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Abstract. We give sharp, in some sense uniform bounds for the
number of ℓ-th powers and arbitrary powers among the first N
terms of an arithmetic progression, for N large enough.

1. Introduction

The problem of giving (sharp) upper bounds for the number of pow-
ers among N consecutive terms of an arithmetic progression is a clas-
sical one with many deep results and open problems and conjectures.
Here we only give a brief introduction; for a more precise account of
the topic the interested reader may consult e.g. the papers [1] and [6].

Let a, b, ℓ be integers with a > 0 and let ℓ ≥ 2. Write Pa,b;N(ℓ) for
the number of ℓ-th powers among the first N terms of the arithmetic
progression ax + b (x ≥ 0). Denote by PN(ℓ) the maximum of these
values taken over all arithmetic progressions ax + b. (Note that this
maximum obviously exists.) The case of squares (i.e, ℓ = 2) has been
studied by many authors. Erdős [3] conjectured and Szemerédi [10]
proved that PN(2) = o(N). Later, by deep tools (such as e.g. elliptic
and higher genus curves, Falting’s theorem, the distribution of primes
etc.) Bombieri, Granville and Pintz [1] proved PN(2) < O(N2/3+o(1)),
which subsequently was improved to PN(2) < O(N3/5+o(1)) by Bombieri
and Zannier [2]. See also Granville [5] for related results and remarks.
A strong conjecture of Rudin (see [9], end of paragraph 4.6) predicts

that PN(2) = O(
√
N), or in an even more precise form, that

(1) PN(2) = P24,1;N(2) =

√
8

3
N +O(1) (N ≥ 6)

should hold.
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In case ℓ ≥ 3 there is hardly anything known. The authors of [1]
noted (without proof) that their methods probably make it possible
to prove PN(3) ≪ N3/5+ε and PN(ℓ) ≪ N1/2+ε (ℓ ≥ 4). Hajdu and
Tengely [6] showed that (up to equivalence) for any ℓ ≥ 2 there is
a unique arithmetic progression ax + b which contains the most ℓ-th
powers asymptotically, that is, which maximizes the expression

lim
N→∞

|{x : ax+ b is an ℓ-th power, 0 ≤ x < N}|
ℓ
√
N

.

(In fact, for ℓ = 4 there are two such progressions.) They could de-
scribe these arithmetic progressions aℓx + bℓ explicitly. Based upon
their results, they extended Rudin’s conjecture (1) for any ℓ ≥ 2 (by
replacing 24x+1 by aℓx+ bℓ and changing the right hand side accord-
ingly), and proved that for ℓ = 3, 4 for certain small values of N . Note
that this asymptotic (’global’) version of the problem is simpler than
the original ’local’ one, namely when we concentrate on a finite part of
the progressions. The reason is that the asymptotic approach brings in
an ’averaging’ effect, which roughly speaking makes it possible to con-
centrate on a complete (finite) period of a progression ax + b modulo
a.

In this note we prove that for any positive ε there is an ℓ0 depending
only on ε such that for ℓ > ℓ0 the number of ℓ-th powers among the
first N terms of any integral arithmetic progression is below (1+ε) ℓ

√
N ,

provided that N is large enough in terms of ε, ℓ and the parameters of
the progression. The important feature of ℓ0 is that it is uniform in the
sense that it depends only on ε, it is independent of the progression.
This result is sharp in the sense that for infinitely many ℓ, one can find
a constant c1 = c1(ℓ) > 1 and an arithmetic progression having more

than c1
ℓ
√
N ℓ-th powers among its first N terms, for all N large enough.

We also give a uniform, sharp upper bound for the number of powers
(with not fixed exponents) among the first N terms of arithmetic pro-
gressions. In our proofs we combine a classical result of Wigert [11]
concerning the number of divisors of positive integers, a recent result
of Hajdu and Tengely [6] concerning arithmetic progressions containing
the most ℓ-th powers asymptotically, and a new assertion answering a
question of Hajdu and Tengely from [6].

2. New results

Now we give our main results. We use the notation from the intro-
duction.
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Theorem 2.1. For every ε > 0 there is an ℓ0 depending only on ε such
that for any ℓ > ℓ0 we have Pa,b;N(ℓ) ≤ (1 + ε) ℓ

√
N , whenever N > N0.

Here N0 = N0(ε, ℓ, a, b) depends on ε, ℓ, a, b.

Remarks. The above theorem is sharp in the sense that 1 + ε cannot
be replaced by 1, and ℓ > ℓ0 is also necessary. Indeed, Theorem 1
of [6] (see also the Remarks after it) implies that for infinitely many
exponents ℓ ≥ 2 there exists a δℓ > 0 and an arithmetic progression
aℓx+bℓ with Paℓ,bℓ;N(ℓ) > (1+δℓ)

ℓ
√
N for all N > N0. Here N0 = N0(ℓ)

depends only on ℓ.
It is clear that if an arithmetic progression ax + b contains an ℓ-th

power then it contains infinitely many, and we have

Pa,b;N(ℓ) >
1

2a
ℓ
√
N

for N > N0, where N0 depends on a, b.
We also mention that on our way to prove Theorem 2.1, we answer

a question of Hajdu and Tengely [6] (see Proposition 3.1).

We also give a uniform upper bound for the number of powers in
arithmetic progressions. For this, let Pa,b;N(∗) denote the number of
(arbitrary) powers among the first N terms of the arithmetic progres-
sion ax+ b (x ≥ 0).

Theorem 2.2. Let ax+ b (x ≥ 0) be an arithmetic progression. Then
for any ε > 0 there exists an N0 such that

(2) Pa,b;N(∗) <

(√
8

3
+ ε

)
√
N

for any N > N0. Here N0 = N0(ε, a, b) depends only on ε, a, b.

Remark. One can easily check (see also e.g. Theorem 1 of [6]) that

lim
N→∞

P24,1;N(2)√
N

=

√
8

3
.

This shows that the above result is sharp.
Further, it is also easy to see that if gcd(a, b) = 1 then there exist

infinitely many exponents ℓ such that ax+b contains ℓ-th powers. Note
that here the condition gcd(a, b) = 1 cannot be dropped: for example,
the arithmetic progression 4x+ 2 (x ≥ 0) contains no powers at all.

3. Proofs

To prove Theorem 2.1 we shall need some known and new assertions.
The next lemma is a result of Hajdu and Tengely [6]. For its formu-
lation, we need to introduce some new notions and notation (which
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will play important roles also later on). For any ℓ ≥ 2 and arithmetic
progression ax+ b put

Ma,b(ℓ) := |{u : 0 ≤ u < a, uℓ ≡ b (mod a)}|

and Sa,b(ℓ) := Ma,b(ℓ)a
1
ℓ
−1.

Lemma 3.1. For any ℓ ≥ 2 and for any arithmetic progression ax+ b
we have Sa,b(ℓ) ≤ S(ℓ), where

S(ℓ) =


√

8
3
, if ℓ = 2,∏

p prime, p−1|ℓ,
log p

log p−log(p−1)
>ℓ

(p− 1)p
1
ℓ
−1, otherwise.

Proof. The statement is the first half of Theorem 1 of [6]; see also the
notation in its proof on p. 970 of [6]. �

Remark. The inequality Sa,b(ℓ) ≤ S(ℓ) is sharp: for any ℓ, by an
appropriate choice of ax + b (given in [6]) we get equality. Observe
that for ℓ odd, we have S(ℓ) = 1.

In the proofs of Theorems 2.1 and 2.2 we shall need the following new
assertion. This answers a question of Hajdu and Tengely concerning
the limit of the sequence S(ℓ) (see the ’concrete question’ on p. 966
in the Remarks after Theorem 1 in [6]), and we find it of possible
independent interest.

Proposition 3.1. By the notation of Lemma 3.1, for any γ > 0 there
exists an ℓ1 = ℓ1(γ) depending only on γ such that for ℓ > ℓ1 we have

(3) S(ℓ) < exp
(
ℓ−1+γ

)
.

In particular, lim
ℓ→∞

S(ℓ) = 1 holds.

Remark. One can easily check that (3) implies that

S(ℓ) < 1 + 2ℓ−1+γ

for ℓ large enough.

To prove the above statement, we need the next classical theorem
concerning the number of divisors d(n) of a positive integer n.

Lemma 3.2. If ε > 0, X > X0(ε) then we have

max
n≤X

d(n) < exp

(
(log 2 + ε)

logX

log logX

)
.
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Proof. This is a classical result of Wigert [11]. Note that in [7], p. 56 a
stronger form of this assertion is given, however, the above inequality
is sufficient for our present purposes. �
Proof of Proposition 3.1. As one can easily check by a direct calcula-
tion, the function (t−1)t1/ℓ−1 is strictly monotone increasing for t > 0,
for any fixed ℓ ≥ 3. Thus, as for ℓ ≥ 3 the product appearing in S(ℓ)
has at most d(ℓ) terms and in every term p ≤ ℓ+ 1 holds, we have

1 ≤ S(ℓ) ≤
(
ℓ(ℓ+ 1)1/ℓ−1

)d(ℓ)
<
(

ℓ
√
ℓ
)d(ℓ)

.

Here we also used that by the condition log p
log p−log(p−1)

> ℓ, the terms

appearing in S(ℓ) are greater than 1. Now by Lemma 3.2 we get that

S(ℓ) < exp

(
d(ℓ) log ℓ

ℓ

)
< exp

exp
(

log ℓ
log log ℓ

)
log ℓ

ℓ

 =

= exp

(
exp

(
log ℓ

log log ℓ
+ log log ℓ− log ℓ

))
< exp(ℓ−1+γ)

hold, for any γ > 0 with ℓ > ℓ1, where ℓ1 = ℓ1(γ) depends only on γ.
Thus the first part of the statement is proved. The second part of the
claim, taking any γ with 0 < γ < 1, from this immediately follows. �

Now we can give the

Proof of Theorem 2.1. To bound Pa,b;N(ℓ), we need to give an upper
bound for the number of ℓ-th powers among the numbers

b, a+ b, . . . , a(N − 1) + b.

In view of thatN0 depends on a, b, we may assume that a(N−1)+b ≥ 0.
An ℓ-th power uℓ belongs to the above terms if its size is ’between’ b
and a(N − 1) + b, and uℓ ≡ b (mod a). Thus we see that

Pa,b;N(ℓ) ≤
(

ℓ
√

aN + |b|+ ℓ
√
|b|
)Ma,b(ℓ)

a
+Ma,b(ℓ).

Here the term in brackets on the right hand side provides an upper
bound for the number of (consecutive) integers (forming an interval
I) with ℓ-th power of the ’appropriate’ size, the factor Ma,b(ℓ)/a is the
ratio of ℓ-th powers in the residue class b (mod a), while the last term is
to bound the number of possible ℓ-th powers in the progression coming
from the last part of I (having less than a elements). This yields

(4) Pa,b;N(ℓ) ≤ Ma,b(ℓ)a
1
ℓ
−1 ℓ
√
N

(
ℓ

√
1 +

|b|
aN

+
ℓ

√
|b|
aN

+
a

ℓ
√
aN

)
.
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Let ε > 0 arbitrary. Clearly, there exists an N1 = N1(ε, ℓ, a, b) depend-
ing on ε, ℓ, a, b such that for N > N1 we have

ℓ

√
1 +

|b|
aN

+
ℓ

√
|b|
aN

+
a

ℓ
√
aN

< 1 +
ε

2
.

By Lemma 3.1 this together with (4) implies

(5) Pa,b;N(ℓ) <
(
1 +

ε

2

)
S(ℓ)

ℓ
√
N.

In view of Proposition 3.1 we can take an ℓ0 such that

S(ℓ) <
2 + 2ε

2 + ε

for ℓ > ℓ0. This by (5) yields that

Pa,b;N(ℓ) < (1 + ε)
ℓ
√
N

under the assumptions made for ℓ and N . Hence our claim follows. �

Now we give the

Proof of Theorem 2.2. Throughout the proof we use the phrase ’N is
large enough’ to express that N is larger than an appropriate bound
depending only on ε, a, b.

Combining (4) and Lemma 3.1 we obtain

(6) Pa,b;N(2) <

(√
8

3
+

ε

2

)
√
N

for ℓ = 2 and

Pa,b;N(ℓ) < S(ℓ)(a+ 3)
ℓ
√
N

for ℓ ≥ 3, respectively, for N large enough. In view of Proposition 3.1,
the latter assertion implies that there exists an absolute constant C
such that

(7) Pa,b;N(ℓ) < C(a+ 3)
ℓ
√
N

for any ℓ ≥ 3, for N large enough. Further, if N is large enough then
we have aN + b ≥ |b|. Hence if uℓ with |u| > 1 belongs to ax + b
(0 ≤ x < N) then we have

ℓ ≤ log(aN + |b|)
log 2

.
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(If u ∈ {−1, 0, 1}, then we may assume that ℓ ≤ 3.) This together with
(6) and (7) gives

Pa,b;N(∗) ≤
∑

2≤ℓ≤ log(aN+|b|)
log 2

Pa,b;N(ℓ) = Pa,b;N(2)+
∑

3≤ℓ≤ log(aN+|b|)
log 2

Pa,b;N(ℓ) <

<

(√
8

3
+

ε

2

)
√
N + C(a+ 3)

log(aN + |b|)
log 2

3
√
N <

(√
8

3
+ ε

)
√
N

for N large enough. This proves the statement. �
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Université Geneva, 1963.

[4] S. Finch, G. Martin and P. Sebah, Roots of unity and nullity modulo n, Proc.
Amer. Math. Soc. 138 (2010), 2729–2743.

[5] A. Granville, Squares in Arithmetic Progressions and Infinitely Many Primes,
Amer. Math. Monthly 124 (2017), 951–954.

[6] L. Hajdu and Sz. Tengely, Powers in arithmetic progressions, Ramanujan J.
55 (2021), 965–986.

[7] H. L. Montgomery and R. C. Vaughan, Multiplicative Number Theory, I. Clas-
sical Theory, Cambridge Univ. Press, Cambridge, 2007.

[8] I. Niven, H. S. Zuckerman and H. L. Montgomery, An Introduction to the
Theory of Numbers, 5th ed., John Wiley & Sons, Inc., New York, 1991.

[9] W. Rudin, Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227.
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