðAÞÞ

 !vuut
ð5Þ

Maximum symmetric surface distance (MaxD) [mm]:

MaxD ¼ max max
SA2SðAÞ

dðSA; SðBÞÞ; max
SB2SðBÞ

dðSB; SðAÞÞ
� �

ð6Þ

In DSC metric, true positive (TP) means, the observed value is 1 and
is predicted to be 1. False positive (FP) means that the observed
value is 0, but it is predicted to be 1. False negative (FN) is the oppo-
site of FP: the observed value is 1, but it is predicted to be 0.

In the last five measures, A represents the segmented volume
produced by the proposed method, B is the ground truth, SðAÞ
denotes the set of surface voxels of A. The shortest distance of a
voxel v to SðAÞ is defined as dðv ; SðAÞÞ ¼ minSA2SðAÞ v � SAk k, where
:k k represents the Euclidean distance [5]. DSC is 1, the other met-
rics are zero for a perfect segmentation.



Fig. 11. Progress of the average training loss for the different U-Net versions.
Upconv is the abbreviation of the upconvolution, and BN marks the batch
normalization.
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3.3. Data augmentation

For data augmentation, we adopted 3 techniques for all training
data to increase the training dataset, thus alleviating the overfit-
ting problem:

� rotation of images by 5 to 75 degree,
� random shearing by 5 to 20 degree,
� and scaling images to a value of 80% to 120% of the original
size.

Each augmentation step is performed only in the axial direction.

3.4. Ablation study

We compared the performance of the following different
models:

1. the original 3D U-Net [22] with 19078337 parameters in total
(including 4672 non-trainable parameters);

2. 3D U-Net without upconvolution (marked by ”w/o upconv”) to
reduce the number of total parameters (16315585 parameters
in total, only trainable parameters);

3. the second model with added batch normalization (marked by
BN) to avoid overfitting;

4. the proposed 3D RP-UNet (17699137 parameters in total, only
trainable parameters).

We trained these implemented models 10 times on the same set of
MICCAI Sliver07 database with the same hyperparameter settings.
The training dataset contained 18 volumes of the MICCAI Sliver07
database. We applied only a minimal preprocessing to the volumes.
First, to reduce computational complexity, all volumes were resam-
pled to 128;128;64½ �, then the intensity range of all the volumes is
normalized to �128;128½ �. Therefore, the performance of each
model is evaluated without a more complex pre- and
postprocessing.

Throughout the training, each batch contained only one resized
3D volume of CT images. The number of epochs was set to 165 with
18 steps per epoch. The chosen optimizer was Adam with the ini-
tial learning rate of 10�4. The performance of the models was mea-
sured on each epoch using the DSC and binary cross-entropy loss.

Fig. 10 shows the average performance using the DSC metric,
Fig. 11 shows the average loss of the models. It can be noted, that
the proposed 3D RP-UNet attains convergence a bit faster than the
Fig. 10. Progress of the average training performance for the different U-Net
versions. Upconv is the abbreviation of the upconvolution, and BN marks the batch
normalization.
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other 3D U-Net versions, therefore we are likely to obtain better
results in a smaller number of training epochs as compared to
the other models. Similarly, 3D RP-UNet achieves lower validation
loss, than the other 3D U-Net based models. By comparing the 3D
U-Net based models, 3D U-Net w/o upconv with BN converges a bit
slower, than the other two compared versions.

To further analyze the performance quantitatively, the models’
results were also evaluated on two test volumes using the 6 met-
rics, introduced in Section 3.2. Throughout the evaluations, we
used the models with weights that gave the best DSC during train-
ing. Since each model’s result was a probability map with values
between 0 and 1, we used a 0:5 threshold to get a binary mask
of the liver and we compared this mask to the ground truth.

In Table 1, the best average results obtained from the quantita-
tive evaluation are shown in bold. It can be seen that the 3D U-Net
w/o upconv with BN and the 3D RP-UNet overperformed the other
two models and achieved similar evaluation results. Due to the
added batch normalization, 3D U-Net w/o upconv with BN could
generalize more easily than the original 3D U-Net and 3D U-Net
without upconvolution. When comparing the two better perform-
ing models, their performance is quite similar for all metrics in case
of the test1 volume, however for the test2 scan 3D RP-UNet per-
forms significantly better considering the RVD, RMSSD and MaxD
metrics.

Considering these observations in addition to the fact that 3D
RP-UNet is the best converging model, we can state that 3D RP-
UNet had the best performance in the ablation experiments and
together with the pre- and postprocessing steps the performance
could be further improved.

3.5. Training, Validation and Testing

The implemented 3D RP-UNet is trained and validated on the
preprocessed and augmented CT images, and tested on the merely
preprocessed CT images. Throughout the training, each batch con-
tained only one 3D CT scan. The number of epochs was set to 100
and the chosen optimizer was Adam with the initial learning rate
of 10�4. We measured the performance of the models on each
epoch using the DSC and binary cross-entropy loss.

Additionally, we stored the weights of the model that gave the
best validation DSC during training, and throughout the evalua-
tions, we used those prediction masks, that were obtained by the
model with these weights.



Table 1
Quantitative performance of the different 3D U-Net models on 2 test images from the MICCAI Sliver07 database.

DSC VOE RVD ASD RMSSD MaxD

Original 3D U-Net [22] test1 0.96 8.23 �0.22 0.70 2.32 26.61
test2 0.93 13.55 3.77 0.56 1.37 10.23

3D U-Net
w/o upconvolution

test1 0.95 9.00 0.47 0.85 2.84 29.38
test2 0.93 12.75 0.38 0.83 2.62 19.27

3D U-Net
w/o upconvolution with BN

test1 0.97 6.45 �0.98 0.61 2.38 28.59
test2 0.94 10.49 5.07 0.63 2.34 24.66

3D RP-UNet test1 0.96 6.94 �0.90 0.61 2.14 21.81
test2 0.94 11.82 �0.55 0.53 1.61 14.96
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3.6. Experiments and evaluation

The proposed method was trained and tested on the MICCAI
Sliver07 and 3D-IRCADb databases, and only tested on the VISC-
ERAL Anatomy3 database (to evaluate the performance also on
previously unseen data). The first step was the preprocessing of
the CT volumes to remove most of the non-liver tissues. The aver-
age computation time for a whole CT scan took 8:4 seconds, mea-
sured on randomly selected volumes of the MICCAI Sliver07
database. In most cases, the preprocessing worked efficiently.
However, in one extreme case, small liver area was removed due
to a large lesion with distinctly different intensity values next to
boundary (Fig. 12(a)). Additionally, in a few cases (5 out of 60), rel-
atively small liver tissues were also removed at the liver boundary
(example shown in Fig. 12(b)).

The preprocessed and then augmented CT images were then the
input for the 3D RP-UNet.

The 3D RP-UNet was trained and tested on each database using
the leave-one-out method, which means we only test on one vol-
ume; the rest will be the training set. Before the training, the train-
ing set was augmented as described in Section 3.3, then randomly
divided into training dataset (90%) and validation dataset (10%).
During training, the hyperparameter settings remained the same
as it was described in Section 3.5. The average prediction time for
one CT volume of the MICCAI Sliver07 database took 6:2 seconds.
Lastly, the obtained prediction masks were postprocessed. The
average computational time of the postprocessing was 1:2 seconds
for randomly selected CT scans from the MICCAI Sliver07 database.

The proposed method’s results are quantitatively evaluated
using the 6 metrics (Section 3.2) and are compared to the state-
of-the-art. The quantitative results are shown in Table 2 for the
MICCAI Sliver07 database and in Table 3 for the 3D-IRCADb
database.
Fig. 12. Errors occurring in preprocessing step. Yellow contour rep
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The evaluation metrics show that for the MICCAI Sliver07 data-
base, our method achieves average VOE, however for the other
metrics the performance is quite strong. Further discussion of the
results is given in Section 4.

In case of the 3D-IRCADb dataset, the achieved VOE is also aver-
age, the DSC is among the higher values. The RVD is the second
best along with the state-of-the-art method proposed in [20]. Con-
cerning all the other evaluation values (ASD, RMSSD, MaxD) of our
proposed method, they are significantly better than the compared
approaches’ performance.

Fig. 13 shows some representative slices of the proposed meth-
od’s segmentation results for one MICCAI Sliver07 scan and one
3D-IRCADb scan. The result and the ground truth are shown in
the axial, coronal, and sagittal directions respectively (ground truth
in red, segmentation result in yellow). The last column of Fig. 13
includes the 3D model of each segmentation.

Based on the images in Fig. 13, it can be seen that the proposed
method’s results approximate the reference segmentation. The
liver is successfully separated from the neighboring organs: from
the heart in most cases (Fig. 13)) and from the right kidney
(Fig. 13. However typical segmentation errors still exist: the pro-
posed method was less sensitive against the tumors next to liver
boundary (Fig. 14(a)). Furthermore, oversegmentation happened
when the liver-heart separation wasn’t working efficiently
(Fig. 14)) and also when some vessel parts (that don’t belong to
the liver based on the reference) were included due to the cavity
filling in the axial direction during postprocessing (Fig. 14(c)).

To demonstrate the efficiency of our proposed preprocessing
step, another leave-one-out training was performed for the MICCAI
Sliver07 database, with a more simple preprocessing, introduced in
[52]. This preprocessing includes resampling the image to
128� 128� 64, normalizing values between �128;128½ � and using
anisotropic diffusion to reduce noise. Table 4 shows the quantita-
resents the liver boundary based on reference segmentation.



Table 2
The quantitative comparative results for the MICCAI Sliver07 train dataset as mean. (Note: * denotes that the results were evaluated only on a few data)

DSC VOE RVD ASD RMSSD MaxD

Erdt et al. (2010) [16] - 7.54 1.28 1.30 2.67 26.52
Dou et al. (2016) [23] - 5.37 1.32 0.67 1.48 29.63

Esfandiarkhani and Foruzan (2017) [17] - 8.13 0.42 1.31 2.38 21.35
Lu et al. (2018) [19] - 5.92 1.03 1.06 1.68 12.33

Huang et al. (2018) [10] - 5.3 �0.6 1.0 2.1 21.2
Ahmad et al. (2019) [27] * 0.948 4.31 1.28 - - -
Lebre et al. (2019) [18] 0.93 - - - - -
Tang et al. (2020) [35] - 5.06 1.11 0.78 1.70 23.42
Li et al. (2020) [20] - 5.1 0.1 0.9 1.8 19.4

Wang et al. (2021) [34] 0.973 5.37 �1.08 1.85 - 27.45

Proposed method 0.964 6.92 -0.36 0.33 0.92 9.27

Table 3
The quantitative comparative results for the 3D-IRCADb dataset as mean. (Note: * denotes that the results were evaluated only on a few data)

DSC VOE RVD ASD RMSSD MaxD

Erdt et al. (2010) [16] - 10.34 1.55 1.74 3.51 26.83
Christ et al. (2016) [24] 0.943 10.7 �1.4 1.5 - 24.0

Esfandiarkhani and Foruzan (2017) [17] - 10.39 1.48 1.66 3.68 35.8
Lu et al. (2018) [19] - 9.21 1.27 1.75 3.95 36.17

Huang et al. (2018) [10] - 8.6 �0.7 1.6 3.1 26.9
Li et al. (2018) [31] 0.947 10.02 �0.01 4.06 9.63 -

Ahmad et al. (2019) [27] * 0.918 6.09 5.59 - - -
Lebre et al. (2019) [18] 0.87 - - - - -
Tang et al. (2020) [35] - 8.67 0.57 1.37 3.56 27.01
Li et al. (2020) [20] - 9.2 0.5 1.6 3.1 27.2

Budak et al. (2020) [33] 0.952 9.05 7.03 1.43 - 19.37

Proposed method 0.945 10.16 -0.50 0.53 1.29 10.00

Fig. 13. Examples of liver segmentation results of the proposed method for one MICCAI Sliver07 dataset (top row) and one 3D-IRCADb dataset (bottom row). Each row shows
slices of one case in the axial, coronal, sagittal directions and its 3D representation, respectively. The contour of the ground truth is in red. Yellow contour denotes the result of
proposed method.
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tive results of the 3D RP-UNet with different preprocessing steps
without postprocessing. It should be noted, that in this case, we
only used the preprocessed CT scans of MICCAI Sliver07 database
for training, without any data augmentation. The better results
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are in bold. As it can be seen, with the proposed preprocessing,
the achieved performance is better.

To show that our method is capable of generalization, we tested
our model - trained on the MICCAI Sliver07 and 3D-IRCADb data-



Fig. 14. Typical errors of the segmentation method on both 3D-IRCADb and MICCAI Sliver07 database. The contour of the ground truth is in red. Yellow contour denotes the
result of proposed method.

Table 4
Quantitative evaluation of the 3D RP-UNet with different preprocessing steps without postprocessing. Note that the training was performed merely on the MICCAI Sliver07
dataset without any data augmentation.

Preprocessing DSC VOE RVD ASD RMSSD MaxD

Method in [52] 0.936 11.809 �0.598 0.778 1.905 13.992
Proposed 0.950 9.434 0.705 0.627 1.749 12.697

Table 5
Test results obtained on the VISCERAL database with different state-of-the-art
models. The first two methods are trained on different data sets and only tested on
the VISCERAL; while the rest are directly trained and tested on the VISCERAL.

Method Training database DSC

He et al. (2021) [53] LiTS 0.907

Proposed method MICCAI Sliver07 + 3D-IRCADb 0.922
Blendowski et al. (2019) [59] VISCERAL 0.853

Gass et al. (2014) [57] 0.908
Kéchichian et al. (2014) [55] 0.933

He et al. (2015) [56] 0.933
Oliveira et al. (2018) [58] 0.939
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bases -, on the VISCERAL database. The results are listed in Table 5.
In a similar manner, a study on the generalization ability of 3D U-
Net was published in [53] using multiple heterogeneous liver CT
datasets including VISCERAL database. The highest achieved DSC
score of the generalized 3D U-Net model was 0:907 and it was
trained on the LiTS database [54], including 130 abdominal CT vol-
umes scanned in multiple clinical sites.

Beside, some state-of-the-art evaluation results are available
directly trained and tested on the VISCERAL database itself. Such
results are also added in the lower part of Table 5 for comparison,
including various techniques: graph-cut based [55], shape model
based [56], multi-atlas based [57,58], self-supervised 3D feature
learning [59].

The obtained results show that our proposed method success-
fully generalizes and performs well on previously unseen data
too. Of course, the performance is slightly weaker when compared
to methods trained and tested on the VISCERAL database itself.
However, in the absence of training data, which is often the case
in real life applications, the achieved performance is promising
and the proposed approach can be applied efficiently.

4. Discussion

Quantitative experiments, applying 6 different evaluation met-
rics show that the proposed approach can detect the liver with
high accuracy. For the majority of the metrics, the introduced
method outperforms the compared state-of-the-art approaches.
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The overall performance, measured by the DSC is 0:964 for the
MICCAI Sliver07 and 0:945 for the 3D-IRCADb database, which is
the second best for MICCAI Sliver07 (Table 2) and third best
achieved value for 3D-IRCADb (Table 3). However, our method
achieves average VOE value and the second best RVD value, which
should be further discussed. Concerning the fact, that for both the
MICCAI Sliver07 and for the 3D-IRCADb database the RVD has neg-
ative value, we may conclude that the proposed method usually
undersegment the liver organ, resulting in a relatively smaller out-
put, than the ground truth. This undersegmentation can also
explain the higher VOE value. Typical undersegmentation errors
are also presented in Fig. 14. After overviewing the segmentation
results, we present some problematic slices from the volume with
the weakest performance from MICCAI Sliver07 databases to give a
further analysis (Fig. 15). The original scanned slice, the prepro-
cessed input and the final segmentation result (in yellow) together
with the ground truth (in red) are also present. We have selected
three different slices which introduce the main segmentation
errors of the volume.

The selected volume in Fig. 15 has a large tumor on the liver
border, which is not detected (first row of Fig. 15). However, the
whole organ, including the tumor part correctly appears in the pre-
processed input. In the second row, the undersegmentation of the
tumor part still exists, moreover the segmentation is also inaccu-
rate in the surroundings of the hepatic arteries. It should be men-
tioned, that one drawback of the preprocessing might be that
intensity variation inside the liver is also amplified in the prepro-
cessed input (center column of Fig. 15), which may complicates
the accurate segmentation. In the bottom row of Fig. 15, the tumor
part is already accurately segmented, probably because it is not
located on the liver border, but inside the organ. However, the
organ consists of two separate parts according to the annotated
ground truth, which is missed by the proposed method and the
two parts are merged during the segmentation. Analyzing the
quantitative evaluation metrics, the RVD has a higher negative
value of �11:166 caused by the missed tumor parts. Similarly,
these larger segmentation errors result in a higher VOE value
(14:239) and a reduced DSC value (0:923). Therefore, the method
could be further improved for handling liver tumors more effi-
ciently, which could also enhance the quantitative segmentation
performance as well.



Fig. 15. Segmentation errors on selected slices of the MICCAI Sliver07 scan with the weakest quantitative result. DSC: 0:923, VOE: 14:239, RVD: �11:166. The contour of the
ground truth (GT) is in red. Yellow contour denotes the result of proposed method.
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The performance of the proposed preprocessing step is also
tested, the learning-based segmentation is also evaluated with a
simpler preprocessing, however, the majority of the quantitative
values is significantly improved when applying the proposed pre-
processing. This may demonstrate that the preprocessing also con-
tributes to the proposed method’s accuracy.

Beside the segmentation performance, it is also important to
note, that our aim is to construct a method, which can be used in
a real life application, therefore the computational time and the
adaptability for heterogeneous data are also important. Our pro-
posed method has three main steps: the preprocessing takes 8:4
seconds, the learning-based prediction takes 6:2 seconds and the
postprocessing step is 1:2 seconds. Altogether, the complete pro-
cess takes 15:8 seconds on average for a CT scan measured on
the MICCAI Sliver07 database. The algorithm was implemented
in Matlab (pre- and postprocessing steps) and Python (prediction
step), and computational time was measured on a simple PC with
Intel(R) Core(TM) i9-9900 CPU @3.60 GHz and 64 GB RAM. The
proposed method is rather fast compared to the other state-of-
the-art approaches, complex networks usually requires more time
for segmentation: [31] takes 30� 200 seconds for one CT scan,
depending on the number of slices; [34] runs for 68 s for a MICCAI
Sliver07 volume on average. Shape-based methods usually need
more time: [17] indicates an average of 750 s computational time
for one volume, [18] needs 5� 6 seconds for just one slice, [20]
requires more than 16 min to perform the segmentation on one
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volume, however [16] is quite fast and it takes 45 s on average to
segment one CT scan.

On the other hand, the size of the neural network is an impor-
tant issue, as the model complexity is restricted by the GPU mem-
ory. Our model has approximately 17;700;000 parameters in total,
which is a medium sized network. As for comparison, H-
DenseUNet, introduced in [31], explores hybrid (intra-slice and
inter-slice) features using a 2D and 3D DenseUNet structure,
resulting in more than 200;000;000 parameters, which requires
huge GPU memory and longer computation time.

Concerning the adaptability of the proposed method and the
performance on previously unseen data, the evaluation results
are quite promising; the performance does not deteriorate drasti-
cally, however there is a slight relapse. This evaluation step vali-
dated that our method is not overtrained, but actually performs
robustly in case of segmenting heterogeneous 3D medical data.
In the future, the method should be tested on CT volumes from
multiple data sources to further analyze the weaknesses and
improve them, so that the approach could be integrated into a real
life application.

5. Conclusion

In this paper, we presented an automatic, deep learning based
approach, which is able to handle smaller databases including
heterogeneous CT data. Our aim was to develop an automated
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method, which integrates the advantages of pixel-based and
learning-based approaches, thus performs with high accuracy
and low computational time even for previously unseen data.
The proposed method starts with a preprocessing, applying proba-
bility density function based estimation and supervoxel segmenta-
tion to remove most of the non-liver voxels of the CT scan. The
preprocessed scan is then segmented using a proposed modifica-
tion of the 3D-U-Net, which is called the 3D RP-UNet. As a novelty,
the ResPath is introduced in the 3D Network, which is able to pro-
cess the whole CT scan with high segmentation accuracy. To com-
pensate for some typical segmentation errors (oversegmentation at
the heart or spleen and undersegmentation caused by liver
lesions), a postprocessing step is proposed, including a liver-
heart separation and morphological refinement.

Quantitative evaluation is performed on three public databases
(MICCAI Sliver07, 3D-IRCADb and VISCERAL) using 6 different eval-
uation metrics. The MICCAI Sliver07 and 3D-IRCADb databases are
used for training and testing. The obtained results confirm that the
proposed algorithm performs effectively and concerning the
majority of the measured evaluation metrics, it achieves strong
segmentation performance compared to the state-of-the-art
approaches. Moreover, the trained 3D network was also tested
for the previously unseen VISCERAL database, and the results
showed that our method is capable of generalization and performs
quite robustly on heterogeneous data with different image charac-
teristics. Our future plan includes the improvement of the 3D CNN
model to further integrate top-down information into the network
model itself to make the performance more robust on heteroge-
neous data.
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