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Abstract
In this paper, we show how the subjects mentioned in the title are related. First we
study the structure of partitions of A ⊆ {1, . . . , n} in k-sets such that the first k − 1
symmetric polynomials of the elements of the k-sets coincide. Thenwe apply this result
to derive a decomposability result for the polynomial f A(x) := ∏

x∈A(x −a). Finally
we prove two theorems on the structure of the solutions (x, y) of the Diophantine
equation f A(x) = P(y) where P(y) ∈ Q[y] and on shifted power values of f A(x).
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1 Introduction

The Prouhet–Tarry–Escott problem, shortly PTE, asks to describe disjoint pairs A and
B of sets of integers such that their first k power sum symmetric polynomials are equal
(cf. [18]). For example, if

A = {2, 3, 7} and B = {1, 5, 6}

then we can take k = 2, since we have

2 + 3 + 7 = 1 + 5 + 6 and 22 + 32 + 72 = 12 + 52 + 62. (1)

In this paper, we connect the PTE problem, and the question for which polynomials
f (x), g(x) ∈ Z[x] the equation f (x) = g(y) has infinitely many solutions (x, y) ∈
Z2 if the zeros of f are simple and form (almost) an arithmetical progression. Both
problems have attracted a lot of attention. Already at this point we mention that the
latter question (through a deep result of Bilu and Tichy [4]) is closely related to
decomposability of polynomials. A polynomial f (x) ∈ Q[x] is decomposable if we
can write f (x) = h1(h2(x)) with h1, h2 ∈ Q[x], in a nontrivial way. (Later we shall
give the precise notion.) For example,

f (x) = (x − 1)(x − 2)(x − 3)(x − 5)(x − 6)(x − 7)

is decomposable, since as one can readily check we have f (x) = h1(h2(x)) with

h1(x) = (x − 2 · 3 · 7)(x − 1 · 5 · 6), h2(x) = (x − 2)(x − 3)(x − 7) + 2 · 3 · 7.
(2)

The similarity of (1) and (2) is not a coincidence; in this paper, we show the
general connections between these properties. In Sects. 1 and 2, we outline the studied
problems, the established link and the results we obtain. The proofs of our theorems
are given in Sects. 3–5.

The starting point of our study was a question of Benne de Weger. There is an
extensive literature on binomial coefficients which are equal or differ by a small or
fixed constant (see, e.g., [8, 13, 24] and the references there). In the latter paper, the
authors study the related Diophantine equation

(
f1(x)

k

)

+
(
x

2

)

=
(
f2(x)

2

)

,

in polynomials f1, f2 ∈ Q[x]with deg f1 = 2, deg f2 = k. Benne deWeger remarked
that this equation leads to the following problem (private communication).

Problem 1 Let k ≥ 1. Describe the values of k for which it is possible to partition the
set {1, . . . , 2k + 1} into a singleton A0 and two sets A1 and A2 with k = |A1| = |A2|,
such that the symmetric polynomials σ1, . . . , σk−1 of the elements of A1 and of A2
coincide.
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The Prouhet–Tarry–Escott problem and polynomials 1077

This is the PTE problem for n = 2k + 1. De Weger added that he had solutions for
k = 1, 2, 3 and had proved that there are none for 4 ≤ k ≤ 14. A solution for k = 3
is A = {2, 3, 7}, B = {1, 5, 6}. Indeed we have

2 + 3 + 7 = 1 + 5 + 6,

and, by (2),

2 · 3 + 2 · 7 + 3 · 7 = (2 + 3 + 7)2 − (22 + 32 + 72)

2

= (1 + 5 + 6)2 − (12 + 52 + 62)

2
= 1 · 5 + 1 · 6 + 5 · 6.

Problem 1 was solved independently by Aart Blokhuis (private communication)
and by the third author of the present paper (see Corollary 3.1).

In this paper, we study the following more general problem.

Problem 2 Let r be a fixed non-negative integer. Describe those positive integers n
for which the set {1, . . . , n} can be partitioned into sets A0, A1, . . . , At with t ≥ 2,
|A0| = r and

k := |A1| = · · · = |At | ≥ 2

such that all the symmetric polynomials σ1, . . . , σk−1 of the elements of the Ai (i =
1, . . . , t) coincide.

The problem asks: is it possible to omit a ‘few’ elements from the set {1, . . . , n} such
that the remaining set can be split into t subsetswhich have pairwise the PTE-property?
Observe that Problem 1 is the special case r = 1, t = 2.

In Theorem 2.1, we show that if r is small enough with respect to n, then only k = 2
is possible and A1, A2, . . . , At are symmetric. We call a set A = {a1, . . . , ak} ⊂ R

with a1 < · · · < ak symmetric if the sums ai + ak+1−i (i = 1, . . . , k) are all equal.
It is obvious that such a symmetry implies a PTE-structure.

Next we establish a new link between PTE problems and the indecomposability of
certain polynomials. We recall some standard notions. Let K be a field and f ∈ K [x].
Then f is called decomposable (or composite) over K if there exists h1, h2 ∈ K [x]
such that

f (x) = h1(h2(x)) (h1, h2 ∈ K [x], deg h1 > 1, deg h2 > 1).

Otherwise f is called indecomposable. If f (x) = h1(h2(x)) and λ(x) ∈ K [x] is
a linear polynomial, then f (x) = h3(h4(x)) with h3(x) = h1(λ−1(x)) and h4(x) =
λ(h2(x)) is another decompositionof f (x). In the sequelwedonot distinguish between
such equivalent decompositions. Further, we consider the polynomials f (x), f (λ(x)),
as well as the polynomials f (x), λ( f (x)) to be equivalent. There is a vast literature
on (in)decomposability of polynomials (see, e.g., [2, 4, 5, 7, 11, 12, 19] and the

123



1078 L. Hajdu et al.

references there). In Theorem 2.2, we show that the studied variant of the PTE problem
is equivalent to asking for the indecomposability of certain polynomials.

Using this connection, we show in Corollary 2.1 for given integers n > r ≥ 0 with
r small enough with respect to n that if for A ⊆ {1, . . . , n} with |A| = n − r the
polynomial

f A,c,d(x) :=
∏

a∈A

(x − c − ad), c, d ∈ Q, d �= 0 (3)

is decomposable over Q as h1(h2(x)), then h1 and h2 can be given explicitly. Note
that the polynomial f A,c,d(x) represents the product with terms of an arithmetic pro-
gression of length n with r terms missing. For example, if

f A(x) := f A,0,1(x) = (x − 1)(x − 2)(x − 3)(x − 4)(x − 6)(x − 7)(x − 8)(x − 9)

is decomposable as h1(h2(x)), then, apart from equivalence,

h2(x) = x2 − 10x, h1(x) = (x + 9)(x + 16)(x + 21)(x + 24).

Next, using the above results, we establish a finiteness theorem for the number of
times that a polynomial f A,c,d of the form (3) assumes a value which is also assumed
by a given polynomial P with rational coefficients. Related problems are investigated
in the papers [2, 3, 16, 26] for consecutive integers and in [15] for arithmetic progres-
sions with at most one term missing. Generalizing and extending many of the above
mentioned results, in Theorem 2.3, we provide a finiteness result for the number of
values of f A,c,d also taken by another polynomial P(x) ∈ Q[x]. This result, similarly
to the above mentioned ones, is ineffective.

Finally, we consider shifted power values (i.e., values of the shape ay� + b) of
f A,c,d . Related problems have been investigated by many authors. We recall some
important results. (For a more detailed survey see, e.g., the introduction of [15].) A
celebrated result of Erdős and Selfridge [10] says that the product of two or more
consecutive positive integers is never a perfect power. Papers of Erdős [9] and Győry
[14] give similar results for binomial coefficients. A recent result of Bennett and
Siksek [1] states that if the number k of terms of the arithmetic progression is fixed
and large enough, then there are only finitely many instances that the product yields a
perfect power. For results with r = 1 (just one term missing), see, e.g., [20, 21] (for
consecutive integers) and [22] (for general arithmetic progressions). In the equation
f A,c,d(x) = ay� + b we give an effective upper bound for the exponent � and for the
integer values x, y for which this equation holds, in Theorem 2.4. This result implies
for example that for every integer n ≥ 24 and rational numbers a, b with a �= 0 there
exists an effectively computable number C such that the equation f A(x) = ay� + b
with A ⊂ {1, 2, . . . , n}, |A| = n − 2 implies max(|x |, |y|, �) < C .

Our results make a step forward toward the solution of the problem how much one
can ‘mutilate’ an arithmetic progression such that the corresponding product of terms
still can take only finitely many values of a given polynomial, or shifted power values.
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2 Results

In connection with Problem 2, we prove the following result.

Theorem 2.1 Let n, r be non-negative integers with

n > 2r3/2 + 5r + 8. (4)

Then every decomposition of {1, . . . , n} as in Problem 2 has the following structure.
Putting A := {1, . . . , n} \ A0 with r = |A0|, we have k = 2, and all classes Ai ={
a(i)
1 , a(i)

2

}
(i = 1, . . . , t) are symmetric with respect to

ā := 1

n − r

∑

a∈A

a (5)

that is,

a(i)
1 + a(i)

2 = 2ā (i = 1, . . . , t).

Remark 1 Theorem 2.1 yields a complete answer to Problem 2 for every n > 2r3/2 +
5r + 8. On the other hand, for any r and n with n − r even, if A = {1, . . . , n} \ A0
is symmetric with respect to ā (i.e., a ∈ A implies that 2ā − a ∈ A), then we have a
partition as in Problem 2 with k = 2.

Remark 2 The following extension of Theorem 2.1 is also valid. Let b1, . . . , bn be
a non-constant arithmetic progression in Q. Put B = {b1, . . . , bn} and suppose that
B0, B1, . . . , Bt is a partition of B such that r := |B0|, k := |B1| = · · · = |Bt |,
n > 2r3/2+5r+8 and for all i = 1, . . . , t the symmetric polynomials σ1, . . . , σk−1 of
the elements of Bi (i = 1, . . . , t) are the same.Then k = 2 andwriting Bi = {b(i)

1 , b(i)
2 }

(i = 1, . . . , t) we have

b(i)
1 + b(i)

2 = b( j)
1 + b( j)

2 (1 ≤ i, j ≤ t).

Indeed, writing bs = c + das with as ∈ A \ A0 and c, d ∈ Q, d �= 0, it can be easily
seen by induction on n that c can be taken to be zero. Then clearly, we may take d = 1,
and the claim follows.

The next result establishes a link between partitions as in Problem 2 and decom-
posability of certain polynomials.

Theorem 2.2 Let n be a positive integer and r a non-negative integer. Then there exists
a partition A0, A1, . . . , At of {1, . . . , n} as in Problem 2 if and only if there exists an
A ⊆ {1, . . . , n} with |A| = n − r such that the polynomial

fA(x) =
∏

a∈A

(x − a) (6)
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is decomposable overQ. In particular, if A0, A1, . . . , At is a partition of the required
type, then fA(x) = h1(h2(x)) with A = {1, . . . , n} \ A0 and

h2(x) =
∏

a∈A1

(x − a) −
∏

a∈A1

(−a)

and

h1(x) =
⎛

⎝x +
∏

a∈A1

(−a)

⎞

⎠ · · ·
⎛

⎝x +
∏

a∈At

(−a)

⎞

⎠ .

Remark 3 From the proof of the theorem, it will be clear that in fact h2 is independent
of which Ai we use in its definition.

As a simple consequence of Theorems 2.1 and 2.2 we obtain the following state-
ment.

Corollary 2.1 Let A ⊆ {1, . . . , n} with |A| = n − r where n and r are integers with
r ≥ 0 and n > 2r3/2 + 5r + 8. Further, let c, d ∈ Q with d �= 0. Then the polynomial

fA,c,d(x) =
∏

a∈A

(x − c − ad) (7)

is decomposable over Q if and only if n − r is even and A is symmetric with respect
to

ā := 1

n − r

∑

a∈A

a,

when (up to equivalence) the only decomposition of fA,c,d(x) is given by fA,c,d(x) =
ϕ∗(( x−c

d − ā)2) with

ϕ∗(x) = dn−r h1
(
x − a2

)
. (8)

Here, h1 is the polynomial defined in Theorem 2.2 corresponding to the partition
A1, . . . , At of A with |A1| = |A2| = · · · = |At | = 2.

Next we apply our results to the equation f A,c,d(x) = P(y) where P is a given
polynomial. The first theorem of this type is general, but ineffective: it only guarantees
the finiteness of the number of integral solutions.

Theorem 2.3 Let A ⊆ {1, . . . , n} with |A| = n − r for integers r ≥ 0 and n >

2r3/2 + 5r + 8 and let c, d ∈ Q with d �= 0. Let fA,c,d(x) be as in (7) and let
P(y) ∈ Q[y] with deg P ≥ 2. Then the equation

fA,c,d(x) = P(y) (9)

has only finitely many integer solutions x, y, unless we are in one of the following
cases:
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(i) P(y) = f A,c,d(T (y)), where T is an arbitrary non-constant polynomial with
rational coefficients,

(ii) P(y) = ϕ∗(Q(y)), where ϕ∗ is given by (8) and Q is a non-constant polynomial
with rational coefficients having at most two roots of odd multiplicities.

Remark 4 In cases (i) and (ii) one can easily give examples where equation (9) has
infinitely many integer solutions x, y.

If the right hand side of (9) is of the shape ay� + b where � is also unknown, then
we can give an effective result.

Theorem 2.4 Let A ⊆ {1, . . . , n} with |A| = n − r with integers r ≥ 0 and n >

2r3/2 + 5r + 8 and let c, d ∈ Q with d �= 0. Let fA,c,d(x) be given by (7) and let
a, b ∈ Q with a �= 0. Then all solutions of the equation

fA,c,d(x) = ay� + b (10)

in integers x, y, � with � ≥ 2 satisfy max(|x |, |y|, �) < C for some effectively com-
putable constant C depending only on a, b, c, d, n. Here we use the convention that
for |y| ≤ 1 we have � ≤ 3.

3 Proofs of results of Prouhet–Tarry–Escott type

Proof of Theorem 2.1 Throughout the proof, we shall use the earlier notation: r = |A0|
stands for the number of ’missing elements’ from {1, . . . , n}, A0, A1, . . . , At form a
partition of {1, . . . , n} with the prescribed properties and

k = |A1| = · · · = |At |.

In particular, we have n− r = tk. Observe that (4) implies that n−1 > 2(r −1)3/2 +
5(r − 1) + 8 for r > 0. Therefore, by induction on r , we may assume without loss of
generality that n ∈ A.

We shall frequently use the identity

I∑

i= j

(
i

j

)

=
(
I + 1

j + 1

)

,

valid for all j ≥ 0. Also, we shall make use of the fact that it follows from the
conditions of the theorem by induction on h that

∑

a∈Ai

(
a + �

h

)

=
∑

a∈A j

(
a + �

h

)

for h = 0, 1, . . . , k − 1 and all i, j . (11)

As we shall see, our choice of � will depend on the parity of k.
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1082 L. Hajdu et al.

Suppose first k is odd. Then k ≥ 3. We choose � = −r − 2 in (11) and let

f (x) =
(
x − r − 2

k − 1

)

.

Since deg f = k − 1, by our assumptions we have

∑

a∈Ai

f (a) =
∑

a∈A j

f (a) (1 ≤ i, j ≤ t).

Recall that A = A1 ∪ · · · ∪ At and n ∈ A. Observe that

f (1) =
(
k + r − 1

k − 1

)

, f (2) =
(
k + r − 2

k − 1

)

, . . . , f (r + 1) =
(
k − 1

k − 1

)

.

Thus we have

∑

a∈A

f (a) ≤
n−r−2∑

i=k−1

(
i

k − 1

)

+
k+r−1∑

i=k−1

(
i

k − 1

)

=
(
n − r − 1

k

)

+
(
k + r

k

)

.

Hence for any j with 1 ≤ j ≤ t we get

∑

a∈A j

f (a) ≤
(n−r−1

k

) + (k+r
k

)

t
= n − r − 1

n − r

(
n − r − 2

k − 1

)

+ k

n − r

(
k + r

k

)

. (12)

On the other hand, assuming without loss of generality that n ∈ A1, we also have

∑

a∈A1

f (a) ≥
(
n − r − 2

k − 1

)

. (13)

Combining (12) and (13), we obtain

k

(
k + r

k

)

≥
(
n − r − 2

k − 1

)

.

Since k ≥ 3, we can rewrite this inequality as

(r + 1)(r + 2)(r + 3)
k−3∏

i=1

(r + 3 + i)

≥ (n − r − 2)(n − r − 3)
k−3∏

i=1

(n − r − k − 1 + i).
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We show that it is impossible. On the one hand, in view of k ≤ (n − r)/2 and (4), we
have

n − r − k − 1 + i > r + 3 + i (i = 1, . . . , k − 3).

On the other hand, we get from (4) that

(r + 1)(r + 2)(r + 3) < (n − r − 2)(n − r − 3). (14)

This yields a contradiction, which proves our claim for k odd.
Suppose k is even and k ≥ 4. Here we choose � = −2r − 2 in (11) and let

f (x) =
(
x − 2r − 2

k − 1

)

.

Since deg f = k − 1, by our assumptions we have

∑

a∈Ai

f (a) =
∑

a∈A j

f (a) (1 ≤ i, j ≤ t).

Observe that the negative values of f are

f (1) = −
(
k + 2r − 1

k − 1

)

, f (2) = −
(
k + 2r − 2

k − 1

)

, . . . , f (2r + 1) = −
(
k − 1

k − 1

)

.

Thus we have

∑

a∈A, f (a)<0

| f (a)| ≤
k+2r−1∑

i=k−1

(
i

k − 1

)

=
(
k + 2r

k

)

. (15)

Furthermore,

∑

a∈A, f (a)≥0

f (a) ≤
n∑

i=2r+2

(
i − 2r − 2

k − 1

)

=
n−2r−2∑

j=0

(
j

k − 1

)

=
(
n − 2r − 1

k

)

.

Hence for any j with 1 ≤ j ≤ t we get

∑

a∈A j

f (a) ≤
(n−2r−1

k

)

t
= n − 2r − 1

n − r

(
n − 2r − 2

k − 1

)

. (16)

On the other hand, assuming without loss of generality that n ∈ A1, we also have, by
(15),

∑

a∈A1

f (a) ≥
(
n − 2r − 2

k − 1

)

−
(
k + 2r

k

)

. (17)
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Combining (16) and (17), we obtain

(n − r)

(
k + 2r

k

)

≥ (r + 1)

(
n − 2r − 2

k − 1

)

.

Since k ≥ 4, we can rewrite this inequality as

(n − r)(2r + 1)(2r + 2)(2r + 3)(2r + 4)
k−4∏

i=1

(2r + 4 + i)

≥ k(r + 1)(n − 2r − 2)(n − 2r − 3)(n − 2r − 4)
k−4∏

i=1

(n − 2r − k − 1 + i).

We show that it is impossible. In view of k ≤ (n − r)/2 and (4), we have

n − 2r − k − 1 + i > 2r + 4 + i (i = 1, . . . , k − 4).

On using k ≥ 4 and writing m = n − 2r , it follows that

(m + r)(2r + 1)(2r + 3)(r + 2) > (m − 2)(m − 3)(m − 4). (18)

Since (4) implies m > 2r3/2 + 3r + 8, this yields a contradiction.
Finally, let k = 2. Then we have t = (n − r)/2; in particular, n − r is even. That

is, we have pairs of elements of A having the same sum. Obviously, this is possible
only if we take the largest number with the smallest one, and so on, so the pairs are
symmetric with respect to ā. 
�

Corollary 3.1 The only solution of Problem 1 with k > 2 is for n = 7.

Proof We apply the proof of Theorem 2.1 with r = 1 and t = 2. It follows that k = 2
if n > 15. On the other hand, n has to be odd and if k > 2, then n ≥ 7. Hence it
remains to check the odd values of n between 7 and 15.

Ifn = 15, 13, 11or 9, then k = (n−1)/2 andwe apply (11)with h = k−1, � = −3.
If n �= 9, then the largest coefficient

(2k−2
k−1

)
is larger than the sum of the absolute values

of the other 2k binomial coefficients. Hence the sums in (11) cannot be equal. If n = 9,
the largest binomial coefficient,

(6
3

) = 20, is equal to the sum of the absolute values of
the other terms. It follows that 9, 1, 2 ∈ A1 and 8, 7, 6 ∈ A2. However, when applying
(11) with h = 1, � = −3 we see that the sum of the elements in A2 exceeds that of
A1 for all possible choices of the remaining elements 3, 4 and 5.

If n = 7, choose A0 = {4}, A1 = {2, 3, 7}, A2 = {1, 5, 6}. This is the only valid
choice. 
�

Remark 5 Remark 2 implies that the symmetric polynomials σ1, σ2 of 1, 2, 6 and of
0, 4, 5, and also of 3, 5, 13 and of 1, 9, 11, coincide too.
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4 Proofs of results on indecomposability

Proof of Theorem 2.2 Let A0, A1, . . . , At be a partition as stated in Problem 2. Put
A = {1, . . . , n} \ A0 and let f A, h1, h2 be as in the theorem. We want to show that
f A(x) = h1(h2(x)). If two polynomials of degree n − r have the same values at
n − r + 1 points, then they coincide. It is clear that f A(0) = h1(h2(0)) = ∏

a∈A(−a)

and that both f A(x) and h1(h2(x)) have all a ∈ A1 as roots. In view of

∏

a∈A1

(x − a) −
∏

a∈A1

(−a) =
∏

a∈Ai

(x − a) −
∏

a∈Ai

(−a)

for 2 ≤ i ≤ t , we see that every a ∈ A is both a root of f A(x) and of h1(h2(x)). Thus
f A(x) and h1(h2(x)) assume the same value at n − r + 1 points, hence f A = h1(h2).
This proves the “only if” statement and the second statement of the theorem.

To prove the “if” statement, let A ⊆ {1, . . . , n} with |A| = n − r , and suppose
that h1(h2) is a decomposition of f A with h1, h2 ∈ Q[x]. Clearly, we may assume
that both h1 and h2 are monic polynomials. Set h1(x) = (x − α1) . . . (x − αt ) with
α1, . . . , αt ∈ C. Observe that these roots are pairwise distinct. Then

∏

a∈A

(x − a) = h1(h2(x)) = (h2(x) − α1) · · · (h2(x) − αt ).

Let Ai consist of the roots of the polynomial h2(x) − αi (i = 1, . . . , t). Then all the
symmetric polynomials of the elements of Ai for i = 1, . . . , t coincide. So putting
A0 = {1, . . . , n} \ A, the sets A0, A1, . . . , At form a partition as in Problem 2. 
�
Proof of Corollary 2.1 Clearly, by

f A,c,d(x) = dn−r
∏

a∈A

(
x − c

d
− a

)

= dn−r f A

(
x − c

d

)

,

f A,c,d and f A are equivalent and therefore have equivalent decompositions. It follows
from Theorems 2.2 and 2.1 that f A,c,d is decomposable if and only if n − r is even,
each partition set Ai has two elements, a(i)

1 and a(i)
2 for i = 1, . . . , t , say, the set A is

symmetric with respect to ā and (5) holds.
To get the specific decomposition observe that

(x − a(i)
1 )(x − a(i)

2 ) − a(i)
1 a(i)

2 = (x − a)2 − a2

for i = 1, . . . , n. Thus, using the decomposition f A = h1(h2) with h1, h2 as in
Theorem 2.2, we have

f A,c,d(x) = dn−r h1

(

h2

(
x − c

d

))

= dn−r h1

((
x − c

d
− a

)2

− a2
)

,
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so choosing ϕ∗(x) = dn−r h1(x − a2) we obtain the decomposition as given in the
theorem.

To prove the uniqueness let f A(x) = P(Bx2 + Cx + D) any decomposition of
f A(x) with P(x) ∈ Q[x] and B,C, D ∈ Q, B �= 0. Without loss of generality we
may assume B = 1. Then f A(x) = P

(
(x + C/2)2 + D − C2/4

)
. Hence the roots of

f A form a symmetric set with respect to −C/2, but they also form a symmetric set
with respect to a. Thus C = −2a. This proves the uniqueness. 
�

5 Proofs of results on Diophantine equations

We start with the proof of Theorem 2.4. For this, we introduce some notation and state
three lemmas.

Let f (x) ∈ Z[x] of degree d and height (i.e, the maximum of the absolute values
of the coefficients) H , and let a be a non-zero integer. Consider the equation

f (x) = ay� (19)

in x, y, � ∈ Z with � ≥ 2. The next lemma is due to Schinzel and Tijdeman [23].
Actually already Tijdeman [25] suffices.

Lemma 5.1 Suppose that f (x) has at least two different roots. Then for all solutions
x, y, � of (19) with |y| > 1 we have

� < C1,

where C1 = C1(a, d, H) is an effectively computable constant depending only on a, d
and H.

The second lemma is a result of Brindza [6]. Let S be a finite set of primes, and
write ZS for the set of those rational numbers whose denominators have no prime
divisors outside S. For a rational number q (given in its minimal form), by its height
h(q) we mean the maximum of the absolute values of its denominator and numerator.

Lemma 5.2 Let f (x) ∈ Z[x] with

f (x) = a0

s∏

i=1

(x − γi )
ri ,

where γ1, . . . , γs are the (distinct, complex) zeros of f (x), with multiplicities
r1, . . . , rs , respectively. Further, suppose that � (with � ≥ 2) is fixed, and write

ti = �

gcd(�, ri )
(i = 1, . . . , s).

Suppose that (t1, . . . , ts) is not a permutation of any of the s-tuples

(t, 1, . . . , 1) (t ≥ 1), (2, 2, 1, . . . , 1).
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Then for any finite set S of primes, for the solutions x, y ∈ ZS of (19) we have

max(h(x), h(y)) < C2.

Here C2 = C2(a, �, d, H , S) is an effectively computable constant depending only on
a, �, d, H , S.

Finally, we formulate a statement taking care of the cases r ≤ 1.

Lemma 5.3 Let k, j be integers with k ≥ 8 and 1 ≤ j ≤ k, and put

fk, j (x) =
k∏

i=1
i �= j

(x − i).

Further, let a, b ∈ Q with a �= 0. Then for all solutions of the equation

fk, j (x) = ay� + b

in integers x, y, �with � ≥ 2we havemax(|x |, |y|, �) < C3, where C3 is an effectively
computable constant depending only on k, a, b. Here we use the convention that for
|y| ≤ 1 we have � ≤ 3.

Proof In case of j = 1 or j = k, the statement follows from the main result of [26],
while in the other cases it is a consequence of Theorem 2.2 of [15]. 
�

Now we are ready to give the proof of our effective result.

Proof of Theorem 2.4 Consider (10) with fixed A, c, d, a, b in integers x, y, � with
� ≥ 2. Our proof relies on Lemmas 5.1 and 5.2, hence ultimately on the multiplicities
of the roots of f A,c,d(x) and its shifts f A,c,d(x) − b. Thus as by a simple rational
substitution and multiplication by appropriate rationals we can transform f A,c,d(x)
into f A(x), we may consider f A(x) in place of f A,c,d(x). In view of Lemma 5.3 and
n ≥ 9, we may assume r = n − |A| ≥ 2 as well.

As all the roots of f A(x) are simple and real, the same is valid for the polynomial
f ′
A(x), and consequently for ( f A(x)−b)′. Thus the polynomial f A(x)−b can have at

most double roots. Since its degree is n − r ≥ 22, the statement immediately follows
from Lemmas 5.1 and 5.2, unless � = 2 and f A(x) is of the form

f A(x) = p(x)(q(x))2 + b (20)

with some p, q ∈ Q[x] with deg p ≤ 2. In particular,

N := |A| = deg f A(x)

has the same parity as deg p has. Write a1 < · · · < aN for the elements of A. Taking
derivatives, (20) gives

f ′
A(x) = q(x)(p′(x)q(x) + 2p(x)q ′(x)). (21)
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Let α1, . . . , αN−1 be the roots of f ′
A(x). Then by Rolle’s theorem these are distinct

real numbers with

ai < αi < ai+1 (i = 1, . . . , N − 1).

We only consider the case deg p = 2. In fact, it is the most complicated possibility,
the other cases are simpler and canbehandled similarly. Then clearly, deg q = N/2−1,
and (21) shows that the roots of q(x) are among the αi -s. Further, (20) implies that
for these αi -s we have f A(αi ) = b. Observe that, by (6), f A(αi ) < 0 for i odd, while
f A(αi ) > 0 for i even. Altogether, we have two options:

(a) either the roots of q(x) are given by α2, α4, . . . , αN−2 (i.e., all the roots with even
indices are involved),

(b) or the N/2 − 1 roots of q(x) are among α1, α3, . . . , αN−1 (that is, all the roots
with odd indices with one exception are involved).

Put

G(x) = f A(x − 2) − f A(x)

and set

A∗ = {a ∈ A : a + 2 ∈ A}.

Observe that |A∗| ≥ N − r − 2 and

G(x) = H(x)
∏

a∗∈A∗
(x − a∗)

with deg H ≤ r + 2. Further, among the (not disjoint) quadruples

{2i − 2, 2i − 1, 2i, 2i + 1} (i = 2, . . . , (n − 1)/2�)

at least n/2 − 2 − 2r are subsets of A. So by (4), there is a quadruple 2i − 2, 2i −
1, 2i, 2i + 1 contained in A, such that H(x), and thus G(x) has no root in some
interval (2i, 2i + 1). However, then the sign of G(x) does not change in this interval.
If G(x) > 0 for x ∈ (2i, 2i + 1) then f A(x − 2) > f A(x) and choosing x = α2i we
have

f A(α2i−2) ≥ f A(α2i − 2) > f A(α2i ).

Here we use that α2i−2 is the maximum of f A on (2i − 2, 2i − 1). If G(x) < 0 for
x ∈ (2i, 2i + 1) then f A(x − 2) < f A(x) and choosing x = α2i−2 + 2 the same
reasoning gives

f A(α2i−2) < f A(α2i−2 + 2) ≤ f A(α2i ).
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Hence in both cases
f A(α2i−2) �= f A(α2i ), (22)

which shows that the option (a) above concerning the roots of q(x) is not possible. On
the other hand, among the quadruples

{2i − 1, 2i, 2i + 1, 2i + 2} (i = 1, . . . , n/2 − 1�)

at least n/2 − 2r − 2 are subsets of A. So by (4), there are three quadruples as above
contained in A, such that H(x), and thus G(x) has no root in three distinct intervals
(2i j + 1, 2i j + 2) ( j = 1, 2, 3). Similarly to (22) we obtain

f A(α2i j−1) �= f A(α2i j+1) ( j = 1, 2, 3),

which shows that the option (b) above concerning the roots of q(x) is also impossible.

�

Now we give the proof of Theorem 2.3. For this we need some more results and
notation.

Let δ be a non-zero rational number and μ be a positive integer. Then

Dμ(x, δ) :=
μ/2�∑

i=0

dμ,i x
μ−2i where dμ,i = μ

μ − i

(
μ − i

i

)

(−δ)i

is the μ-th Dickson polynomial. For properties of these polynomials see, e.g., [17].
We shall use a deep result of Bilu and Tichy [4] concerning equations of the type

f (x) = g(y) (23)

in integers x, y, where f , g are polynomials with rational coefficients. To describe
this result, we introduce some notation. We say that F,G ∈ Q[x] form a standard pair
over Q if either (F(x),G(x)) or (G(x), F(x)) appears in Table 1.

Now we recall the main result of [4], which will play a key role in the proof of
Theorem 2.3.

Table 1 Standard pairs. Here α, β are non-zero rational numbers, μ, ν, q are positive integers, p is a
non-negative integer, v(x) ∈ Q[x] is a non-zero, but possibly constant polynomial

Kind Standard pair Parameter restrictions

First (xq , αx pv(x)q ) 0 ≤ p < q, (p, q) = 1,

p + deg v(x) > 0

Second (x2, (αx2 + β)v(x)2) –

Third (Dμ(x, αν), Dν(x, αμ)) gcd(μ, ν) = 1

Fourth (α−μ/2Dμ(x, α), −β−ν/2Dν(x, β)) gcd(μ, ν) = 2

Fifth ((αx2 − 1)3, 3x4 − 4x3) –
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Lemma 5.4 Let f (x), g(x) ∈ Q[x] be non-constant polynomials. Then the following
two statements are equivalent.

(I) Equation (23) has infinitely many rational solutions x, y with a bounded denomi-
nator.

(II) We have f = ϕ ◦ F ◦ λ and g = ϕ ◦ G ◦ κ , where λ(x), κ(x) ∈ Q[x] are linear
polynomials, ϕ(x) ∈ Q[x], and F(x),G(x) form a standard pair over Q such
that the equation F(x) = G(y) has infinitely many rational solutions x, y with a
bounded denominator.

Proof of Theorem 2.3 By Lemma 5.4, if f A,c,d(x) = P(y) has infinitely many integer
solutions then f A,c,d = ϕ ◦ F ◦ λ and P = ϕ ◦ G ◦ κ , where ϕ, λ, κ are rational
polynomials with deg λ = deg κ = 1, and F and G form a standard pair. By Corollary
2.1, degϕ ∈ {n − r , (n − r)/2, 1}. Observe that since the decompositions of the
polynomials f A,c,d and f A are equivalent, we may assume that c = 0 and d = 1,
that is, it is enough to deal with f A(x). Further, since all quadratic polynomials are
equivalent, in view of the case � = 2 in Theorem 2.4, we may assume without loss of
generality that deg P ≥ 3. Finally, by the main result of [16] and by Theorem 2.1 of
[15] we may assume that r = n − |A| ≥ 2. By (4) this implies

deg f A(x) = N = n − r ≥ 24. (24)

If degϕ = n − r then deg F = 1, and we easily get that we are in case (i) of
Theorem 2.3.

Suppose degϕ = (n − r)/2. Then we have deg F = 2. By Corollary 2.1 the
decomposition is given up to a linear transformation: f A(x) = ϕ∗((x − a)2). If we
have infinitely many solutions then by Lemma 5.4 we have ϕ∗((x − a)2) = P(y) =
ϕ∗(G(y)) for some G(y) ∈ Q[y] such that (x − a)2 = G(y) has infinitely many
solutions. Lemma 5.2 implies that we must be in case (ii).

Finally, consider the case degϕ = 1. Then deg F = n − r , and we have

f A(x) = aF(sx + t) + b,

where F is a member of a standard pair. We check the possible cases.
As deg f A ≥ 24, F cannot come from a standard pair of the fifth kind. Since we

assumed that deg P ≥ 3, the polynomial F cannot belong to a standard pair of the
second type, either.

Assume that F belongs to a standard pair of the first kind. Since all the zeros of
f A(x) are real and simple, hence by Rolle’s theorem all the roots of f ′

A(x) are real
and simple, F(x) = xq is not possible. On the other hand, if F(x) = x p(v(x))q , then
f A is of the form

f A(x) = a(s1x + s2)
p(v(s1x + s2))

q + b

with some s1, s2 ∈ Q, s1 �= 0. Using again that the roots of f ′
A(x) are simple, we get

q ≤ 2. However, then in view of that the other term in the standard pair in question is
xq , we see that deg P ≤ 2, which is excluded.
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Finally, assume that F belongs to a standard pair of the third or fourth kind. Then
f A(x) should be a linear transform of a Dickson polynomial. More precisely, with
some rationals s1, s2, t1, t2 (s1t1 �= 0) and non-negative integer N we can write

t1 f A(s1x + s2) + t2 = DN (x, δ),

where DN (x, δ) is the N -th Dickson polynomial, with non-zero parameter δ ∈ Q.
(Here we apply the inside and outside linear transformations to f A rather than to DN .
In fact, writing f A = ϕ ◦ DN ◦ λ, t1x + t2 and s1x + s2 are the inverses of the linear
polynomials ϕ(x) and λ(x), respectively.) Observe that here N = deg f A(x) = |A|
must hold. Then, by the well-known identity (see. e.g., formula (2.2) on p. 9 of [17])

DN

(

y + δ

y
, δ

)

= yN +
(

δ

y

)N

we obtain

t1
∏

a∈A

(

s1

(

y + δ

y

)

+ s2 − a

)

+ t2 = yN +
(

δ

y

)N

.

Hence as |A| = N ,

∏

a∈A

(

y2 + s2 − a

s1
y + δ

)

= y2N − t2y
N + δN

follows. Here we used by comparing the leading coefficients, that t1sN1 = 1must hold.
Write ζ, ξ for the roots of the polynomial y2 − t2y + δN . Clearly, ζ, ξ are algebraic
numbers of degree at most two. Further, we have

∏

a∈A

(

y2 + s2 − a

s1
y + δ

)

= (yN − ζ )(yN − ξ). (25)

If ζ0, ξ0 are roots of yN − ζ and yN − ξ , respectively, then all the roots of these
polynomials are given by

ζ0ε
i and ξ0ε

i (i = 0, 1, . . . , N − 1),

respectively, where ε is a primitive N -th root of unity. By (25)we see that all these roots
are algebraic numbers of degrees at most two. This immediately gives that the degree
of ε is at most four, hence ϕ(N ) ≤ 4. We conclude that N ≤ 12. This contradicts (24).
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