
Citation: Vargas, D.; Chimborazo, O.;

László, E.; Temovski, M.; Palcsu, L.

Rainwater Isotopic Composition in

the Ecuadorian Andes and Amazon

Reflects Cross-Equatorial Flow

Seasonality. Water 2022, 14, 2121.

https://doi.org/10.3390/w14132121

Academic Editor: Achim A. Beylich

Received: 14 May 2022

Accepted: 28 June 2022

Published: 3 July 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Rainwater Isotopic Composition in the Ecuadorian Andes and
Amazon Reflects Cross-Equatorial Flow Seasonality
Danny Vargas 1,* , Oscar Chimborazo 2 , Elemér László 1, Marjan Temovski 1 and László Palcsu 1

1 Isotope Climatology and Environmental Research Centre, Institute for Nuclear Research,
Eötvös Loránd Research Network, Bem tér 18/c, 4026 Debrecen, Hungary; laszlo.elemer@atomki.hu (E.L.);
temovski.marjan@atomki.hu (M.T.); palcsu.laszlo@atomki.hu (L.P.)

2 School of Physical Sciences and Nanotechnology, Yachay Tech University, Urcuquí 100119, Ecuador;
ochimborazo@yachaytech.edu.ec

* Correspondence: danny.vargas@atomki.hu

Abstract: The variability of the rainfall stable isotopic values (δ2Hp, δ
18Op) in the Ecuadorian Amazon

to the Andes presents a marked local “altitude” effect. At the same time, this complex orography
creates diverse precipitation regimes (unimodal, bimodal, and three-modal) that make it difficult
to establish a relationship with the local amount. Nevertheless, stations along these regions show
a similar intra-annual isotopic variability, with lower values during MAM and ON. In contrast,
higher values are found during DJF and JAS in a w-shaped pattern, suggesting a common regional
controller. A monthly δ2Hp and δ18Op collection campaign was established in Central Ecuador
(n = 30) to complement stations biased towards the northern and southern parts. Based on back
trajectory analysis, the results demonstrated that moisture arrives from two primary sources: the
Tropical North Atlantic (DJFM) and the Amazon Basin (JAS). Nevertheless, their convergence (AMJ
and ON) is the crucial factor modulating the lowest isotopic values. Precisely, this convergence is
stronger at the V-Index region (5◦ S–5◦ N, 65◦–75◦ W), where the wind seasonality and reversal at
low levels are enhanced, allowing the inter-hemispheric moisture flux transport (cross-equatorial
flow). We propose that the amount of rainfall located at the V-Index region is a more robust approach
for explaining the δ2Hp and δ18Op variability rather than the local amount.

Keywords: cross-equatorial flow; stable isotopes; V-Index; low-level jet; precipitation; aerial lake

1. Introduction

The stable isotopes of water, oxygen-18 (18O), and deuterium (2H) are some of the most
common environmental tracers of relevance for climatological, glaciological, oceanographic,
and hydrological studies [1,2]. In the case of precipitation, the observed isotopic variations
in oxygen and hydrogen (δ18Op and δ2Hp) are due to isotopic fractionation occurring
during water phase changes (evaporation and condensation), where the heavy isotopes
preferentially condense, and lighter molecules tend to evaporate [1,2]. Dansgaard (1964)
formulated several empirical relationships between the observed δ18Op, δ2Hp, and the
environmental parameters (e.g., surface air temperature, amount of precipitation, latitude,
altitude, distance from the coast), which are known as fractionation effects [2].

At mid and high latitudes, the gradual lowering of δ18Op and δ2Hp values respond to
the progressive cooling of air masses transporting moisture from the tropics towards the
poles and the pronounced seasonal air temperature variations [1,2]. For tropical regions
characterized by minimal temperature fluctuations (except at sites with steep orography,
e.g., the Andes), δ18Op and δ2Hp changes are not associated with temperature. However,
there is a noticeable negative correlation with the amount of precipitation, coined as the
“amount” effect [3–9]. Although the rest of the effects might also increase or decrease the
isotopic signal, this will ultimately depend on the site’s location.
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One of the primary applications of isotopes lies in the field of paleoclimatology. In
these studies, suitable well-behaved proxies (e.g., ice cores, tree-rings, speleothems) incorpo-
rate a meteoric isotopic signal to their structure at different accumulation rates, permitting
inferences about past environments possible [2,10]. The suitability of δ18Op and δ2Hp for
these studies is their ability to encode information about the source of the precipitation
and its evaporation and condensation history [11]. Most paleoclimate studies have been
conducted in the mid and high latitudes, where the annual input of total solar radiation is
lower, allowing the presence of clearly defined seasons (warm/cold, dry/wet). In contrast,
annual solar radiation is larger at low latitudes, with small temperature fluctuations along
the year, and where day-periodic processes and circulations dominate the regional climate
and weather [12].

In South America, there has been little discussion about precipitation outside the
South American Monsoon (SAM) spanning the equator [13]. This region is characterized
by complex local topography interacting with the annual migration of the Intertropical
Convergence Zone (ITCZ) [7,13–16]. The ITCZ is a tropical belt of deep convective clouds
where heat and moisture-laden surface trade winds converge, forming a zone of increased
precipitation [2,17]. Unfortunately, this continental configuration spanning the equator
presents two rainfall maxima occurring with the equinoxes, while the dry seasons are
demarked by solstices [18], making the transfer to the paleoclimate proxy material and
subsequent interpretation problematic.

Previous research has established that the climate of Ecuador is indeed controlled by
the ITCZ seasonal excursions and complex Andean orography [7,13,15]. In the first case, the
ITCZ excursions throughout the year determine the provenance of air masses with different
humidity and temperature conditions [2,7,15]. When the ITCZ is at its northernmost
position (JJA), cold westerlies flow into Ecuador, whereas during austral summer (DJF),
moist winds from easterly directions reach the country [15]. Regarding the Andes, it acts as
a weather divide between the Pacific coast and the western Amazon due to its high elevation
(>4000 m a.s.l.; Figure S1). The influence of the Andes is evident in the diverse rainfall
regimes it creates (unimodal, bimodal, three-modal), the most common being the bimodal
regime with higher rainfall in March–April (MA) and October–November (ON) [15,19].
Although the Ecuadorian climate is not monsoonal (see Figure S2), its unique location at the
geographical equator permits investigating the interhemispheric moisture transport over
tropical South America, linking the Southern to the Northern Hemisphere fluxes [20,21].
This transport of moisture, mass, momentum, and energy is called the cross-equatorial
flow of air masses [22]. The cross-equatorial flow plays a crucial role in the advection
of moist and warm air from tropical regions toward the poles [23,24]. Wang et al. [24]
showed that precipitation variability over South America involves significant meridional
migration and reversal of low-level winds between the south and north of the equator.
These wind corridors in the lower atmosphere are Low-level jets (LLJs) and transport water
vapor that modulates weather and climate [20,25,26]. Hence, LLJs are vital structures in
the water vapor transport in the atmosphere, feeding the precipitation systems [26]. The
cross-equatorial flow over the western equatorial Amazon (V-Index region; 5◦ S–5◦ N,
65◦–75◦ W; black squares in Figure 1) also presents a LLJ like structure that effectively
captures the seasonal reversal of the circulation in the continent (contrary to the eastern
Amazon) and is strongly associated with the SAM transitions in the equinox and solstice
seasons [20,24,27]. This monsoon index (V-Index) was constructed to represent the cross-
equatorial flow variability, where positive (negative) values indicate southerly (northerly)
winds [24,28,29]. Northerly winds dominate the cross-equatorial flow in austral summer
(DJF) and southerly winds in winter (JJA), with a transition from northerly to southerly
winds in autumn (AMJ) and southerly to northerly winds in spring (SON) [24] (Figure 1). A
critical role of this atmospheric structure is the advection of moist, warm air polewards [20].
Bendix et al. [16] already indicated the passage of a LLJ at the eastern Andean slope from
February to March in the Ecuadorian territory, which most likely corresponds to this low-
level cross-equatorial flow. Unfortunately, direct and continuous rawin observations are
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scarce in the country and have delayed the investigation of these essential meteorological
structures.
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the Amazon Basin, which is not fractionated during evapotranspiration and hence en-
riched the signal [7,30]. However, questions have been raised about the inadequacy of the 
local amount effect to capture the observed isotopic variation in the country. For instance, 
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monitored the rainfall and runoff in the Ecuadorian Andes and noted the discrepancy in 
the precipitation regime between the Papallacta and the Izobamba Andean stations (Fig-
ure 2), where the first shows a unimodal rainfall regime (April–August) while the second 
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amount of precipitation to capture the δ2Hp and δ18Op variability. The issue has also been 
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els, resulting in underestimation [33], overestimation [34], or a slight improvement com-
pared to the northern hemisphere [35]. 

Figure 1. 950–850 hPa ERA5 wind vectors (arrows) and long-term mean CHIRPS precipitation for
austral (a) summer (b) autumn (c) winter (d) spring. The black box indicates the SAM V-Index
region over the western Amazon (5◦ S–5◦ N, 65◦–75◦ W), an area where the seasonal reversal of the
cross-equatorial flow over South America is observed, according to Wang et al. [24]. The blue line
indicates the limits of the Amazon basin.

The seminal work of Garcia et al. [7] investigated the δ2Hp and δ18Op patterns
in Ecuador by establishing two latitudinal northern and southern transects from the
Coastal to the Amazon regions in the country. The authors showed that the Andes com-
plex orography and the ITCZ precipitation in austral autumn (March–May) and spring
(October–November) at these latitudes were responsible for the lowest δ18Op values, rep-
resenting an amount effect. In addition, the surprisingly high δ2Hp and δ18Op values in
the Ecuadorian Amazon (>2000 km from the Atlantic) were due to the intense recycling
of water vapor in the Amazon Basin, which is not fractionated during evapotranspiration
and hence enriched the signal [7,30]. However, questions have been raised about the
inadequacy of the local amount effect to capture the observed isotopic variation in the
country. For instance, Villacís et al. [31] found that the local amount of precipitation in
Nuevo Rocafuerte in the western Amazon (Figure 2) poorly explained the δ18Op variability
at daily and monthly intervals. On the other hand, upstream convection in northeastern
South America and localized using Outgoing Longwave Radiation (OLR) (a proxy for
convective precipitation) resulted in a better predictor of the monitored isotopic values.
Similarly, Lima [32] monitored the rainfall and runoff in the Ecuadorian Andes and noted
the discrepancy in the precipitation regime between the Papallacta and the Izobamba An-
dean stations (Figure 2), where the first shows a unimodal rainfall regime (April–August)
while the second displays a bimodal pattern (March–May and October–November). Nev-
ertheless, both stations present similar isotopic seasonality bringing up doubts about the
efficacy of the local amount of precipitation to capture the δ2Hp and δ18Op variability.
The issue has also been addressed by simulating stable water isotopes using regional and
global circulation models, resulting in underestimation [33], overestimation [34], or a slight
improvement compared to the northern hemisphere [35].

Overall, previously published studies are limited to local surveys, and the existing
literature fails to resolve the contradiction between the various rainfall regimes and the
common inter-annual variability of δ18Op over the Ecuadorian inter-Andean valley and
Amazon. Hence, this paper provides new insight into explaining the common annual
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“w-shape” δ18Op pattern identified among stations located at different elevations and
latitudes in the Ecuadorian Andes and Amazon (Figure 2). We focus on the precipitation
amount over the V-Index region to accomplish this task, which effectively captures the
rainfall and convection change over tropical and subtropical South America and is a
transition zone from America’s southern to northern monsoon [21,24,36,37]. This provides
a new approach that harnesses the distinct geographical location of continental Ecuador
for explaining the δ2Hp and δ18Op variability.
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The study site is in Mera, Province of Pastaza (1° 24′ S, 78° 03′ W, 1200 m a.s.l.) at the 
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Figure 2. Rainfall climatology and δ18Op seasonality for stations along Ecuador’s Amazon and Andean
region. Datasets correspond to the Global Network of Isotopes in Precipitation (GNIP) [38]. Data for
ECSF from Goller et al. [39] and Timbe et al. [40]. Values for Zhurucay are from Mosquera et al. [41],
Cajas from Esquivel-Hernández et al. [42] and for Nuevo Rocafuerte from Bowen [43]. The Mera study
site is marked by a red star, whereas the nearby Shell and Puyo instrumental stations are also indicated.

The work has been divided into three parts. The first part introduces the study site,
where monitored δ2Hp and δ18Op were carried out to counteract the data sparsity at this
latitude (red star in Figure 2). The methods used for retrieving and processing gridded data
are also presented. Furthermore, the transport history of air masses using back trajectories
is shown. The second part shows the results and discussion, where the local altitude and
the regional amount of precipitation at the V-Index region are evaluated for the study site
and previous δ18Op datasets from Andean and Amazonian stations. Finally, part three
provides a summary of the main conclusions.

2. Materials and Methods
2.1. Study Site and Local Monitoring Campaign

The study site is in Mera, Province of Pastaza (1◦ 24′ S, 78◦ 03′ W, 1200 m a.s.l.) at the
eastern foothills of the Ecuadorian Andes (Figure 2). The climate is transitional between
lowland and montane forests, receiving constant moisture throughout the year [13]. The
seasonal distribution of precipitation is bimodal, with an average of 4500 mm annual
precipitation. It consists of two minor (December–February and July–September) and two
main rainy seasons (April–June and October–November). The mean monthly temperature
fluctuates between 21 and 23 ◦C [13].
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The site presents an optimal location for stable isotopic monitoring. It fills the δ2Hp
and δ18Op data gap between the northern and southern transects in the country. In addition,
the Mera site is a transition between the Amazon lowland and the eastern Andean foothills,
which is essential to evaluate a potential altitude effect. Rainwater samples in the Mera site
were collected over 30 months from February 2019 to July 2021 in a 12 L plastic container,
to which 300 mL of paraffin oil was added to prevent evaporation according to standard
procedures [44]. Monthly rainfall samples were collected, and containers were replaced
at the beginning of each month for δ2Hp and δ18Op measurements. After each collection,
precipitation was preserved in polyethylene terephthalate (PET) bottles, tightly sealed to
avoid contamination and evaporation. Rainwater samples were immediately transported
to the Chemistry laboratory at the Universidad Politécnica Salesiana-Quito, Ecuador (UPS)
for monthly volume measurement, packing, and shipping to the Isotope Climatology
and Environmental Research Centre, Institute for Nuclear Research, Debrecen, Hungary.
However, due to the coronavirus pandemic, the amount of precipitation could not be
measured continuously at the UPS laboratory, and therefore the samples were directly
dispatched. Hence, the amount of precipitation (March–December 2020) was obtained
from Shell and Puyo stations located 10 and 15 km from the rainwater collector to fill
data gaps (Figure 2). The correlation between Puyo (956 m) and Shell (1043 m) stations
for their common 1981–2021 precipitation period is r = 0.72 (p < 0.01), and for the gap
March–December 2020 is r = 0.89 (p < 0.01). The rainwater samples were measured by a Los
Gatos Research, Liquid Water Isotope Analyzer (LGR LWIA-24i, ABB-Los Gatos Research,
San Jose, California, United States). The internal laboratory standards were calibrated
against international water standards, V-SMOW, GISP, and SLAP. The reproducibility
was better than 0.16‰ for δ18Op and better than 1.04‰ for δ2Hp, based on repetitions of
laboratory standards.

In addition to precipitation, the daily air temperature was recorded at an hourly rate
from February 2019 until April 2020 (14 months) with a DS1922L iButton temperature logger
(±0.5 ◦C accuracy, 0.0625 ◦C resolution) installed 2 m above the ground and protected with
a radiation shield. The complete analytical results are presented in the Supplementary
Materials (Table S1). The obtained data were validated with temperature records from
Puyo and Shell instrumental stations and ERA5 reanalysis (2 m temperature product)
0.25◦ × 0.25◦ horizontal resolution [45] (Figures 3 and S3).

2.2. Stable Isotopes Datasets

The δ2Hp and δ18Op from stations located in the Ecuadorian Amazon lowlands and
inter-Andean highlands were primarily obtained from the IAEA Global Network of Isotopes
in Precipitation (GNIP) database [38], except for Estación Científica San Francisco (ECSF)
obtained from Goller et al. (2005) [39] and Timbe et al. (2014) [40]. Similarly, the isotopic
values for Zhurucay basin correspond to Mosquera et al. (2016) [41] and for Cajas station
from Esquivel-Hernández et al. [42]. In the case of Nuevo Rocafuerte, the values were
acquired from the isoscape model proposed by Bowen et al. [43]. Although isoscapes
models can be coarse at unmonitored sites, the obtained values for Nuevo Rocafuerte
compared well with those monitored in the 2001–2002 period by Villacís et al. (2008)
(r = 0.89, p < 0.01). When the precipitation values were missing from the corresponding
stations, they were acquired from the Global Historical Climatology Network (GHCN)
version 4 [46].
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2.3. Moisture Sources

The HYSPLIT (HYbrid Single-Parcel Lagrangian Integrated Trajectory) model [47],
successfully used in past investigations in Ecuador (see [6,48]), was utilized to identify the
sources of moisture employing the PySplit package [49]. The trajectories originating at the
Mera site in Central Ecuador were calculated at 1500 m, the altitude where broad precipita-
tion encompasses most of the shallow and deep convection in the tropical Andes [50]. The
meteorological data were obtained from the GDAS (Global Data Assimilation System) at
1◦ × 1◦ spatial and 3-h time resolution. Trajectories were calculated from 2014 to 2019 for
240 h (10 days) every two days. In order to refine the analysis, the calculation of moisture
uptake was carried out following the methodology described in Sodemann et al. [51],
which utilizes a Lagrangian framework tracking moisture changes inside the atmospheric
boundary layer and marking them as uptake points along the back trajectories path. For
calculating the moisture uptake, values of precipitation = −0.2 and evaporation = 0.2 at 6 h
intervals were used. The analysis and visualization used Python version 3.9.10 in the Sci-
entific Python Development Environment (Spyder) 5.0. (Figure 4). In addition, calculated
clusters on back trajectories for all the stations indicated in Figure 2 for the 2019 year were
carried out utilizing the “openair” R package [52] (Figure S4).
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Figure 4. Seasonal moisture flux and uptake for the Mera site, Central Ecuador, calculated from
2014 to 2019 at 1500 m following the method of Sodemann et al. [51] using the PySplit package [49].
(a,e) December–March; (b,f) April–June; (c,g) July–September; (d,h) October–November. The sea-
sonal δ18Op and d-excess values are indicated at the bottom of each map.

2.4. Cross-Equatorial Flow over Western Amazon and Precipitation Gridded Products

Equatorial South America, although not monsoonal per se [13,15,53,54], is linked to
the SAM through LLJs (e.g., cross-equatorial flow, Orinoco) and its seasonal convection vari-
ability [24,25,36,55]. In the first case, the V-Index region (5◦ S–5◦ N, 65◦–75◦ W; black boxes
in Figure 1) was identified according to Wang et al. [24] and captured the interhemispheric
migration of rainfall crossing the equator. For its boundary identification, Wang et al. [24]
constructed a monsoon meridional V-Index using a 925-hPa monthly mean meridional
winds. At this level, the cross-equatorial flow and the meridional wind moisture transport
are of a high magnitude. Here, positive (negative) values indicate southerly (northerly)
winds [24,29]. Regarding seasonal variations of convection in tropical South America
(1976–2006), they have been studied using pentad means of Outgoing Longwave Radiation
(OLR) [36]. Using an Empirical Orthogonal Function (EOF) analysis of the OLR product,
Garcia et al. [36] found three dominant modes describing the seasonal variations in convec-
tion associated with the SAM. In particular, the third mode, EOF3 (4.4%), corresponds to the
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equatorial symmetric mode around 3–5◦ N in the western Amazon and central equatorial
Atlantic and represents the semiannual response of the tropical convection to insolation
changes during the year [36]. In other words, EOF3 indicates convection occurring during
the transition from dry to wet seasons on the equator and intersects the abovementioned
V-Index region (see Figure 1 in Garcia et al. [36]). This supports the suitability of this
area for capturing the climatological variations at a semiannual scale. Our paper did not
calculate the V-Index and directly utilized the V-Index coordinates (5◦ S–5◦ N, 65◦–75◦ W).
However, we calculated the EOF3 according to Garcia et al. [36] using monthly OLR data
from the NOAA/OAR/ESRL PSL at 2.5◦ × 2.5◦ resolution [56] (Figure S5).

The precipitation time-series averaged at the V-Index region were obtained from the
European Centre for Medium-Range Weather Forecasts (ECMWF) ERA5 [57], The Climate
Hazard group Infrared Precipitation with Stations CHIRPS [58], and the Climate Research
Unit CRU TS4.05 [45]. In the case of the ERA5, the total precipitation NetCDF product
on single levels from 1979 to 2021 (0.25◦ × 0.25◦ resolution) was used. This product is
expressed in m (of water equivalent) day−1; hence the conversion to mm month−1 used the
formula tp [mm] = tp [m day−1] × 1000 × N, where N is the number of days in the month.
Regarding CRU, the horizontal resolution for the precipitation product was 0.5◦ × 0.5◦,
whereas, for CHIRPS, the resolution was 0.05◦ × 0.05◦, making it an appropriate product
for capturing the rainfall variability of the Andes [59]. The Pearson correlation coefficient
was used to evaluate the monthly δ18Op variation regionally at the Mera site. The δ18Op
time-series were compared with the gridded ERA5, CRU, CHIRPS precipitation, and the
OLR datasets from February 2019 to July 2021 at p < 0.05. Initially, it was carried out
for Mera and then for the rest of the stations in the 1992–1996 and 1998–2016 periods.
Finally, precipitable water was obtained from a Weather Research and Forecasting (WRF)
simulation with a domain of 50 km horizontal resolution (100 × 100 grid cells, centered
at 1.77◦ S–78.10◦ W) and 51 levels in the vertical with a top pressure of 10 hPa. The WRF
experiment was forced by the Community Climate System Model version 4, satisfactorily
employed in South America and recently in Ecuador [60]. Precipitable water is an absolute
measure of the total water of the air and equals the amount of water if all the water vapor
was condensed [37,61].

3. Results and Discussion
3.1. Mera Site Isotopic Patterns
3.1.1. Local Meteoric Water Line (LMWL)

The relationship of δ18Op and δ2Hp at the Mera site is closely aligned to the Global
Meteoric Water Line (GMWL). Their linear relationship (LMWL) is δ2Hp = 8.38δ18Op +14.86
(n = 30), showing an ~5‰ higher deuterium intercept (Figure 3a). A closer inspection
of the figure shows the intra-annual seasonality in δ18Op, where austral summer (DJFM;
min −8.5‰, max −1.6‰, mean −4.9‰) and winter (JAS; min −8.0‰, max −2.0‰, mean
−4.9‰) indicate the most 18O-enriched values, whereas the austral autumn (AMJ; min
−14.0‰, max −6.5‰, mean −11.2‰) present the most 18O-depleted. In the case of austral
spring (ON; min −8.4‰, max −3.4‰, mean −6.4‰), the values plot close to the mean
average, although the value for October 2020 was particularly high (−3.40‰ δ18Op). As the
results show that δ2Hp and δ18Op are well correlated, the subsequent discussion primarily
focuses on the δ18Op. The Mera LWWL (δ2Hp = 8.38δ18Op +14.86) agrees with the re-
cently calculated Jumandy (δ2Hp = 8.33δ18Op +14.65) and Ikiam (δ2Hp = 8.30δ18Op +14.64)
LMWLs encompassing a similar but shorter period from April 2019 to February 2020 [6].
The sites are comparable to the Mera site due to their similar location at the western
Amazon with ~65 km distance from each other, supporting our findings.

3.1.2. δ18Op Correlation with Local Temperature and Precipitation

The 14-month (February 2019 to April 2020) temperature monitoring in the Mera site
revealed a low seasonal amplitude with a mean of 19.1 ◦C (min. 18.2 ◦C and max. 19.7 ◦C)
as presented in Figures 3b and S3. A marked drop of approximately 1 ◦C occurred in
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July–August with a gradual increase in the following months, September–April. Compar-
ing our monitored temperature data with the 2 m temperature ERA5 reanalysis for the
Mera site and the Ecuadorian Amazon region, along with including the Puyo and Shell
instrumental stations for the same period of 2019–2021, resulted in similar findings (Figure
S3a). Indeed, these records confirm the trough during austral winter (JJA) and the low
seasonal temperature variation in the site. The ERA5 2m mean temperature interpolated
for Mera was 20.7 ◦C (min. 19.3 ◦C and max. 21.8 ◦C), and for the averaged Ecuadorian
Amazon, the mean was 22.3 ◦C (min. 20.9 ◦C and max. 23.4 ◦C). In addition, the validation
with Puyo and Shell instrumental stations gave a mean of 23.3 ◦C (min. 21.5 ◦C and max.
25.2 ◦C) and 23.4 ◦C (min. 20.5 ◦C and max. 25.6 ◦C), respectively. The temperature
variability is higher in the Puyo and Shell stations (4–5 ◦C), whereas in the ERA5 reanalysis,
the Mera and Amazon variation is lower (2.5 ◦C), being relatively close to our registered
values (1.5 ◦C). This marked difference in employing instrumental stations is most likely
related to their location. The correlation between Puyo and Shell stations for their common
temperature period (1981–2021) is r = 0.63 (p < 0.01), which suggests differences in their
locality (e.g., the Shell station is located at the Rio Amazonas airport, where the potential
urban heat island effect might play a role). Nevertheless, the temperature seasonal vari-
ation is coherent among the records and might be related to the solar insolation having
peaks during Vernal and Autumnal equinoxes (March 20 and September 22). Conversely,
the approximately 1 ◦C decrease during July–August could be attributed to the June sol-
stice [13]. The diurnal cycle showed higher variability, with temperatures fluctuating from
15 to over 35 ◦C in a few hours, reflecting the high diurnal variations characteristic of
tropical climates [12] (Figure S3d). There is a weak correlation between the δ18Op and all
the above-stated temperature records: Mera monitored (r = −0.22; p < 0.05), Mera ERA5
(r = −0.12; p < 0.05), Amazon ERA5 (r = −0.05; p < 0.05), Puyo (r = −0.09; p < 0.05) and
Shell (r = 0.07; p < 0.05). This finding is consistent with that of Jiménez–Iñiguez et al. [6] at
Jumandy and Ikiam stations in the northwestern Amazon, indicating that the temperature
effect does not influence the δ18Op due to the low-temperature variation, which is unlikely
to imprint a significant isotopic signal. A note of caution is due here since these results
apply to Amazon lowlands and might differ towards the Andes (See Section 3.2.1).

On the other hand, comparing the δ18Op with the local amount of rainfall gave a low
negative correlation of r = −0.46 (p < 0.01). It can be seen from Figure 3b that a marked
decrease in δ18Op occurs during April–May (AM) and October–November (ON). In contrast,
during austral winter (JAS), the highest δ18Op values are anti-correlated with the less-humid
months. This low correlation between local precipitation and δ18Op can be partly explained
by the location of the Mera site, being a transition zone between the Amazon lowlands and
the Andes cordillera with elevations above 4000 m (Figure S1). Here, high cloud frequencies
at the eastern Andean slope as a result of barrage effects of the easterlies have been reported
in the literature [62]. The Andes’s interaction with prevailing wind flow triggers convection
and the development of rapid organized convective storms called Mesoscale convective
systems (MCSs) [63]. This continuous input of convective cloudiness significantly increases
the precipitation at the eastern Andean slopes and Amazon foothills, altering the correlation
with the monitored δ18Op at the Mera site. These results agree with those obtained by
Jiménez–Iñiguez et al. [6], who recently monitored isotopic rainfall at Ikiam and Jumandy
stations from April 2019 to February 2020. The authors showed that the most depleted
δ18Op coincided with the highest precipitation during March–June and October–December,
obtaining an r = −0.41 (p < 0.01) between the δ18Op and local precipitation. This correlation
is similar to our r= −0.46 and agrees with the AM and ON depleted seasons, supporting
the hypothesis proposed by Garcia et al. [7] that the lowest δ18Op values correspond to
the seasonal passage of the ITCZ (MAM and ON). In addition, associated with these ITCZ
excursions is the semiannual variability of convection with two peaks in austral autumn
and spring due to in-situ radiational heating (sun crossing the equator) triggering zenithal
convective thunderstorms after equinoxial insolation [16,64,65].
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3.1.3. δ18Op and Moisture Trajectories

Although the annual ITCZ excursions crossing Ecuador explain the drop in δ18Op
values during austral autumn and spring, further analysis is required to interpret the higher
δ18Op values. Bulk back trajectories and clusters show that during summer (DJF), northeast
trajectories from the tropical north Atlantic crossing Venezuela, Colombia, and finally
Ecuador are dominant from 500 to 4000 m (~950 to 600 hPa) (Figure S6). A second trajectory
from the South Pacific is also evident and is notably stronger until 2000 m (~800 hPa),
gradually decreasing at lower pressures (~700 to 600 hPa). This “bow-shape” configuration
is enhanced in Figure 4, where only the trajectories bringing moisture are plotted. Here the
moisture flux upstream contributes to the majority of the flow arriving in Ecuador, with a
lower amount being uptake in the vicinity of the Mera site (Figure 4a,e). This fast-flowing
northeast flow is likely related to the Orinoco Low-Level jet (OLLJ), which is a low-level
nocturnal wind occurring during austral summer at 950–800 hPa with mean wind speeds
of 8 m s−1 over Colombia and Venezuela [66] (Figure S7). It has been recently reported that
the OLLJ influences the northeastern part of Ecuador (jet exit region) based on the transport
of air pollutants moving from the Orinoco river basin towards Ecuador [16,67]. On the
other hand, the water vapor moving from the South Pacific corresponds to the Humboldt
current, characteristic of the wind system at the coast [68,69].

Figure S6 reveals that in austral autumn (MAM), Atlantic Northeast and Pacific
Southwest trajectories are less prevalent, while easterly continental paths crossing over
the Amazon basin become more distinct. In particular, trajectories at 3000 to 4000 m
(~700 to 600 hPa) seem to move close and parallel to the geographical equator. Similarly,
the moisture flux and uptake graphs (Figure 4b,f) show a combined continental signal
coming from the northeastern and eastern parts of the continent resulting in the most
depleted δ18Op values (−11.20‰) during the year. This equatorial Amazon flow could be
attributed to the equatorial mid-tropospheric easterly jet (EMTEJ). The EMTEJ is an easterly
jet at 700–600 hPa centered on the equator with a maximum wind speed of 10 m s−1 from
March to August that travels from the Atlantic Ocean to the Andes and is weakened during
ENSO years (Figure S8) [54,70]. The EMTEJ has been reported by Hastenrath [71] along the
eastern equatorial Pacific using upper-wind radiosoundings measurements over Galapagos
(1967–1971). Similarly, Poveda et al. [54,70] have described the EMTEJ over the continent.
Indeed, the trajectories during austral winter (JJA) are characterized by easterly paths
crossing the Amazon basin from east to west, where northeasterly paths have minimal
influence (Figure S6). The EMTEJ dynamics are stronger, and most of the uptake moisture
at the Mera site has an eastern and southeastern provenance (Figure 4c,g). It is noteworthy
to mention that this season has the highest yearly δ18Op values (−4.89‰). In general, the
OLLJ and EMTEJ are the primary LLJs involved in transporting moisture converging at the
V-Index region (Figure 1) with direct influence over the Ecuadorian territory. Finally, in a
similar configuration to autumn but in the reverse, the bulk trajectories for spring (SON)
depict a steady decline in the number of eastern trajectories and a gradual increase in the
ones with a northeastern signature (Figure S6). The moisture flux is shared by the two
source regions, although most of the moisture uptake is northeasterly biased (Figure 4d,h).
Analogous to AMJ, the δ18Op values (−6.43‰) are also lower.

Recent studies have shown that d-excess across terrestrial environments is related to
moisture recycling and sub-cloud moisture re-evaporation, whereas the classical interpreta-
tion of changes in evaporation in the oceanic source suits coastal and marine sites [72,73].
In South America, it has been observed that land surface evapotranspiration is a good
indicator of the atmospheric moisture source [7,30,72,73]. Higher d-excess values indicate
significant recycling of moisture [6]. For the Mera site, the highest d-excess values (14.60‰)
occur during austral winter (JAS) (Figure 4). Here, the moisture flux trajectories cross
the Amazon basin from east to west, receiving a clear tree transpiration input from the
central-southern Amazon that rises the d-excess values [74].

On the contrary, the low d-excess values are observed during austral summer (DJFM,
11.48‰) and autumn (AMJ, 10.64‰). The d-excess values are lower because the moisture
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uptake chiefly comes from seasonally depleted areas in tree-transpired rainfall (see Figure S4
in Staal et al. [74]). In fact, the observed low transpiration flux from trees in the northwestern
Amazon is explained by the high moisture interception by the forest canopy and the lack of a
pronounced dry season [74]. For instance, MAM trajectories (Figure S6) mainly arrive from
the Tropical North Atlantic and the central Amazon subregion, the zones with the lowest
mean monthly transpiration during this season in [74], offering a minimal contribution to the
rise of d-excess.

Comparison of the Mera HYSPLIT back trajectories with the trajectory paths [6,48,68,69,75–78],
wind directions [16], and cloud frequency [62] of other studies at the eastern Ecuadorian Ama-
zon and Andes attained similar results depicting preferential pathways of moisture flow
(Figure S4). Thus, the distinct seasonal trajectories (Figure 4 and Figure S6) are associated with
the cross-equatorial flow dynamics showing a southerly and northerly winds regime [24].
A northerly wind regime is prevalent from the end of austral spring (Nov) until the end of
summer (Mar). In contrast, a southerly regime dominates during winter (JAS) (Figure 1a,c).
Nevertheless, during austral autumn (AMJ) and spring (ON), both southerly and northerly
winds are observed, implying that these are transition seasons influenced by the ITCZ posi-
tioning [24] (Figure 1b,d).

3.1.4. Mera δ18Op and V-Index Region Precipitation

Pearson correlation coefficient between the monitored monthly δ18Op at the Mera site
with precipitation in the V-Index region from February 2019 to July 2021 showed higher
correlations with all the gridded products. A closer inspection of Table 1 indicates that
the highest correlation was obtained with the CRU rainfall (r = −0.71; n = 20), whereas
the lowest was achieved utilizing the CHIRPS dataset (r = −0.63; n = 28). However, both
products presented incomplete data for the year 2021. Hence, the ERA5 total precipita-
tion product was selected for further evaluation (r = −0.69; n = 30) along with the OLR
dataset (Figure 5).
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Table 1. A comparison between gridded precipitation at northwestern V-Index region from CRU,
CHIRPS, and ERA5 with monitored δ18Op across the Andes and western Amazon from previous
studies and the monitored Mera site.

Site Lat Lon Elev.
m. asl Period Local

Amount V-CRU V-CHIRPS V-ERA5 V-OLR Reference

Baeza −0.46 −77.89 1960 1992–1993 −0.50 −0.85 −0.91 −0.77 0.62

[7]

El Chaco −0.33 −77.81 1600 1993–1996 0.20 −0.67 −0.56 −0.34 0.29
Cuyuja −0.41 −78.02 2380 1992–1993 0.29 −0.13 −0.40 −0.42 0.20
Mendez −2.71 −78.33 665 1992–1994 −0.62 −0.55 −0.74 −0.66 0.65
Cuenca −2.88 −78.98 2510 1992–1996 −0.67 −0.26 −0.47 −0.60 0.76

Papallacta −0.37 −78.14 3150 1992–1994 −0.10 −0.56 −0.70 −0.68 0.68
Lago
Agrio −0.08 −76.86 297 1992–1996 −0.33 −0.74 −0.74 −0.61 0.31

Amaluza −2.60 −78.56 1720 1992–1994 −0.14 −0.65 −0.81 −0.78 0.59
Alluriquin −0.31 −78.96 850 1992–1996 −0.47 −0.44 −0.54 −0.64 0.46

Mean −0.26 −0.54 −0.65 −0.61 0.51

Izobamba −0.37 −78.53 3058 1998–2008 −0.48 −0.47 −0.47 −0.57 0.38
[38]Quito −0.16 −78.48 2850 1998–2014 −0.54 −0.64 −0.64 −0.69 0.38

Bogota 4.7 −74.12 2547 1998–2016 −0.39 −0.52 −0.56 −0.50 0.12
N. Roca-

fuerte −0.89 −75.49 250 2001–2002 −0.49 −0.78 −0.85 −0.86 0.48 [31]

Zhurucay −3.06 −79.23 3400 2011–2014 −0.57 −0.54 −0.57 −0.69 0.54 [41]
† Mean −0.49 −0.62 −0.64 −0.70 0.53

Mera −1.40 −78.05 1200 2019–2021 −0.46 −0.71 −0.63 −0.69 0.47 This study

Note: All the correlations are significant at p < 0.05. † Calculated mean excluding the Bogota station.

Remarkably, the Mera δ18Op time-series follows the general pattern of regional precip-
itation at the V-Index region. Figure 5a reveals the marked decrease of δ18Op during austral
autumn and spring (AMJ and ON), coinciding with the bimodal zenithal rain peak in the
region (low OLR values in Figure 5b). On the contrary, higher δ18Op values are visualized
during the less-wetter periods in summer and winter (DJFM and JAS). A similar case was
found with the OLR values for the same period (r = 0.47; Table 1). Although the synchrony
is lower than the ERA5 precipitation (due to the coarser resolution), the general trend is
preserved (Figure 5b). The OLR values decline during AMJ and ON (<220 W m−2), indi-
cating deep convective activity during these months over the equator, after the equinoxes,
known as zenithal rain [31,64].

3.2. Andean and Amazon Isotopic Patterns
3.2.1. Local Altitude Effect

Previous studies have indicated that a combination of local and regional factors might
drive the δ18Op signal in Ecuador [8,31]. For better comprehension, cluster analysis of back
trajectories for all the stations in Figure 2 during 2019 is presented in Figure S4. The plots
showed that there is a typical pattern, with clusters during austral summer (DJF) and winter
(JJA) bringing moisture to the sites from Tropical North Atlantic (crossing the Orinoco
plains) and the Amazon basin. On the contrary, the mixing of air masses with a northerly
and southerly origin is observed during austral autumn (MAM) and spring (SON), in accord
with the discussion in Section 3.1.3. Among the different seasons, clusters with a regional
provenance (upstream) rather than local prevail. The latter has a limited spatial extension
and, therefore, can be assumed to represent in situ meteorological and topographical
factors complementing the modulation of the isotope hydrology in the area. These factors
include temperature, pressure, relative humidity, and precipitation types [1,6,8,79]. Due
to the complex Andes orographical features, the temperature decrease with altitude is the
dominant factor controlling further changes in the δ18Op values. Hence, the mean annual
δ18Op against the altitudinal gradient was calculated (Figure 6b), indicating a decrease in
the δ18Op values with elevation among the stations. The altitudinal gradient change is
−0.15‰ δ18Op per 100-m rise, pointing out the critical role of the Andes cordillera and its
local isotopic imprint.
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Figure 6. The altitude effect for δ18Op at the Andean and western Amazonian stations in Ecuador.
(a) 3-D perspective map of Ecuador indicating the location of the stations with δ18Op values at
northern and southern latitudes (black dots). The Mera site in central Ecuador links these domains
due to its location in an unrepresented area in the Amazon. (b) Mean annual δ18Op values for the
stations displayed in (a) presenting an altitude gradient of −0.15‰ per 100 m.

The annually averaged −0.15‰ per 100 m is in good agreement with the previously
−0.17‰ shown in two latitudinal transects in Ecuador (Garcia et al., 1998) and the −0.22‰
per 100 m in a southern tropical montane forest during September to December 2010 [9].
Consequently, topographic relief plays a vital role in the spatial variability of δ18Op, espe-
cially among montane sites [80].

It is worth noting that the Alluriquin station presents a similar annual δ18Op and
groups together with the Amazonian stations N. Rocafuerte, Lago Agrio, and Mendez.
Despite its further western location in the Andes, it is enriched in 18O. This can be explained
in part due to its close distance to the moisture source in the Pacific Ocean, where the
seasonal Pacific contribution to the total clusters is 47% in DJF, 25% in MAM, and 24% in
SON (Figure S4), counteracting the altitude effect and the Rayleigh fractionation.

3.2.2. Regional Amount Effect at the V-Index Region

Given that the Mera δ18Op values closely follow the rainfall at the V-Index region,
we extend our analysis to evaluate the δ18Op variability in stations distributed along the
highlands, eastern slope, and Amazon lowlands (Figure 2). As shown in Table 1, the
results indicate that on average, the V-ERA5 precipitation gives a significant r = −0.61
and r = −0.70 correlation for the 1992–1996 and 1998–2015 periods with the δ18Op, respec-
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tively. On the contrary, using only the local precipitation amount reveals an r = −0.26 and
r = −0.49.

Figure 7 clearly shows that the δ18Op values reflect the seasonal changes in precipi-
tation and convection at the V-Index region, supporting the idea that in the tropics, the
isotopic signature in precipitation not only consists in the local processes but in particular
of the integrated history along the parcel trajectory [31,34,81,82]. It is important to note that
although the Bogota station is located ~700 km further from the Quito station (Figure 2), it
is still within the V-index region, although close to the western edge. Its δ18Op seasonality
also follows the regional precipitation at the V-index regime, but it presents the lowest
correlation of all the Andean stations (r = −0.50). A possible explanation for this might
be the additional LLJs that bring moisture to Northern South America, particularly the
Caribbean and Choco Jet, which impinge a different isotopic imprint from the Caribbean
Sea and Tropical South Pacific [53,54,83].
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Figure 7. A comparison between δ18Op from inter-Andean and western Amazonian stations in
Ecuador (Figure 1) with (a) ERA5 precipitation 1992–1996, (b) OLR 1992–1996, (c) ERA5 precipitation
1998–2015, and (d) OLR 1998–2015. As in Figure 5, the blue and gray stripes highlight the bimodal
peak in precipitation during AMJ and ON rainfall. For direct comparison, the right y-axis is reversed
in (a) and (c).

The close resemblance of the δ18Op with the rainfall at the western V-Index regime may
be explained due to the V-Index location, entirely on the path of moisture-laden trade winds
receiving the flow from their confluence and capturing the interhemispheric hydrology [37].
This framework adequately explains the typical δ18Op seasonality in Ecuadorian Amazon
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and Andes, pointing to a common regional controller imprinting the observed “w-shape”
pattern (Figure 2). Nonetheless, to explain the total isotopic variability, besides this regional
controller, local factors should also be incorporated such as temperature, pressure, relative
humidity, and convective and stratiform proportions [8,31,79]. In our case, the change
in temperature with altitude (lapse rate) was considered the most relevant local factor,
enhancing the δ18Op throughs during the wettest seasons (AMJ, ON), hence being more
prominent in the Andean stations (See Figure 2). Nevertheless, current research on cloud
dynamics at tropical and midlatitudes has shown that precipitation sampled on Earth’s
surface consists of varying proportions of high-intensity convective and lower-intensity
stratiform rain types [79]. These differences in rain formation impart characteristic isotope
signatures, and changes in their proportions may primarily be responsible for the observed
stable isotopic variability in precipitation, providing an alternative approach for the δ2Hp,
δ18Op interpretation [79,84]. Hence, future work should estimate these proportions locally,
which might offer an expanded overview of the isotopic variability in Ecuador, comple-
menting the altitude and our proposed amount effect at the V-Index region. Similarly, for
the 1992–1996 and 1998–2015 periods, significant but lower correlations between the OLR
and δ18Op were found (r = 0.51 and r = 0.53), suggesting the convective character of the
V-Index region [65].

What makes the V-Index region particularly special could be answered by looking
at the Aerial lake concept over the Amazon, a new framework for considering large-
scale moisture transport proposed by Arraut et al. [37] (See their Figure 3). Aerial lakes
are sections of moisture pathways in which the flow slows down and broadens, due
to diffluence, presenting a high amount of precipitable water [37]. This latter is clearly
observable in Figure 8, where higher values of precipitable water are observed year-round,
except during austral winter (JJA), where the maximum value reaches ~50 kg m−2. This
aerial lake of moisture is most profound in the west (V-Index region). It plays a vital role
as a reservoir distributing moisture toward Central America in the dry season (JJA) and
towards the South American subtropics in the wet (DJF), following the cross-equatorial
southerly and northerly flows previously discussed.

Regarding its application in paleoclimatology, Vargas et al. [13] recently constructed
a tree-ring δ18O record (1864–2018) using a tropical cedar tree (C. nebulosa) located in
Mera, Ecuador. The authors found a correlation (r = −0.50; p < 0.01) between the δ18O
tree-ring record and precipitation overlapping the V-Index region (See their Figure 5). It can
thus be suggested that the stable isotopic signal in this area is robust. In fact, despite the
limited number of replicates (n = 4), the constructed record was in phase with the regional
precipitation values at the decadal scale, independently supporting our hypothesis of a
regional controller.

Various studies have assessed the efficacy of the OLR for identifying areas of strong
convection in South America, which showed to be strongly correlated with δ18Op [31,81].
However, although successfully applied, this methodology seems inadequate for Ecuador
due to the short δ18Op available records (Table 1), low sampling frequency (e.g., monthly),
and the coarse resolution of the OLR products. This method brings spatially extended
correlations, especially over the Atlantic ocean, where surface heating becomes insignifi-
cant [64] (Figure S9). On the other hand, the analysis is spatially constrained by using the
V-Index region, avoiding potential spurious correlations.

In conclusion, our new proposed framework improves our current understanding of
δ18O and δ2H in precipitation in the Ecuadorian territory and offers a new alternative for
calibrating archives at these latitudes.
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Figure 8. Precipitable water from a WRF simulation for 18Z (1 p.m. Ecuador continental time) with
a horizontal resolution of 50 km over northern South America for austral: (a) summer, (b) autumn,
(c) winter, (d) spring.

4. Conclusions

The precipitation at the equator shows a bimodal pattern due to the semiannual convec-
tion responding to the surface heating impinged by the seasonal migration of the sun [64].
Several weeks after the vernal and autumnal equinoxes (~March 20; ~September 22), higher
convection is developed, whereas it is inhibited after boreal winter and summer solstices
(DJF and JJA) [64]. These higher equatorial convective activities determine wetter months
while their suppression defines less-wetter seasons calling this zenithal precipitation.

We revisited the concept of cross-equatorial flow over northwestern Amazon at the
V-Index region (5◦ S–5◦ N, 65◦–75◦ W) [24]. At this latitude, the cross-equatorial flow (a LLJ)
effectively responds to the equinox and solstice monsoon transitions through the low-level
wind reversals (925 hPa) during austral autumn (MAM) and spring (SON) [27] (Figure 1),
effectively capturing the zenithal rainfall seasonality.

Zenithal precipitation is characteristic of the Ecuadorian Andes and Amazon and is
usually masked due to the complex Andes orography restricting a thorough evaluation of
the water stable isotopes in precipitation (δ2Hp, δ

18Op), in particular the amount effect. We
show that the rainfall amount averaged over the V-Index region better explains the δ18Op
variability at the Mera monitoring site in Central Ecuador (February 2019 to July 2021,
n = 30) than the local amount. The correlation between δ18Op and ERA5 precipitation at the
V-Index region gave an r = −0.69 (p < 0.05). In contrast, lower correlations were obtained
with the local amount of precipitation (r = −0.46; p < 0.05), in agreement with previous
studies [6,31,32]. Expanding the analysis to the stations at the Ecuadorian highlands and
Amazon territory during two periods, 1992–1996 and 1998–2015, gave on average, an
r = −0.66 (p < 0.05), in contrast to the r = −0.37 (p < 0.05) with the local amount.
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Previous studies have indicated that the altitude effect is an important controller of the
δ18Op variability in Ecuador [7,32]. This study confirms that the decrease in temperature
with elevation is the chiefly local effect producing a −0.15‰ per 100 m in the δ18Op and
is more prominent for stations in the inter-Andean valleys. Together, the local altitude
and the regional amount at the V-index domain are the principal effects of imprinting the
isotopic signal. On the other hand, upstream convection (detected by Outgoing Long-
wave Radiation, OLR), previously described as a suitable method for finding convective
areas highly correlated with locally monitored δ18Op [31], is not suitable for an extended
evaluation within the territory. The short-term available isotopic record in the country
and the coarse resolution of the OLR products make the correlation between OLR and
δ18Op spatially extensive (Figure S9). Conversely, our evaluation at the V-Index region
spatially constrains the zenithal rainfall dynamics. Back trajectories paths indicate that the
Orinoco and equatorial mid-tropospheric easterly jets (OLLJ and EMTEJ, respectively) are
the primary LLJs involved in transporting moisture converging at the V-Index region with
direct influence over the Ecuadorian territory.

Previous to this study, it was difficult to make inferences about the δ18Op seasonality
over Ecuador. Our contribution provides the most updated evaluation on the topic and
offers a suitable explanation (besides ITCZ excursions) regarding the isotopic bimodality,
indicated by lower δ18Op values during austral autumn (MAM) and spring (SON). This
issue has not been addressed in detail before by previous and recent studies [6–9,31,32].

Finally, the precipitation amount focused on the V-index provides a novel approach
to explain the δ18Op seasonality over Ecuador, giving us a new framework for calibrating
paleoclimate archives.
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