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Abstract. We prove Skolem’s conjecture for the exponential Dio-
phantine equation an + tbn = ±cn under some assumptions on the
integers a, b, c, t. In particular, our results together with Wiles’ the-
orem imply that for fixed coprime integers a, b, c Fermat’s equation
an+bn = cn has no integer solution n ≥ 3 modulom for some mod-
ulus m depending only on a, b, c. We also provide a generalization
where in the equation bn is replaced by a product bk1

1 · · · bkℓ

ℓ .

1. Introduction

Skolem’s conjecture states that if a purely exponential Diophantine
equation is not solvable, then it is not solvable modulo an appropriate
modulus (see [13]). The conjecture and its variants have been proved
only in certain special cases. One can mention results of Schinzel [10]
concerning the one-term case, Bartolome, Bilu and Luca [1] concerning
the case where the bases generate a multiplicative group of rank one,
Hajdu and Tijdeman [8] concerning equations of the form an − bk = 1,
and Bérczes, Hajdu and Tijdeman [2] concerning equations of the form

an − tbk11 . . . bkℓℓ = ±1. See also Bertók and Hajdu [3, 4] for a result
asserting that in some sense Skolem’s conjecture is valid for “almost
all” equations. For related problems and results concerning recurrence
sequences, one can consult the papers [6, 9, 11, 12], and the references
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there and for a more detailed survey of the related literature, see [2] or
[3].

In this note, we prove that under some natural assumptions, Skolem’s
conjecture is valid for the equations an+ tbn = ±cn (see Theorem 2.1).
Note that our result contains the case of Fermat’s equation an + bn =
cn with fixed coprime integers a, b, c. We also give a more general
result, where in the equation bn is replaced by a product bk11 . . . bkℓℓ (see
Theorem 2.2).

2. New results

Theorem 2.1. Let a, b, c, t be non-zero integers with gcd(a, tb, c) = 1
and |b| > 1, and let ε ∈ {−1, 1}. Then there exists a modulus m such
that the congruence

an + tbn ≡ εcn (mod m)

has the same solutions in positive integers n as the equation

an + tbn = εcn.

Further, such a modulus m can be effectively calculated in terms of
a, b, c, t.

By the famous result of Wiles [14] on Fermat’s Last Theorem, the
following statement follows from Theorem 2.1.

Corollary 2.1. Let a, b, c be integers with gcd(a, b, c) = 1. Then there
exists a modulus m such that the congruence

an + bn ≡ cn (mod m)

has no solutions in positive integers n with n ≥ 3. Further, such a
modulus m can be effectively calculated in terms of a, b, c.

Remarks. 1. We note that the coprimality condition in Theorem 2.1
cannot be dropped. Indeed, as one can easily check, the equation

2n + 2n = 4n

has only the solution n = 1 in positive integers. However, they have in-
finitely many solutions modulo m for any m. This also means that the
versions of Skolem’s conjecture proposed in [3] and [4] should be care-
fully reformulated. On the other hand, the statement holds also when
atbc = 0, even with non-negative integer unknown n. The proofs of
these statements are simple, however, involve quite a lot technicalities.
So to keep the presentation clear, we exclude these cases.

2. Observe that Corollary 2.1 implies the validity of Fermat’s conjec-
ture. However, this should not be interpreted as an elementary proof
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of Fermat’s Last Theorem, as the proof of Corollary 2.1 via Theorem
2.1 relies on Wiles’ theorem [14].

3. We note that there is a close connection between Theorem 2.1
and ternary linear recurrence sequences which we now describe. Let
a, b, c, t be non-zero integers with gcd(a, tb, c) = 1 and |b| > 1, and let
ε ∈ {−1, 1}. Consider the sequence u := {un}n≥0 given by

(1) un := an + tbn − εcn for all n ≥ 0.

This is a ternary recurrent sequence of integers, that is, it satisfies a
linear recurrence of order 3 with constant coefficients which we do not
write down explicitly. Put

Zu := {n ≥ 0 : un = 0}.
The set Zu is called the zero set of the recurrence u and it is an object
which has been frequently studied in the theory of linear recurrences.
It follows from a famous theorem of Skolem–Mahler–Lech that Zu is
finite. In our case the members of Zu are effectively computable using
the theory of linear forms in p-adic logarithms. Indeed, let p be a prime
factor of b. Write νp(m) for the exponent of p in the factorization of m.
Suppose that Zu contains an element n0 > 0. If p | ac, then p divides
both a and c, which is false. Thus, p does not divide ac and then

n0 ≤ νp(tb
n0) = νp(a

n0 ± cn0) ≪ log n0.

The last inequality holds by linear forms in p-adic logarithms [15]. So,
either there is a prime factor p of b which divides ac in which case
Zu ⊆ {0}, or p does not divide ac in which case the members of Zu are
effectively computable.

4. In our proof we shall often use the following strategy. If we get some
information about the solutions modulo m1 and also modulo m2, then
we can combine them using the modulus m = m1m2. In particular, in
this way we can handle the solutions with n bounded separately.

Our method permits the following generalization.

Theorem 2.2. Let a, c, t, b1, . . . , bℓ be non-zero integers with |bi| > 1
(i = 1, . . . , ℓ) and gcd(a, c, tb1 · · · bℓ) = 1. Further, let ε ∈ {−1, 1}.
Then for any monotone non-decreasing real function f(x) there exists a
modulusm which can be effectively calculated in terms of a, c, t, b1, . . . , bℓ
and f , such that the congruence

(2) an + tbk11 · · · bkℓℓ ≡ εcn (mod m)

has the same solutions in positive integers n, k1, . . . , kℓ satisfying

(3) n ≤ f(max(k1, . . . , kℓ))
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as the equation

(4) an + tbk11 · · · bkℓℓ = εcn.

Remarks. 5. Similarly to Theorem 2.1, the statement holds also when
actb1 · · · bℓ = 0, even with non-negative integer unknowns n, k1, . . . , kℓ.
The proof of this claim is easy, but would need several technical con-
siderations. So for the sake of clarity, we do not include this case into
the theorem.

6. In view of gcd(a, c, tb1 · · · bℓ) = 1, it is well-known that all solutions
n, k1, . . . , kℓ of the S-unit equation (4) satisfy

(5) max(n, k1, . . . , kℓ) < C,

where C is an effectively computable constant depending only on the
parameters a, c, b1, . . . , bℓ, t. (See Section 4 of [7] for related results
and history.) Thus taking f(x) = C in Theorem 2.2, we see that the
solution set of (4) and the set of solutions of (2) (with the appropriate
modulus) satisfying (3), coincide. So in principle, one can solve (4) in
the following way. Calculate C such that (5) is satisfied (by Baker’s
method; see e.g. Section 5.1 of [7] for details). Then find all solutions to
(2) with n < C, where m is the modulus corresponding to f(x) = C.
However, we do not think that this method would be more efficient
than the reduction method based upon the LLL algorithm (see e.g.
Sections 5.2 and 5.3 of [7] for details).

7. From the proof it will be clear that there exists a modulus m0 such
that for all solutions n, k1, . . . , kℓ of (2) with m = m0 we have

max(k1, . . . , kℓ) < k0.

Here m0 and k0 depend only on a, c, b1, . . . , bℓ, t. Hence, in Theorem
2.2 we can take any f having the property f(x) = f(k0) for x ≥ k0.

We conclude this section with an open problem.

Problem 2.1. Does there exist a modulus m such that the solution sets
of congruence (2) and of equation (4) coincide? In other words, can
one remove condition (3) and retain the conclusion of Theorem 2.2?

3. An auxiliary result

In the proof of our results we use the following lemma which nowa-
days is a simple consequence of a deep theorem of Bilu, Hanrot and
Voutier [5]. However, the version below follows already from a classical
result of Zsigmondy [16].
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Lemma 3.1. Let a, c be coprime non-zero integers with |ac| > 1. Then
apart from at most four values of n ≥ 2 the number cn − an has a
primitive prime divisor, which is a prime factor p such that p - cr − ar

for any 1 ≤ r < n. The same holds for cn + an.

Proof. The statement concerning cn−an immediately follows from The-
orem C, Theorem 1.3 and Theorem 1.4 in [5]. The statement for cn+an

is a direct consequence of this assertion as well upon noting that

cn + an =
c2n − a2n

cn − an
holds for all n ≥ 1.

�

4. Proofs of the main results

We start with the proof of Theorem 2.2. Clearly, Theorem 2.1 can
then be obtained as a simple consequence.

Proof of Theorem 2.2. First we treat some special cases and then we
turn to the general situation.

The proof in some special cases.

Case A) |a| = |c| = 1.
Let pi be a prime divisor of bi (1 ≤ i ≤ ℓ), put P = p1 · · · pℓ, and let

q be an odd prime which does not divide tb1 · · · bℓ. Then

m = P 2q(|tb1 · · · bℓ|+ 3)

is an appropriate choice. Indeed, by considering (2) modulo q, we see
that εcn − an ̸= 0. Then considering it modulo P 2, we obtain ki ≤ 1
(1 ≤ i ≤ ℓ). Finally, considering it modulo |tb1 · · · bℓ| + 3 we get that
n, k1, . . . , kℓ is a solution of the congruence if and only if it is a solution
to (4).

Case B) The numbers a, c, tb1 · · · bℓ are not pairwise coprime.
If a and c are not coprime, then let p be a common prime factor of

a and c. In view of gcd(a, c, tb1 · · · bℓ) = 1, we have p - tb1 · · · bℓ. Thus
the congruence

an + tbk11 · · · bkℓℓ ≡ εcn (mod p)

gives n = 0 which is excluded.
Next assume that gcd(tb1 · · · bℓ, ac) ̸= 1. We do not actually prove

the statement in this case, we only show that without loss of generality
we may assume that this situation does not occur. Suppose first that
there is a prime divisor p of t such that p | ac. By what we have already
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proved, we may assume that p divides one of a, c, but not both. Thus
the congruence

an + tbk11 · · · bkℓℓ ≡ εcn (mod p)

in view of n > 0 gives a contradiction. Hence we may assume that
gcd(t, ac) = 1. Now rearranging indices if necessary, we may assume
that for some j with 0 ≤ j < ℓ we have gcd(bi, ac) = 1 (1 ≤ i ≤ j)
and pi | gcd(bi, ac) with some prime pi (j < i ≤ ℓ). As before, we
may assume that every pi (j < i ≤ ℓ) divides one of a, c, but not both.
Then the congruence

tbk11 · · · bkℓℓ ≡ εcn − an (mod pj+1 · · · pℓ)

gives that either n = 0 or kj+1 = · · · = kℓ = 0. Since these cases are
excluded, we are done.

The proof of the statement in the general case.

By our assumptions and what we have proved so far, we may assume
that |ac| > 1, |bi| > 1 for i = 1, . . . , ℓ, t ̸= 0 and that a, c, tb1 · · · bℓ
are pairwise coprime. Further, we are interested in positive integer
solutions n, k1, . . . , kℓ of (2) and (4).

We prove the statement by induction on ℓ. For simplicity, for ℓ = 1
we rewrite equation (4) as

an + tbk = εcn.

With this notation, the statement concerns only the solutions n, k with
n ≤ f(k). Throughout the proof of the case ℓ = 1, p is a prime factor
of b. Hence, by Case B, p - ac.

Consider first the case ε = 1. Let z(p) be the order of appearance of
p in {an − cn}n≥0. This coincides with the order op of the residue class
a/c modulo p, where 1/c modulo p stands for the inverse of c modulo p.
It is also the smallest positive integer r such that ar − cr ≡ 0 (mod p).
Write az(p) − cz(p) = pλpq for some integers λp ≥ 1 and q coprime to p.
Let K = ω(tb) + 6, where ω(u) denotes the number of distinct prime
factors of u.

Take the numbers az(p)p
r − cz(p)p

r
for r = 0, . . . , K − 1. By Lemma

3.1, each of these numbers with at most 5 exceptions have a primitive
prime divisor, namely a prime qr with qr | az(p)p

r − cz(p)p
r
, which does

not divide as − cs for any s < z(p)pr. Set qr = 1 if r is an exception,
and put Q := q1 · · · qK−1.

We show that if n, k is a solution to the congruence

(6) an + tbk ≡ cn (mod pλp+KQ).
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then k < λp + K. For this, assume to the contrary that we have a
solution n0, k0 to (6) with k0 ≥ λp + K. For such a solution we have
pλp+K | an0−cn0 . By the properties of the order of appearance, we have
that z(p)pK−1 | n0. The numbers az(p)p

r − cz(p)p
r
divide an0 − cn0 for

r = 0, . . . , K−1. Hence an0−cn0 is a multiple of Q := q0 · · · qK−1. Then
by (6) it follows that Q | tbk0 . However, since ω(Q) ≥ K − 5 > ω(tbk0)
this is not possible. Hence our claim k < λp +K follows.

Thus putting n1 := f(λp +K), our statement follows e.g. modulo

(7) m = pλp+KQ(|a|n1 + |tbλp+K |+ |c|n1 + 1).

Indeed, assume that n, k is a solution to congruence (2) with this m,
satisfying n ≤ f(k). Then first using the congruence modulo pλp+KQ
only, we get that k < λp + K. Hence by the monotone increasing
property of f we get n ≤ f(k) ≤ n1. Then the congruence modulo
(|a|n1 + |tbλp+K |+ |c|n1 +1) gives that n, k is also a solution to equation
(4), implying our claim.

Let now ε = −1. Then

an + cn + tbk ≡ 0 (mod p)

yields that

(8) an + cn ≡ 0 (mod p).

Assume that p is odd. Then a/c has even order op modulo p. Putting
now z(p) = op/2, we have that

az(p) + cz(p) ≡ 0 (mod p),

and z(p) is the smallest positive integer s such that

as + cs ≡ 0 (mod p).

We take K similarly as in the case when ε = 1, namely K = ω(tb) + 6.
Consider the congruence

an + cn + tbk ≡ 0 (mod pλp+K),

where we put λp := νp(a
z(p) + cz(p)). As in the case ε = 1, for k ≥

λp + K we have z(p)pK−1 | n and n/(z(p)pK−1) is odd. The rest of
the argument is similar to the case ε = 1. Namely, we work with
az(p)p

ℓ
+cz(p)p

ℓ
where ℓ = 0, 1, . . . , K−1 which are all divisors of an+cn

since p and n/(z(p)pK−1) are both odd.
Assume now that b is a power of 2. Then a and c are odd. We put

r := ν2(a+ c). The solutions of the congruence

an + cn + tbk ≡ 0 (mod 2r+1)
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satisfy k ≤ r. Indeed, if k ≥ r + 1 would hold, then we would get
that 2r+1 divides an + cn. This is is not possible if n is even since then
ν2(a

n + cn) = 1 < r + 1 and it is not possible if n is odd since then
ν2(a

n + cn) = ν2(a+ c) = r < r + 1.
Now the proof finishes as in the case ε = 1 by taking m given by

formula (7) with p = 2, and λp+K, Q and n1 replaced by r+1, 1 and
f(r), respectively. Hence, the theorem follows also in this case, and the
proof is complete for ℓ = 1.

Let now ℓ > 1, and assume that the statement is valid for ℓ − 1.
Without loss of generality we may assume that k1 ≥ k2 ≥ · · · ≥ kℓ.
Indeed, there are at most ℓ! types of solutions n, k1 . . . , kℓ of (4) ac-
cording to the ordering ki1 ≥ · · · ≥ kiℓ , corresponding to permutations
π = (i1, . . . , iℓ) of the indices (1, . . . , ℓ). So finding moduli mπ for all
permutations π, the modulus m =

∏
π mπ is clearly appropriate. Let

pi be a prime divisor of bi (i = 1, . . . , ℓ) and set p = pℓ.

Now by a similar argument as for ℓ = 1 (replacing tbk by tbk11 · · · bkℓℓ ),
we get that there exists a modulus m0 such that for all solutions
n, k1, . . . , kℓ of

an + tbk11 · · · bkℓℓ ≡ εcn (mod m0)

we have kℓ ≤ C0 with some integer C0. Here m0 and C0 depend only
on a, c, b1, . . . , bℓ, t.
By the induction hypothesis, there exist integers mj ≥ 2 (1 ≤ j ≤

C0) such that writing tj = tbjℓ, the statement is valid for the equation

an + tjb
k1
1 · · · bkℓ−1

ℓ−1 = εcn

with modulus mj. Then the induction step is completed by letting

m := m0m1 · · ·mC0 .

�
Proof of Theorem 2.1. Taking ℓ = 1 and f(x) = x in Theorem 2.2, the
statement immediately follows. �
Proof of Corollary 2.1. Assume first that abc ̸= 0. If |b| > 1, the
statement immediately follows from Theorem 2.1 combined with the
famous theorem of Wiles [14] on Fermat’s equation. If |b| = 1 and
|a| > 1, then switching b and a the statement follows similarly. If
|a| = |b| = 1 and |c| > 1, then interchanging the roles of b and c and
letting t = ε = −1 in Theorem 2.1, we are done in the same way. If we
have |a| = |b| = |c| = 1, the statement follows with m = 4.
Let now abc = 0. If two out of a, b, c are zero, then by gcd(a, b, c) = 1

we see that the third number is ±1. Then the statement follows with
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m = 2. So we may suppose that precisely one of a, b, c is zero. If the
other two numbers are ±1, then we are done with m = 3. Thus there
is a prime p which divides one of the non-zero numbers out of a, b, c,
but does not divide the other non-zero number. Then we are done with
m = p. �
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