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We study the 2+1 dimensional XY model at nonzero chemical potential µ on deformed integration
manifolds, with the aim of alleviating its sign problem. We investigate several proposals for the
deformations, and considerably improve on the severity of the sign problem with respect to standard
reweighting approaches. We present numerical evidence that the reduction of the sign problem is
exponential both in µ2 and in the spatial volume. We also present a new approach to the optimization
procedure based on reweighting, that sensibly reduces its computational cost.

I. INTRODUCTION

Euclidean quantum �eld theories with a �nite chemical
potential generally su�er from a complex action problem:
the path integral weights are complex, and therefore can-
not be interpreted as the Boltzmann weights of a classical
statistical mechanical system. In QCD, this complex ac-
tion problem is a severe roadblock for �rst principles un-
derstanding of the physics of neutron stars, supernovae,
as well as heavy ion collisions at lower collision energies.
In some theories the sign problem can be solved by a re-
formulation of the theory in di�erent variables, such that
in the new variables the weights are manifestly real and
positive [1�5]. This has not been achieved in QCD so far.
The existence of a sign problem does not make simula-

tions completely impossible. In the presence of a complex
action problem, simulations can still be carried out by
standard Monte Carlo methods in the phase-quenched
(PQ) theory, with Boltzmann weights proportional to∣∣e−S∣∣, or - assuming that the grandcanonical partition
function is real - the sign-quenched (SQ) theory, with
weights proportional to

∣∣Re e−S
∣∣ 1. After such simula-

tions have been carried out, the ratio of the simulated
and target partition functions, as well as the expecta-
tion values of di�erent operators O, can in principle be
reconstructed via the formulas:

Z

ZPQ
= 〈cos θ〉PQ ,

Z

ZSQ
=

〈
cos θ

|cos θ|

〉
SQ

,

〈O〉 =

〈
Oeiθ

〉
PQ

〈eiθ〉PQ
=

〈
O eiθ

|cos θ|

〉
SQ〈

cos θ
|cos θ|

〉
SQ

,

(1)

where we introduced the phase of the complex action θ as
e−S =

∣∣e−S∣∣ eiθ and we assumed that the partition func-
tion Z is real. This leads to large cancellations when the

1 This is true provided that the phase- or sign-quenched partition
function is given by a convergent integral, or can be made conver-
gent with an in�nitesimal regulator, like for the case of real-time
dynamics.

phase eiθ has large �uctuations, a problem that is gen-
erally referred to as a sign problem. The severity of the
sign problem can be measured by the partition function
ratios Z/ZPQ and Z/ZSQ, and as long as these quanti-
ties are under numerical control one can reconstruct ex-
pectation values in the desired theory reliably. In fact,
reweighting from the phase and sign quenched theories is
starting to become feasible in QCD [6�9]. However, the
range of applicability - both in the chemical potential and
in the physical volume - of such an approach is severely
constrained by the sign problem, which requires an expo-
nential increase of the statistics both as a function of the
volume V and of the squared chemical potential µ2 (for
small µ). It is therefore desirable to develop methods that
either solve or at least alleviate the sign problem. Even
if only the second goal is achieved, this could still dras-
tically increase the range of parameters that reweighting
methods can reach.
A set of methods that try to deal with the sign problem

is based on complexi�cation of the �elds. There are two
broadly de�ned approaches of this type. In the �rst one
- complex Langevin [10�14] - an N -dimensional integral
over real �elds is enlarged to a 2N -dimensional integral
over the real components of the complexi�ed �elds. In
the second one - contour deformations - the integral still
remains N -dimensional, but the integration manifold is
deformed to a di�erent manifold of the same dimension.
In this paper, we pursue this second approach.
In most cases of interest, the path integral weights are

holomophic functions of the �elds.2 In such a case, any
integration manifold that is in the same homology class
as the undeformed manifold leads to the same partition
function [17]. However, the phase and sign quenched inte-
grands are not holomorphic, and therefore the phase and
sign quenched partition functions are not invariant under
such contour deformations. Thus, it could be possible
to bring closer to unity the ratios Z/ZPQ and Z/ZSQ,
measuring the severity of the sign problem, by such con-

2 A notable exception is lattice QCD with rooted staggered
fermions [15, 16].
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tour deformations. One could then perform simulations
in the contour-deformed phase or sign quenched theory,
and perform a reweighting via Eq. (1) to get results in
the target theory.
There are di�erent ways to deform integration contours

to make sign problems milder. First, there are methods
based on Lefschetz thimbles [17�23]. However, Lefschetz
thimbles are in general not the numerically optimal in-
tegration contours [24], i.e. they are in general not the
contours with the largest Z/ZPQ, and therefore there is
no need to solely concentrate on them. Thus, it is a
worthwhile e�ort to explore di�erent contours, even in a
more ad hoc manner, leading to a second class of meth-
ods: path optimization methods. The main idea of these
methods is to parametrize the deformed integration man-
ifold by some �nite number of parameters, which are then
adjusted to make the sign problem as mild as possible.
In the context of the sign problem at nonzero chemical
potential, the path optimization method was applied to
a one-dimensional oscillating integral [25], the 0+1D φ4

theory [26], the 0+1D PNJL model [27], 0+1D QCD [28],
the 1+1D φ4 model [29], the 1+1D Thirring model [30],
the 2+1D Thirring model [31], and Bose gases of several
dimensions [32]. Other applications of the sign optimiza-
tion method include improving the signal-to-noise ratio
of noisy observables at zero chemical potential in 0+1D
scalar �eld theory and 1+1D U(1) gauge theory [33] and
in 1+1D SU(2) and SU(3) gauge theory [34], and reduc-
tion of the sign problem in 1+1D U(1) gauge theory with
a complex coupling constant [35].
In this paper we apply the path optimization method

to the 2+1 dimensional XY model. The choice of the
model is mainly motivated by the fact that it shares sev-
eral technical features with QCD, so that insight obtained
here can hopefully be applied there as well. First, the in-
tegration variables take values in a compact space, which
requires a slightly di�erent treatment of contour deforma-
tions than non-compact integration domains do. Second,
this theory has Roberge-Weiss periodicity at imaginary
chemical potential [36, 37]. Third, the model also shares
the property of QCD that the complex Langevin ap-
proach fails for small coupling β [38, 39]. Fourth, like in
lattice QCD, the dependence of the action on the chem-
ical potential is non-linear.
Finally, like in QCD, at �nite lattice spacing the e�ects

of a chemical potential should saturate at large µ, where
the temporal dependence of the relevant �eld con�gu-
rations tends to become trivial and µ essentially drops
out of expectation values; in this limit the sign problem
becomes mild.
Di�erently from QCD, however, the XY model can be

rewritten in the worldline formulation to be free of a sign
problem [3, 40, 41], allowing for direct simulations us-
ing a worm algorithm, and making explicit comparisons
possible with the path optimization method.
Our goals in this work are the following. First, we

investigate how much improvement can be made to the
severity of the sign problem in this model by very simple

ansätze for the contour deformations. Second, we study
the chemical potential and volume dependence of the im-
provement on the sign problem, and so on the statistics
required for reliable reweighting, achieved with the opti-
mized contours. Third, we wish to see whether the op-
timization procedure can be performed more e�ciently,
avoiding a full Monte Carlo simulation at each step of
the iteration searching for the optimum, by reweighting
to nearby contours and only occasionally generating new
ensembles.
The results for all three of these inquiries turn out to be

quite encouraging. First - as we will see - a rather drastic
improvement can be achieved in the severity of the sign
problem, even with relatively simple ansätze. Second,
we present numerical evidence that the improvement is
exponential, i.e., it reduces the exponent of the severity
of the sign problem. And third, a drastic improvement
can be achieved in the numerical cost of the optimization
by the proposed reweighting procedure.
The plan of the paper is the following. In Section II we

brie�y discuss the contour deformation approach to the
2+1 dimensional XY model at �nite chemical potential.
In Section III we provide details on the optimization pro-
cedure and on the di�erent parametrizations used to ame-
liorate the severity of the sign problem. In Section IV we
illustrate the chemical potential and volume dependence
of the achieved improvement. In Section V we present
a modi�ed optimization procedure based on reweighting
to di�erent contours from a �xed ensemble, that allows
us to reduce computational costs. We summarize our
conclusions in Section VI.

II. CONTOUR DEFORMATIONS FOR 2+1D XY

MODEL AT NONZERO CHEMICAL POTENTIAL

The action of the 2+1D XY model with nonzero chem-
ical potential [38, 40�42] is

S = −β
∑
x

2∑
n=0

cos(ϕx − ϕx+n̂ + ıµδn0), (2)

where the sum runs over all lattice sites and directions,
with 0 identi�ed as the temporal direction. Periodic
boundary conditions are imposed in every direction. The
partition function,

Z(µ) =

∫ π

−π
dϕ(000)· · ·

∫ π

−π
dϕ(N0N1N2) e

−S

≡
∫
M0

Dϕe−S (3)

can be interpreted as a complex contour integral in each
ϕx with endpoints at −π and π, and so as an integral over
an N0N1N2-dimensional manifold M0 = [−π, π]N0N1N2

embedded in a 2N0N1N2 dimensional space.
For each ϕx, we will consider contours in the strip of

the complex plane satisfying −π ≤ Reϕx ≤ π, with the
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FIG. 1. Illustration of an allowed and not allowed contour
deformation for a single �eld variable.

points −π + i Imϕx and π + i Imϕx identi�ed, i.e., a
cylinder. As long as the contours remain smooth on this
space, i.e., if they are smooth curves from −π + ix to
π+ ix for some x ∈ R, the partition function remains un-
changed. This can be shown by connecting the original
and the shifted contours using line segments perpendicu-
lar to the real axis, whose contributions cancel out thanks
to periodicity of the integrand in Reϕx. Allowed contour
deformations for a single �eld variable are illustrated in
Fig. 1.
Denoting the deformed manifold M, and parametriz-

ing it with real parameters tx, we have for anyM satis-
fying the requirements above

Z(µ) =

∫
M0

Dϕe−S =

∫
M
Dϕe−S

=

∫
Dtdet J e−S ≡

∫
Dt e−Seff ,

(4)

where J is the Jacobian matrix, with elements

Jxy =
∂ϕx
∂ty

, (5)

and the e�ective action is de�ned as Seff = S − ln detJ .
Exploiting the reality of the partition function we can
write it in a manifestly real form,

Z(µ) =

∫
Dt cosSIeff e

−SReff , (6)

where SReff and SIeff are the real and imaginary parts of the
e�ective action. This enables us to make use of the sign
reweighting approach [8, 9, 43, 44] by using the absolute
value of the integrand, | cosSIeff | e−S

R
eff ≥ 0, as a weight in

importance sampling. This method has a slightly milder
sign problem than the phase reweighting method [9, 43].
The corresponding expectation values will be denoted as
〈. . . 〉SQ,µ. The severity of the sign problem is measured
by the average sign,

〈ε〉SQ,µ =

∫
Dt cosSIeff e

−SReff∫
Dt | cosSIeff | e−S

R
eff

. (7)

While the numerator of this expression is invariant un-
der changing integration contours, the denominator is in-
stead altered. Hence, deforming contours leaves the tar-
get partition function unchanged but it has an e�ect on
the severity of the sign problem.

III. OPTIMIZATION OF THE INTEGRATION

MANIFOLD

In this paper we work at β = 0.4, that for µ = 0 is
in the disordered phase of the model [38, 40, 41]. As a
preliminary check, we performed a scan in µ using the
sign problem-free worldline formulation and the worm
algorithm of Ref. [40]. Using a standard �nite size scaling
analysis, we observe a phase transition at µ2

c ≈ 0.54.
Our goal is to �nd integration contours that give a

larger 〈ε〉SQ,µ than without contour deformation. As
such, we need to maximize the expectation value of the
sign, or alternatively, minimize a cost function, with re-
spect to some coe�cients pi that parametrize the con-
tours. As our cost function, we choose the ratio of
the number of con�gurations with negative and positive
cosSIeff ,

N−
N+

=

∫
DtΘ(− cosSIeff)| cosSIeff | e−S

R
eff∫

DtΘ(cosSIeff)| cosSIeff | e−S
R
eff

. (8)

Its gradient can be computed easily,

Fi ≡
∂

∂pi

(
N−
N+

)
=
N−
N+

(
〈Fi〉− − 〈Fi〉+

)
, (9)

where 〈. . . 〉± means averaging only over con�gurations
with positive/negative cosSIeff , and

Fi ≡ −
∂SReff

∂pi
− tanSIeff

∂SIeff

∂pi
. (10)

We perform optimization using a simple gradient descent
algorithm. At every optimization step we update coef-
�cients by subtracting the gradient of the cost function
with a multiplication factor,

p(j+1) = p(j) − αjF (j), (11)

where p(j) is the vector of coe�cients obtained at the
jth step, F (j) is the value of the gradient obtained using
p(j), and αj is

αj =

∣∣∣(p(j) − p(j−1)
)T · (F (j) −F (j−1)

)∣∣∣
||F (j) −F (j−1)||2

. (12)
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FIG. 2. Severity of the sign problem on an Ω = 83 lattice
with β = 0.4. Unimproved results are shown in red and the
results optimized obtained using Eq. (13) for K = 1 and 2 are
shown in purple and orange, respectively.

The algorithm terminates when the relative change of the
coe�cients decreases below a prescribed tolerance value.
We note that since we always start the optimization

near the undeformed integration manifold, our procedure
explores only the vicinity of the original contour, and
might not detect an optimum lying beyond a �potential
barrier�.
For simplicity, we only consider contours where the

imaginary part is a single-valued function of the real part.
We thus parametrize the integration manifold by the real
parts of the �eld variables on the di�erent lattice sites,
denoted by tx. Periodicity of the action in the real part
of ϕx restricts the imaginary part of ϕx on the deformed
manifold to be a Fourier series in tx, with coe�cients
that in general depend on x and on the other �eld vari-
ables. As our �rst attempt, we parametrized each com-
plex ϕx using only the corresponding tx. However, the
sign problem could not be improved this way, as using
this parametrization the original contour turned out to
be the local minimum of the cost function. We then ex-
perimented with di�erent ansätze that couple neighbour-
ing sites in simple ways, all of which could improve the
sign problem, but by quite di�erent amounts. As a fur-
ther simpli�cation, we considered contours parametrized
as Fourier series in sines and cosines of tx − ty.'

A. Ansätze without temporal translational

invariance

Since the chemical potential a�ects directly only the
interaction between temporal nearest neighbors, it is rea-
sonable to consider deformed manifolds that depend only
on their di�erence. Given the translation invariance of

the system, it is also natural to expect that the optimal
deformation is also translationally invariant. For more
generality, we allow for a non-translationally invariant
optimum in the temporal direction, using the same coef-
�cients for every ϕx with the same temporal coordinate
x0. We later check our assumptions on spatial transla-
tion invariance and on neglecting spatial neighbors. We
then considered parametrizations of the following general
form,

ϕx(tx, tx+0̂) = tx + ı
{
A0,x0

+

K∑
k=1

[
Ak,x0 cos

(
k(tx − tx+0̂)

)
+Bk,x0

sin
(
k(tx − tx+0̂)

)]}
,

(13)

leading to the following e�ective action:

Seff = S −
∑
x

ln
∂ϕx
∂tx

−
∑
x1,x2

ln

(
1− (−1)N0

∏
x0

1− ∂ϕx/∂tx
∂ϕx/∂tx

)
. (14)

We used the choices K = 1 and 2 for the cut-o� on the
Fourier series, which we will denote with (A,B,K = 1)
and (A,B,K = 2), respectively. Performing optimiza-
tion on a lattice of size Ω ≡ N0N1N2 = 83 for β = 0.4
we �nd that the sign problem is substantially improved.
In each iteration 106 con�gurations were generated to
compute the gradient. The initial values for the Fourier
coe�cients were chosen to be zero for the smallest sim-
ulated µ2 value, and for each subsequent µ2 to be equal
to the �nal values obtained in the previous optimization
round.
Figure 2 shows the average sign achieved with opti-

mization for K = 1 and 2, along with the unoptimized
results for comparison. There is signi�cant improvement
in the sign problem even when using only a �rst-order
Fourier series. When going up to second order there is a
marginal increase in 〈ε〉SQ,µ. The optimal values of the
Fourier coe�cients for µ2 = 0.15 and K = 2 are listed in
Tabs. I and II of Appendix A.
The coe�cients of the constant and of the sine terms

are two-three orders of magnitude smaller than the co-
e�cients of the cosine terms; they also �uctuate around
zero as a function of x0, with a standard deviation larger
than their average, while the coe�cients of the cosine
terms have roughly the same value on every time slice,
with A1,x0 < 0 and A2,x0 > 0. This remains true at
every simulated value of µ2. This suggests that there
is little gain in allowing for x0-dependent Fourier coef-
�cients. Furthermore, carrying out the optimization on
Ω = 8×42, 8×62 and 8×102 lattices we have found that
the values of the optimal coe�cients are close to those
obtained on the Ω = 83 lattice.
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B. Ansätze with a triangular Jacobian matrix

With the appearance of additional parameters the cal-
culation of the Jacobian generally becomes more in-
volved. Especially interesting from the computational
point of view are the parametrizations which keep the
Jacobian simple. For this reason, we considered ansätze
with a triangular Jacobian matrix (see also Ref. [34]),
that have the bene�t of having a very simple form of the
e�ective action :

Seff = S −
∑
x

ln
∂ϕx
∂tx

. (15)

As we show below, this can be achieved at the price of
losing translational invariance. This is expected to re-
duce the amount of improvement that can be gained by
path deformation, especially at larger µ [32]. Nonethe-
less, there may be a trade o� with computational costs
when the Jacobian gets very complicated, in particular
in systems where the dependence on µ becomes milder
at large µ.
We considered 3 di�erent ansätze of this type. First,

we set

ϕx(tx, tx+0̂, tx+1̂, tx+2̂) =

tx + ı

K∑
k=1

2∑
n=0

θ(1)
n

[
Āk,n cos(k(tx − tx+n̂))

+ B̄k,n sin(k(tx − tx+n̂))
]
,

(16)

10-2

10-1

1

 0  0.05  0.1  0.15  0.2

<
ε>

µ2

Unoptimized
(A, B, K=2)

(A1, A2)
(a1, a2)
(a1, b1)
Spatial

FIG. 3. Severity of the sign problem on an Ω = 83 lattice
with β = 0.4. Unimproved results are shown in red. The
optimized result achieved with the parametrizations given in
Eq. (13) with K = 2 are shown in orange. The optimized
results achieved with Eq. (16) for K = 2 are shown in purple.
The result from Eq. (18) with a1 and a2 non-zero are shown
in green, while with a1 and b1 non-zero are shown in light
blue. Results with the fully translationally invariant (A1, A2)
parametrization are shown in blue.

where

θ
(j)
i =

{
1 if xi < Ni − j,
0 otherwise.

(17)

Here, we constrained the ϕx on the slices xi = Ni− 1 for
i = 0, 1, 2 to stay independent of the real parts of their
neighbors in the ith direction, so as to make the Jacobian
matrix triangular. Except for these points we used global
Fourier coe�cients, i.e., the same coe�cients across all
the other lattice sites. This leads to the cancellation
of the constant term since the action depends only on
the di�erence of the �eld variables. The parametrization
Eq. (16) allows us to check the consequences of explicitly
breaking temporal translation invariance, and to assess
whether the optimal choice of contours is a�ected by the
inclusion of spatial neighbors in the parametrization.
We carried out optimization with this ansatz on lat-

tices of sizes Ω = 8 × 42, 8 × 62, 83 and 8 × 102 with
β = 0.4. The optimal coe�cients are shown in Tab. III
of Appendix A for µ2 = 0.15 and K = 2. We �nd that
the optimal values of Āk,i and B̄k,i for i = 1, 2 and B̄k,0
are much smaller than those of Āk,0, which in turn are in
agreement with those obtained for Ak,x0

using the ansatz
of Eq. (13).
This suggests that the contribution of spatial neighbors

can be neglected in the parametrization. Once again, we
observed that the optimal coe�cients are to a good ap-
proximation independent of the spatial size of the system.
We have also investigated the e�ect of including the

second nearest neighbor in the temporal direction in the
parametrization of ϕx. Once again, constraints were im-
posed similarly to Eq. (16) to make the Jacobian simple,
and global coe�cients were used,

ϕx(tx, tx+0̂, tx+20̂) =

tx + ı

K∑
k=1

[
θ

(1)
0 ak cos

(
k(tx − tx+0̂)

)
+ θ

(2)
0 bk cos

(
k(tx − tx+20̂)

)]
.

(18)

We omitted the sine terms since their coe�cients
remained close to zero with the previously tested
parametrizations. Optimization was performed using
Eq. (18) with two setups: using K = 2 and adjusting a1

and a2 with bks set to zero, later referred to as (a1, a2)
optimization; or using K = 1 and adjusting both a1 and
b1, that we call (a1, b1) optimization.
In Fig. 3 we compare the optimized results obtained

with the parametrizations of Eqs. (16) and (18) with
the unoptimized results, and with the optimized results
previously obtained using Eq. (13). Comparing results
obtained with Eq. (16) for K = 2 and the (a1, a2)
parametrization, it is clear that including spatial neigh-
bors leads only to a marginal improvement, at the cost of
a much more complicated Jacobian. It is also apparent
that including the second-order term a2 gives a larger
increase in the optimized 〈ε〉SQ,µ in the range of the
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FIG. 4. Left: Average action density on an Ω = 83 lattice with β = 0.4. The unoptimized results, including those obtained
with a local heat bath at µ2 ≤ 0, are shown in red, the (A1, A2) -optimized results in blue, and the worldline results in orange.
Right: Average action density with the (A1, A2)-optimized contours, compared with analytic continuation with polynomial
ansätze up to orders µ2, µ4 and µ6 for small chemical potentials.

simulated µ values, than including the �rst-order term
b1. Hence, going to second order in the Fourier series is
more important than including second neighbors in the
parametrization.
It is also clear that our parametrizations with a trian-

gular Jacobian matrix lead to a signi�cant but not over-
whelming loss in the improvement of the sign problem
compared to the ansatz of Eq. (13). This discrepancy
can probably be attributed to the constraints introduced
in Eqs. (16) and (18). This is similar to the conclusions of
Ref. [32] for Bose gases. In our model, parametrizations
with the triangular Jacobian are not signi�cantly cheaper
to simulate the fully translationally invariant ansatz, so
there is no gain in breaking translational invariance at
the boundaries of the lattice, due to the sizeable di�er-
ence in the improvement achieved. In other models, there
might be a less obvious trade-o�.
With all of our two-parameter ansätze, scans of 〈ε〉SQ,µ

in the space of Fourier coe�cients reveal a rather simple
landscape. There is a single optimum located on a small
plateau where the average sign changes slowly. As an
example, scans of the average sign in the space of coe�-
cients a1 and a2 are shown in Appendix B.

C. Fully translationally invariant ansatz

Among our ansätze, the one that achieved the greatest
improvement on the sign problem with the least amount
of parameters was given by a translationally invariant
version of Eq. (13), with K = 2, the constant and sine
coe�cients set to zero, and Ak,x0

= Ak for all x0. This
will be denoted as the (A1, A2) parametrization.

IV. VOLUME AND CHEMICAL POTENTIAL

DEPENDENCE OF THE SIGN PROBLEM ON

OPTIMIZED MANIFOLDS

As a sanity check, we calculated the average action
density as

〈S〉
Ω

= − β
Ω

∂

∂β
lnZ =

〈ε(SR + SI tanSIeff)〉SQ,µ

Ω 〈ε〉SQ,µ
. (19)

We �rst present the unoptimized and the (A1, A2)-
optimized average action density in Fig. 4. In both cases
108 con�gurations were used. In the left panel of Fig. 4
we also compare with results from the sign problem-free
worldline formalism. We see good agreement between
the di�erent predictions. Predictions with the (a1, a2)-
optimized scheme also agree in the range where the sign
problem of the scheme is manageable. In the right panel
of Fig. 4 we also compare with analytic continuation from
µ2 < 0 with polynomial ansätze of increasing order. The
expansion converges rather slowly, even at small chemical
potentials, way before the phase transition to the ordered
phase.
The signi�cant improvement of the sign problem

achieved by path optimization is clearly visible in the
left panel of Fig. 5, where we compare the average sign
in the unoptimized case and in the optimized case with
parametrizations (a1, a2) and (A1, A2). The ratio of this
quantity between our best parametrization and the un-
optimized case is already of order 102 at µ2 = 0.3, be-
yond which the unoptimized approach fails. For the
(A1, A2) parametrization, the path optimization method
instead works well also deep in the ordered phase at
µ2 > µ2

c ≈ 0.54. An exponential �t 〈ε〉SQ,µ ∼ e−C
(µ)µ2
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FIG. 5. Left: Dependence on µ2 of the average sign for β = 0.4 and Ω = 83 for the unoptimized calculations (red), and
for the optimized calculations with (a1, a2) (green) and (A1, A2) (blue) parametrizations. Right: Volume dependence of the
unoptimized (red) and (a1, a2)-optimized (green) and (A1, A2)-optimized (blue) average signs. Results were obtained at β = 0.4,
µ2 = 0.15 with the temporal size �xed at N0 = 8.

in the range [0.1, 0.25] yields C(µ)
unopt ≈ 24, C(µ)

(a1,a2) ≈ 13,

and C
(µ)
(A1,A2) ≈ 10. Notice that since the sign problem

should become mild at large µ, we expect the average sign
to reach a minimum as a function of µ2 (at �xed volume),
and then increase. This probably explains the �attening
of the (A1, A2) curve, starting from around µ2 ≈ 0.4,
which is likely related to the transition to the ordered
phase. An eyeball estimate leads to expect several orders
of magnitude of improvement in the central region where
the sign problem is at its strongest.
In the right panel of Fig. 5 we show the dependence

of the average sign on the volume for the unoptimized
and for the (a1, a2) and (A1, A2)-optimized cases. A
clear exponential decrease 〈ε〉SQ,µ ∼ e−C

(V )V is visible,

with C(V )
unopt ≈ 0.0073, C(V )

(a1,a2) ≈ 0.0032, and C(V )
(A1,A2) ≈

0.0031. The improvement of the sign problem by path
optimization is exponential in the volume, reducing the
�badness� C(V ) of the volume scaling by 50%.

V. OPTIMIZATION WITH REWEIGHTING

Generating new con�gurations at every optimization
step can be computationally too expensive in more com-
plicated models. A possible way to decrease the compu-
tational cost is to generate a set of con�gurations before
starting the optimization procedure, and use the same set
at every step to compute the gradient of the cost function
through reweighting. This would allow us to save time
on the generation of con�gurations. In particular, using
a �xed set of su�ciently decorrelated con�gurations in-
stead of generating a set of similar quality at every step of
the procedure saves us time required for the costly evalu-

ation of the e�ective action on discarded con�gurations.
A convenient choice for the initial set of con�gura-

tions, {C0}, is to generate them at the currently in-
vestigated value of µ2 using the optimal parameters
obtained through optimization at the previous value
of µ2; for the smallest nonzero µ2, one can simply
use those obtained with standard simulations with real
phase variables at µ = 0. We denote these parame-
ters by p(0), and the corresponding weights by r[C0] =

| cosSIeff [C0;p(0)]| e−SReff [C0;p(0)]. When computing the ex-
pectation values required by the optimization proce-
dure, we need to reweight each con�guration C0 in our
�xed set from its original weight, r[C0], to a new weight
wn[C0] = | cosSIeff [C0;p(n)]| e−SReff [C0;p(n)], corresponding
to the updated values of the contour coe�cients p(n) ob-
tained at the nth optimisation step. Setting for simplicity
Seff,n[C0] ≡ Seff [C0;p(n)] (and omitting C0 in the follow-
ing), the cost function at the nth step is

N−
N+

∣∣∣∣
n

≡ N−
N+

∣∣∣∣
p(n)

=
〈Θ(− cosSIeff,n) wnr 〉r
〈Θ(cosSIeff,n) wnr 〉r

, (20)

and its gradient with respect to the contour coe�cients,
needed for the (n+ 1)th step, is

∂

∂pi

(
N−
N+

) ∣∣∣∣
n

=
N−
N+

∣∣∣∣
n

[
〈Θ(− cosSIeff,n)Fi,n

wn
r 〉r

〈Θ(− cosSIeff,n) wnr 〉r

−
〈Θ(cosSIeff,n)Fi,n

wn
r 〉r

〈Θ(cosSIeff,n) wnr 〉r

]
,

(21)
where 〈. . . 〉r denotes averaging over {C0} with the origi-
nal weights r, and Fi,n are the Fi of Eq. (10) evaluated
with coe�cients p(n).
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One downside of this method is that it might introduce
an overlap problem, which we need to monitor through-
out the optimization procedure. This can be done by
looking at the numerical results for the denominators in
Eq. (21). When these fall below a prescribed tolerance
level and the overlap problem becomes too severe, say,
after the n∗th step, we generate a new set of con�gu-
rations {C∗} with the current values of the parameters,
p(n∗), replace {C0} with {C∗} and p(0) with p(n∗), and
proceed with the updates as before, essentially restart-
ing the process but form a better position. Thus, by
construction, the optimization procedure never lets the
overlap problem between the di�erent contours become
severe. Note that this overlap problem in the optimiza-
tion by no means can bias the �nal results, since even on
suboptimal contours the integral is guaranteed to be the
same by the multi-dimensional Cauchy theorem. On the
other hand, it could lead to a loss in the improvement on
the sign problem: that is why the second step of the pro-
cedure - generating new con�gurations when the overlap
problem becomes too severe - is useful.

As one can see in Fig. 6, this modi�ed procedure
yielded similarly good results as the procedure used pre-
viously, which required the generation of new con�gura-
tions at every step of the iteration. Here we used the
parametrization of Eq. (13). We observed a good agree-
ment between the values of the coe�cients obtained with
the two methods, and an almost equally good reduction
of the severity of the sign problem. The optimal val-
ues for β = 0.4, Ω = 83 and µ2 = 0.15 are shown in
Tab. IV of Appendix A. With the new method, using a
tolerance of 0.7 we had to regenerate con�gurations only
four times during the contour optimization for the eight
chemical potentials in Fig. 6 (three of which at the �rst,
larger step in µ), thus considerably speeding up the pro-
cedure. Moreover, the fact that we achieve almost the
same gain in the severity of the sign problem as with the
full-�edged procedure dicussed previously provides an in-
direct indication that the overlap problem is not severe
in this case: had it been, a much smaller gain would have
been obtained.

For the volume used here, we barely detected the over-
lap problem between di�erent contours in the numeri-
cal data. For larger volumes one expects this overlap
problem to become severe more often, increasing the fre-
quency at which the procedure needs to be restarted.
However, the numerical evidence suggests that the sign
problem is much more severe, even on the optimized con-
tours. The overlap problem might then not even appear
in practice, as by the time enough statistics is gathered
to �ght the sign problem, one also has the statistics to
reweight to nearby contours. Moreover, as noted above,
the optimal parameters for this model show little depen-
dence on the volume, and one may achieve a sizeable
reduction of the sign problem by carrying out the op-
timization procedure on small volumes, where the use
of the reweighting technique discussed here can make it
even more e�cient.

10-2

10-1

1

 0  0.05  0.1  0.15  0.2

<
ε>

µ2

Unoptimized
Modified

Simple

FIG. 6. Comparison of the average sign achieved with the
simple and the modi�ed optimization method at β = 0.4 and
Ω = 83 with the ansatz of Eq. (13).

VI. DISCUSSION

In this paper we studied the path optimization method
for reducing the severity of the sign problem in the 2 + 1
dimensional XY model with nonzero chemical potential.
We used simple parametrizations for the complexi�ed
�eld variables. We have shown that the optimized man-
ifold exhibits an explicit temporal translational invari-
ance. Exploiting this property allows us to use signi�-
cantly fewer optimization parameters. Furthermore, we
have found that the optimal choice of contours appears
to be independent of the spatial size of the lattice. Such
a feature can be utilized to make the optimization proce-
dure computationally less expensive as it would be suf-
�cient to �nd the optimal contours for a small lattice.
Then simulations can be carried out for larger lattices
using the same contours.
We have shown numerical evidence that the reduction

of the sign problem is exponential both in the chemical
potential and the volume - i.e. it considerably reduces the
exponents characterizing its severity. This was achieved
without changing the number of parameters with the vol-
ume, keeping the number of optimizable parameters at
a small �xed value. We have empirically found that the
optimal ansätze respect the translational invariance of
the original theory. Furthermore, on the optimized inte-
gration manifolds, it was possible to simulate also on the
other side of the transition to the ordered phase.
We have also demonstrated that it is su�cient to gen-

erate con�gurations only at the start of the optimization
procedure. Then, the same set of con�gurations is used
to compute the gradient of the cost function at each step.
As the contours are updated, it is necessary to reweight
from the generated distribution to the one correspond-
ing to the new contours. When the overlap between the
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two distributions signi�cantly decreases, it is preferable
to generate new con�gurations, in order not to lose opti-
mizing power. With this approach the computation time
of the optimization can be signi�cantly reduced as com-
pared to a method where new con�gurations are gener-
ated at every iteration, with no signi�cant loss in the
reduction of the severity of the sign problem.
The success of our approach in this simple, yet non-

trivial, purely bosonic model is a strong motivation to
apply it to more complicated settings, especially in the
presence of dynamical fermions. In this case there are
additional di�culties, as the fermions e�ectively induce
non-ultralocal interactions among bosonic �elds, which
may require some physical insight on the shape of the
optimized contours.
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Appendix A: Optimal coe�cient values

Here we present the optimal Fourier coe�cients ob-
tained at β = 0.4 and µ2 = 0.15 on Ω = 8× 42, 8× 62, 83

and 8 × 102 lattices for K = 2. The optimal values for

the parametrization described by Eq. (13) are given in
Tabs. I and II while Tab. III shows the ones for Eq. (16).
We compare the coe�cients obtained with the reweight-
ing technique introduced in Sec. V to those that were
found using simple optimization in Tab. IV.

term value, 8 × 42 value, 8 × 62 term value, 8 × 42 value, 8 × 62

A0,0 3.68 × 10−3 −2.96 × 10−3 A0,4 6.15 × 10−4 −1.18 × 10−3

A1,0 −1.08 × 10−1 −1.19 × 10−1 A1,4 −1.12 × 10−1 −1.15 × 10−1

B1,0 −6.57 × 10−4 −9.40 × 10−4 B1,4 −9.48 × 10−4 −1.90 × 10−3

A2,0 1.34 × 10−2 1.29 × 10−2 A2,4 1.29 × 10−2 1.13 × 10−2

B2,0 1.77 × 10−3 −1.79 × 10−3 B2,4 6.92 × 10−4 −2.93 × 10−4

A0,1 4.35 × 10−3 −4.15 × 10−3 A0,5 −5.45 × 10−3 1.69 × 10−3

A1,1 −1.15 × 10−1 −1.13 × 10−1 A1,5 −1.06 × 10−1 −1.14 × 10−1

B1,1 8.11 × 10−4 −1.24 × 10−3 B1,5 −5.92 × 10−4 1.86 × 10−3

A2,1 1.37 × 10−2 1.36 × 10−2 A2,5 1.19 × 10−2 1.30 × 10−2

B2,1 −1.26 × 10−3 −5.67 × 10−4 B2,5 −5.27 × 10−4 −1.33 × 10−4

A0,2 −3.66 × 10−3 3.18 × 10−3 A0,6 2.53 × 10−3 2.42 × 10−3

A1,2 −1.11 × 10−1 −1.19 × 10−1 A1,6 −1.20 × 10−1 −1.14 × 10−1

B1,2 −7.33 × 10−4 −4.09 × 10−4 B1,6 8.31 × 10−4 −2.00 × 10−3

A2,2 1.26 × 10−2 1.28 × 10−2 A2,6 1.44 × 10−2 1.23 × 10−2

B2,2 2.64 × 10−4 −7.20 × 10−4 B2,6 −1.36 × 10−3 4.47 × 10−5

A0,3 3.88 × 10−3 2.35 × 10−3 A0,7 −4.80 × 10−3 4.61 × 10−3

A1,3 −1.16 × 10−1 −1.18 × 10−1 A1,7 −1.09 × 10−1 −1.20 × 10−1

B1,3 −2.13 × 10−3 −2.14 × 10−3 B1,7 −2.58 × 10−3 1.24 × 10−5

A2,3 1.22 × 10−2 1.40 × 10−2 A2,7 1.35 × 10−2 1.39 × 10−2

B2,3 2.10 × 10−4 8.39 × 10−4 B2,7 −1.68 × 10−3 −1.04 × 10−3

TABLE I. Optimal value of the Fourier coe�cients obtained on Ω = 8 × 42 and 8 × 62 lattices for β = 0.4, µ2 = 0.15, K = 2
with parametrization given by Eq. (13). The most relevant values are written in bold while the others are negligible.
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term value, 83 value, 8 × 102 term value, 83 value, 8 × 102

A0,0 −1.47 × 10−4 3.77 × 10−3 A0,4 4.15 × 10−4 −2.28 × 10−3

A1,0 −1.23 × 10−1 −1.21 × 10−1 A1,4 −1.19 × 10−1 −1.24 × 10−1

B1,0 −3.05 × 10−4 1.10 × 10−3 B1,4 1.70 × 10−3 2.63 × 10−3

A2,0 1.54 × 10−2 1.37 × 10−2 A2,4 1.38 × 10−2 1.29 × 10−2

B2,0 5.83 × 10−4 −1.43 × 10−4 B2,4 −7.15 × 10−5 2.83 × 10−4

A0,1 −1.33 × 10−3 −3.80 × 10−3 A0,5 −2.43 × 10−4 −2.34 × 10−3

A1,1 −1.18 × 10−1 −1.21 × 10−1 A1,5 −1.20 × 10−1 −1.23 × 10−1

B1,1 1.05 × 10−3 2.84 × 10−3 B1,5 −1.58 × 10−3 6.28 × 10−4

A2,1 1.66 × 10−2 1.58 × 10−2 A2,5 1.21 × 10−2 1.13 × 10−2

B2,1 1.56 × 10−3 1.78 × 10−3 B2,5 −1.64 × 10−3 −1.46 × 10−5

A0,2 9.76 × 10−3 8.90 × 10−3 A0,6 −2.74 × 10−3 −4.49 × 10−3

A1,2 −1.20 × 10−1 −1.21 × 10−1 A1,6 −1.19 × 10−1 −1.22 × 10−1

B1,2 2.15 × 10−3 1.31 × 10−3 B1,6 9.43 × 10−5 −4.86 × 10−4

A2,2 1.47 × 10−2 1.61 × 10−2 A2,6 1.69 × 10−2 1.42 × 10−2

B2,2 2.10 × 10−3 −7.80 × 10−4 B2,6 6.84 × 10−4 −6.65 × 10−4

A0,3 −4.54 × 10−3 −2.31 × 10−3 A0,7 5.67 × 10−3 3.58 × 10−3

A1,3 −1.21 × 10−1 −1.20 × 10−1 A1,7 −1.22 × 10−1 −1.23 × 10−1

B1,3 −2.61 × 10−3 −2.21 × 10−3 B1,7 1.49 × 10−3 7.52 × 10−4

A2,3 1.35 × 10−2 1.62 × 10−2 A2,7 1.27 × 10−2 1.29 × 10−2

B2,3 −3.84 × 10−4 −2.73 × 10−4 B2,7 6.48 × 10−4 4.98 × 10−5

TABLE II. Optimal value of the Fourier coe�cients obtained on an Ω = 83 lattice for β = 0.4, µ2 = 0.15, K = 2 with
parametrization given by Eq. (13). The most relevant values are written in bold while the others are negligible.

term value, 8 × 42 value, 8 × 62 value, 83 value, 8 × 102

Ā1,0 −1.15 × 10−1 −1.15 × 10−1 −1.18 × 10−1 −1.20 × 10−1

B̄1,0 2.44 × 10−3 −3.63 × 10−4 −1.85 × 10−3 −2.40 × 10−3

Ā2,0 1.35 × 10−2 1.48 × 10−2 1.41 × 10−2 1.39 × 10−2

B̄2,0 8.16 × 10−5 −1.26 × 10−3 −1.50 × 10−3 1.57 × 10−3

Ā1,1 5.44 × 10−3 6.13 × 10−3 3.68 × 10−3 3.60 × 10−3

B̄1,1 2.57 × 10−3 −5.47 × 10−4 −2.61 × 10−4 2.42 × 10−3

Ā2,1 −5.32 × 10−4 −1.92 × 10−3 −5.14 × 10−5 1.42 × 10−3

B̄2,1 5.13 × 10−4 6.43 × 10−5 1.06 × 10−3 1.56 × 10−4

Ā1,2 6.04 × 10−3 5.62 × 10−3 5.16 × 10−3 4.43 × 10−3

B̄1,2 2.22 × 10−3 6.81 × 10−4 −3.57 × 10−4 −1.23 × 10−3

Ā2,2 2.48 × 10−4 −1.13 × 10−3 −5.08 × 10−4 −1.40 × 10−3

B̄2,2 −3.67 × 10−4 −7.64 × 10−4 3.33 × 10−4 1.15 × 10−3

TABLE III. Optimal values of the Fourier coe�cients obtained on Ω = 8 × 42, 8 × 62, 83 and 8 × 102 lattices for β = 0.4,
µ2 = 0.15 and K = 2 with parametrization given by Eq. (16). The most relevant values are written in bold while the others
are negligible.
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term modi�ed simple term modi�ed simple

A0,0 −1.48 × 10−4 −5.66 × 10−3 A0,4 4.15 × 10−4 −3.06 × 10−2

A1,0 −1.23 × 10−1 −1.11 × 10−1 A1,4 −1.19 × 10−1 −1.19 × 10−1

B1,0 −3.06 × 10−4 1.66 × 10−3 B1,4 1.71 × 10−3 3.67 × 10−3

A2,0 1.55 × 10−2 1.03 × 10−2 A2,4 1.38 × 10−2 1.03 × 10−2

B2,0 5.83 × 10−4 2.40 × 10−3 B2,4 −7.15 × 10−5 −4.33 × 10−3

A0,1 −1.33 × 10−3 −5.65 × 10−3 A0,5 −2.43 × 10−4 4.74 × 10−3

A1,1 −1.19 × 10−1 −1.09 × 10−1 A1,5 −1.20 × 10−1 −1.21 × 10−1

B1,1 1.05 × 10−3 2.51 × 10−3 B1,5 −1.58 × 10−3 −6.40 × 10−3

A2,1 1.66 × 10−2 1.44 × 10−2 A2,5 1.22 × 10−2 1.63 × 10−2

B2,1 1.57 × 10−3 −5.24 × 10−3 B2,5 −1.65 × 10−3 3.31 × 10−4

A0,2 9.76 × 10−3 −3.26 × 10−3 A0,6 −2.75 × 10−3 −1.30 × 10−3

A1,2 −1.21 × 10−1 −1.27 × 10−1 A1,6 −1.20 × 10−1 −1.04 × 10−1

B1,2 2.15 × 10−3 −1.21 × 10−2 B1,6 9.44 × 10−5 1.26 × 10−3

A2,2 1.47 × 10−2 1.81 × 10−2 A2,6 1.70 × 10−2 6.71 × 10−3

B2,2 2.11 × 10−3 8.61 × 10−3 B2,6 6.84 × 10−4 1.36 × 10−4

A0,3 −4.55 × 10−3 −2.27 × 10−2 A0,7 5.68 × 10−3 1.61 × 10−3

A1,3 −1.22 × 10−1 −1.22 × 10−1 A1,7 −1.22 × 10−1 −1.18 × 10−1

B1,3 −2.62 × 10−3 9.84 × 10−3 B1,7 1.49 × 10−3 −1.48 × 10−3

A2,3 1.36 × 10−2 1.28 × 10−2 A2,7 1.28 × 10−2 1.36 × 10−2

B2,3 −3.84 × 10−4 7.24 × 10−4 B2,7 6.49 × 10−4 6.42 × 10−3

TABLE IV. Comparison of the values of Fourier coe�cients obtained with the simple and the reweighted optimization method
on an Ω = 83 lattice for β = 0.4, µ2 = 0.15 and K = 2 with parametrization given by Eq. (13).
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FIG. 7. Average sign over the space of Fourier coe�cients a1 and a2 of Eq. (16) with the (a1, a2) setup. Scans were carried out
on Ω = 8 × 42, 8 × 62, 83 and 8 × 102 lattices at β = 0.4 and µ2 = 0.15.

Appendix B: Scans in coe�cient space

Figure 7 shows the average sign over the space of co-
e�cients a1 and a2 of the parametrization described by
Eq. (18) in the (a1, a2) setup with β = 0.4 and µ2 = 0.15.
Each scan was performed at di�erent spatial sizes with
temporal size �xed at N0 = 8.
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