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a b s t r a c t

We consider single machine scheduling problems with additional non-renewable re-
source constraints. Examples for non-renewable resources include raw materials, energy,
or money. Usually they have an initial stock and replenishments arrive over time at
a-priori known time points and quantities. The jobs have some requirements from the
resources and a job can only be started if the available quantity from each of the required
resources exceeds the requirements of the job. Upon starting a job, it consumes its
requirements which decreases the available quantities of the respective non-renewable
resources. There is a broad background for this class of problems. Most of the literature
concentrate on the makespan, and the maximum lateness objectives. This paper focuses
on the total weighted completion time objective for which the list of the approximation
algorithms is very short. We extend that list by considering new special cases and obtain
new complexity results and approximation algorithms.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC
BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Single machine scheduling is one of the oldest scheduling problems with many theoretical results and practical
pplications. In the recent years the importance of non-renewable resources (like raw materials, energy or money) is
ncreasing. These resources are consumed by the jobs when the machine starts to process them. There is an initial
tock, and some additional supplies arrive at given supply dates and in known quantities. Since the early 80s several
apers examined the problem, but mainly considered ‘‘min max’’ type objectives, such as the makespan, or the maximum
ateness. In this paper we focus on the total (weighted) completion time objective and prove some new complexity and
pproximability results.
Formally, we have a set of n jobs J to be scheduled on a single machine, and a non-renewable resource. Each job j ∈ J

has a processing time (duration) pj > 0, a weight wj > 0, and a required quantity aj ≥ 0 from the resource. In addition,
the number q ≥ 1 specifies the number of supplies from the non-renewable resource. Each supply is characterized by
a time point uℓ ≥ 0 and by a quantity b̃ℓ > 0. The time points satisfy 0 = u1 < u2 < · · · < uq. The resource is
onsumed each time some job j with positive aj is started. That is, if some job j is started at time t , then the available
uantity of the resource must be at least aj, and the inventory of the resource is decreased by aj immediately at time t .
schedule specifies a start time Sj for each j ∈ J , and it is feasible if the total supply until any time point t is at least the

otal demand of those jobs starting not later than t . In other words, let uℓ be the latest supply time point before t , then
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j∈J :Sj≤t aj ≤
∑ℓ

ℓ′=1 b̃ℓ′ must hold. We aim at finding a feasible schedule S that minimizes the total weighted completion
ime

∑
j∈J wjCj, where Cj = Sj + pj.

Observe that we can assume that the total resource requirement of the jobs matches the total amount supplied, hence
at least one job starts not earlier than uq in any feasible schedule.

Scheduling with non-renewable resources is not only theoretically challenging, but it occurs frequently in practice.
.g., [12] examine the continuous casting stage of steel production in which hot metal is the non-renewable resource
upplied by a blast furnace. A similar problem is studied in [4] at a shoe-firm and there are examples also in the
onsumer goods industry and in computer assembly, see [20]. Note that the problem is a special case of the resource
onstrained project scheduling problem, which has several further practical applications. We summarize the most
mportant antecedents of this research in Section 2.

.1. Terminology

Recall the standard α|β|γ notation of [7], where α indicates the machine environment, the β field contains the
dditional constraints, and the γ field provides the objective function. In this notation, our scheduling problem can
e compactly represented as 1|nr = 1|

∑
wjCj, where ‘‘nr = 1’’ in the β field indicates that there is only one type of

on-renewable resource, and the ‘‘1’’ in the α field stipulates the single machine environment.
A supply period is a time interval between two consecutive supply time points, and [uℓ, uℓ+1) is the ℓth supply period,

here uq+1 = ∞. We will assign jobs to supply periods, and we say that an assignment is feasible if there is a schedule
n which for each index ℓ, the total resource requirements of those jobs assigned to supply periods 1 through ℓ does not
xceed the total supply over the same periods.
If there are many identical jobs, then the input can be described compactly using a high-multiplicity encoding of the jobs.

uppose the set of jobs can be partitioned into h classes such that all the jobs in the same class have the same parameters
processing time, job weight, and resource requirement). Then in the input there is a positive integer number h giving
he number of job classes, and for each job class, we have a number si providing the number of identical jobs in the class,
nd 3 other numbers pi, ai and wi specifying the common parameters of all the jobs in the class. If some of these values
s the same over all the job classes, then it can be represented only once in the input, but this further simplification does
ot decrease the size of the input significantly. The other input parameters are q, the number of supply time points, and
he time points uℓ and supplied quantities b̃ℓ for ℓ = 1, . . . , q.

A polynomial time algorithm on a high-multiplicity input must produce a compact schedule the size of which is
ounded by a polynomial in the size of the high-multiplicity input. A natural schedule representation consists of h · q
uples (ℓ, i, tiℓ, giℓ), where ℓ is the index of the supply period, i is that of the job class, tiℓ is the start time of the first job
rom class Ji scheduled after uℓ, and giℓ is the number of jobs from this class scheduled consecutively from tiℓ on. It is
asy to see that one can check the feasibility, and compute the objective function value of such a schedule in polynomial
ime in the size of the high-multiplicity encoded input. In the α|β|γ notation, the tag ‘‘hme’’ in the β field indicates the
igh-multiplicity encoding of the input.
A ρ-approximation algorithm for our scheduling problem is a polynomial time algorithm that on any input, provides

schedule of objective function value at most ρ times the optimum. An PTAS for our scheduling problem is a family of
lgorithms {Aε}ε>0, that for each ε > 0 contains an algorithm Aε which is a factor (1 + ε)-approximation algorithm for
he problem. An FPTAS is a family of approximation algorithms with the properties of a PTAS, and in addition, each Aε

as a polynomial time complexity in 1/ε as well.

.2. Main results

Firstly, we investigate the complexity and approximability of the problem 1|nr = 1, aj = ā, q = const. |
∑

wjCj, i.e., sin-
le machine environment, one non-renewable resource, all jobs have the same required quantity from the resource, which
as a constant number of supply time points, and the objective function is the weighted sum of the job completion times.
or our complexity result, we need a high-multiplicity encoding of the input.

heorem 1. The problem 1|nr = 1, aj = 1, q = 2, hme |
∑

Cj is NP-hard.

That is, minimizing the sum of the job completion times is NP-hard even if there are only two supply time points
nd all the jobs require only one unit from the resource. In fact, we reduce the NP-hard EQUAL-CARDINALITY PARTITION
roblem to our scheduling problem, and we need a huge number of jobs in certain job classes.
For non-constant q, and wj ≡ 1, we have a factor 2 approximation algorithm.

heorem 2. Scheduling the jobs in non-decreasing processing time order is a 2-approximation algorithm for 1|nr = 1, aj = ā|
Cj.

For q constant, we have stronger results even with arbitrary job weights.

heorem 3. The problem 1|nr = 1, a = ā, q = const |
∑

w C admits an FPTAS.
j j j

98



P. Györgyi and T. Kis Discrete Applied Mathematics 311 (2022) 97–109
Table 1
Overview of previous and new results for variants of 1|nr = 1|

∑
wjCj .

#Supplies (q) Restriction Result Source

arbitrary pj = p̄, aj = ā poly. time algo. [10]
arbitrary pj = p̄, wj = w̄ poly. time algo. [10]
arbitrary aj = ā, wj = pj poly. time algo. [10]

arbitrary wj = 1 strongly NP-hard [3]
2 wj = 1 weakly NP-hard [14]
2 pj = 1, wj = aj weakly NP-hard [10]
2 wj = pj = aj weakly NP-hard [10]
arbitrary wj = pj = aj strongly NP-hard [10]
2 aj = 1, hme weakly NP-hard Theorem 1 of this paper
arbitrary aj = 1, wj = 1 strongly NP-hard [2]

arbitrary wj = pj = aj 2-approx algo. [10]
constant wj = pj PTAS [10]
2 – FPTAS [14]
arbitrary aj = ā, wj = w̄ 2-approx algo. Theorem 2 of this paper
constant aj = ā FPTAS Theorem 3 of this paper
constant aj = ā, hme, h = const FPTAS Theorem 4 of this paper
arbitrary pj = 1, aj = wj 3-approx algo. Theorem 5 of this paper
2 pj = 1, aj = wj 2-approx algo. Theorem 6 of this paper
arbitrary aj = 1, wj = 1 3/2-approx algo. [2]

When q = 2, then an FPTAS exists for arbitrary aj values as well, see [14]. The FPTAS of Theorem 3 can be extended
to high-multiplicity encoding of jobs, provided that the number of job classes is bounded by a constant.

Theorem 4. The problem 1|nr = 1, aj = ā, q = const, hme, h = const |
∑

wjCj admits an FPTAS.

The second problem studied in this paper is 1|nr = 1, pj = 1, aj = wj |
∑

wjCj, i.e., we have a single machine
environment, all jobs have unit processing time, and for each job the resource requirement equals the weight. This problem
has been shown NP-hard in the weak-sense by [10]. When the number of supply dates is part of the input, we can prove
the following.

Theorem 5. Scheduling the jobs in non-increasing wj order is a 3-approximation algorithm for 1|nr = 1, pj = 1, wj = aj|∑
wjCj.

However, for q = 2, more can be said:

Theorem 6. Scheduling the jobs in non-increasing wj order is a 2-approximation algorithm for 1|nr = 1, pj = 1, wj = aj,
q = 2|

∑
wjCj.

We remark that this theorem remains valid in case of high-multiplicity encoding of the input.
For an overview of previous and new results, see Table 1.

1.3. Notation

n Number of jobs
q Number of supply periods
j Job index
ℓ Index of supply
pj Processing time of job j
ā Common resource requirement of the jobs
uℓ The ℓth supply time point
b̃ℓ Quantity supplied at time point uℓ

bℓ Total resource supply over the first ℓ supplies, i.e.,
∑ℓ

k=1 b̃k
nℓ Total number of jobs that can be served from the first ℓ supplies
OPT Optimum objective function value of a scheduling problem

If all the jobs have the same resource requirement ā, we can determine in advance the total number of jobs that can
be served from the first ℓ supplies. That is, n = ⌊b /ā⌋. Since nā =

∑n a = b , we have n = n.
ℓ ℓ j=1 j q q
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. Previous work

The total weighted completion time objective in a single machine environment without additional resource constraints
1 ∥

∑
wjCj) is solvable in polynomial time, a classical result of [19]. This objective function is studied in several papers,

ee e.g., [1,11], or [15].
Non-renewable resource constraints in the context of machine scheduling has been introduced by [3], and by [18].

or the total weighted completion time objective, Carlier proved that 1|nr = 1|
∑

wjCj is strongly NP-hard. This result
was repeated by [5], who also examined a variant where the supply dates are equidistant and each supplied amount b̃ℓ

is the same. In [14], it is proved that the problem is still NP-hard (in the weak sense) if there are only two supplies,
and also an FPTAS is devised for this special case. In a recent paper, [10] discuss some polynomially solvable special
cases of 1|nr = 1|

∑
wjCj, and identify new NP-hard variants, e.g., when pj = wj = aj for each job j. That paper also

describes a 2-approximation algorithm for the above variant, and a PTAS when pj = wj, and the number of supplies
q) is a constant. The paper of [2] answers an open question of this paper by showing strong NP-hardness for the variant
|nr = 1, aj = 1|

∑
Cj. They also provide a 3/2-approximation for this problem and several results for the case when each

j = 0.
There are several papers for the makespan and the maximum lateness objective. For instance, in [21] it is proved

hat the single machine makespan minimization problem is equivalent to the two machine flowshop problem if the
mount supplied at each time unit is the same, while in [9], the approximability of parallel machine scheduling under
on-renewable resource constraints is investigated with the makespan and the maximum lateness objectives.
According to our best knowledge, high-multiplicity scheduling problems were first examined by [16], and the term was

oined by [13]. We also refer to [8], where several high-multiplicity scheduling problems with non-renewable resource
onstraints are examined, but only for the makespan and for the maximum lateness objectives.

. Problem 1|nr = 1, aj = 1, q = 2, hme|
∑

Cj is NP-hard

In this section we prove Theorem 1. In that proof we will use the following lemma several times:

Lemma 1. Let t be an arbitrary time point and S an arbitrary feasible schedule of an instance of 1|nr = 1, hme|
∑

Cj. If
there are k jobs with the same processing time pj scheduled without idle time between them from time point t on (in the time
interval

[
t, t + k · pj

)
), then their contribution to the objective function value of S is kt +

(k+1
2

)
· pj.

Proof. Let j′ be the job in position k′ (1 ≤ k′
≤ k) among the jobs specified in the statement of the lemma. Since the

completion time of j′ is t + k′
· pj, the contribution of these jobs to the objective is

k∑
k′=1

(
t + k′

· pj
)

= kt +

(
k∑

k′=1

k′

)
· pj = kt +

(
k + 1
2

)
· pj. □

Proof of Theorem 1. We reduce the NP-hard EQUAL-CARDINALITY-PARTITION to the scheduling problem in the statement
of the theorem. An instance of this problem is characterized by a positive even integer number n, and a set of n items
ith item sizes e1, . . . , en ∈ Z≥0 such that

∑
i ei = 2A for some integer A, and ei ≤ 2n2 (the last inequality follows from

the proof of NP-hardness from [6]). Question: is there a subset H of the items such that |H| = n/2 and
∑

i∈H ei = A?
Let I be an instance of EQUAL-CARDINALITY-PARTITION, we construct an instance I ′ of the scheduling problem as

ollows. There are n′
= 2 · 200n2

+ n jobs and two supply dates, u1 = 0 and u2 = (n/2) · 20n2
+ A with b1 = n/2

nd b2 = 2 · 200n2
+ n/2, respectively. J1, J2, . . . , Jn are so called medium jobs with pj = 20n2

+ ej (j = 1, 2, . . . , n).
e have 200n2 small jobs with pj = 1, and 200n2 big jobs with pj = 200n2 . Let Js,Jm and Jb denote the set of small,
edium and big jobs, respectively. The question is if there exists a feasible schedule of total job completion time at most
′
= Vs + Vm + Vb, where

Vs := 200n2u2 +

(
200n2

+ 1
2

)
,

Vm := 2 · (20n2
+ A) ·

(
n/2 + 1

2

)
+ (u2 + 200n2 ) · n/2,

Vb := 200n2
· (u2 + 200n2

+ 20n2
· n/2 + A) + 200n2

·

(
200n2

+ 1
2

)
= 200n2

·

∑
j∈Jm∪Js

pj + 200n2
·

(
200n2

+ 1
2

)
.
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Fig. 1. If the answer to I is ‘‘yes’’ then the value of S is at most V ′ . The medium jobs are hatched.

If the answer to I is ‘‘yes’’, i.e., there is a subset H of n/2 items of total size A. Then consider the following schedule for I ′:
chedule the medium jobs corresponding to the elements of H from 0 to u2 in non-decreasing pj order, then schedule the
emaining jobs in non-decreasing pj order from u2, i.e., there are small jobs in the time interval

[
u2, u2 + 200n2

]
, medium

obs in the time interval
[
u2 + 200n2 , u2 + 200n2

+ 20n2
· n/2 + A

]
, and then the big jobs are in the time interval⎡⎣ ∑

j∈Jm∪Js

pj,
∑

j∈Jb∪Jm∪Js

pj

⎤⎦ =

[
u2 + 200n2

+ 20n2
· n/2 + A, u2 + 200n2

+ 20n2
· n/2 + A + 2002n2

]
,

ee Fig. 1. Note that due to Lemma 1 the contribution of the small jobs to the objective function value is Vs, that of the
edium jobs is at most Vm, while the contribution of the big jobs is Vb. Therefore, the total job completion time of this
chedule is at most V ′.
If the answer to I is ‘‘no’’, then we claim that any feasible schedule has a larger objective function value than V ′. Let

∗ denote an arbitrary optimal schedule. We distinguish three cases:

ase 1. There is a big job that starts before u2. Then necessarily all the other big jobs must be scheduled after all the small
nd medium jobs at the end of S∗. The contribution of the big jobs is at least 200n2

+ (200n2
−1) · (200n2

+
∑

j∈Js∪Jm
pj)+

200n2
·
(200n2

2

)
≥ Vb −

∑
j∈Jm∪Js

pj.
There are at most n/2 − 1 other jobs that start before u2 in S∗, thus there are at least 200n2

+ (n/2 + 1) small and
edium jobs that start after the first big job, i.e., not earlier than 200n2 . The contribution of these jobs to the optimum
alue is at least (200n2

+ (n/2 + 1)) · 200n2
+
(200n2+(n/2+1)+1

2

)
. This is clearly larger than Vs + Vm +

∑
j∈Jm∪Js

pj, thus the
objective value of S∗ is larger than V ′.

Case 2. There are k ≥ 1 small jobs that start before u2, but each big job starts after u2 in S∗. Then at least n/2+ k medium
jobs start after u2 (since at most n/2 jobs may start before u2 by the resource constraint), and the machine must be idle
in [u2 − k · 20n2 , u2]. This means that each big job starts not earlier than

∑
j∈Jm∪Js

pj + k · 20n2 in S∗, because these jobs
an start after all small and medium jobs in an optimal schedule. Hence, the contribution of the big jobs to the objective
unction value of S∗ is at least Vb + k · 200n2

· 20n2 .
The contribution of the small and medium jobs is at least

(k+1
2

)
+(n/2−k)·k+

(n/2−k+1
2

)
·20n2

+(200n2
−k)u2+

(200n2−k+1
2

)
+

n/2+ k) · (u2 +200n2
− k)+

(n/2+k+1
2

)
·20n2 , because in an optimal schedule the jobs are ordered in each period in a non-

ecreasing pj order, i.e., both before and after u2, the small jobs precede the medium jobs. Note that,
(k+1

2

)
+(200n2

−k)u2+

200n
2
−k+1
2

)
≥ Vs−k·(u2+200n2 ), while (n/2−k)·k+

(n/2−k+1
2

)
·20n2

+(n/2+k)·(u2+200n2
−k)+

(n/2+k+1
2

)
·20n2

≥ Vm−n2A.
herefore, the objective function value of S∗ is at least Vb + Vm + Vs + k · 200n2

· 20n2
− n2A − k · (u2 + 200n2 ) > V ′.

ase 3. Only medium jobs start before u2. Then the remaining jobs are scheduled in non-decreasing processing time order
fter the maximum of u2 and the completion of the jobs started before u2. Since the answer to I is ‘‘no’’, either there
s a medium job that starts before, but finishes after u2, or there is idle time before u2. In the former case, the big jobs
re scheduled in the time interval

[∑
j∈Jm∪Js

pj,
∑

j∈Jb∪Jm∪Js
pj
]
, which means that their contribution to the objective

unction value is Vb. Observe that in this case exactly n/2 medium jobs start before u2, because the total processing time of
ny n−1 medium jobs is less than u2 and there can be at most n/2 jobs scheduled before u2 due to the resource constraint
f the first period. The contribution of the medium jobs is at least 2 ·

(n/2+1
2

)
· 20n2

+ n/2 · (u2 + 200n2 ) = Vm − 2A ·
(n/2+1

2

)
,

ecause there are n/2 medium jobs that start not earlier than u2 + 200n2 (after all small jobs are scheduled after u2). The

ontribution of the small jobs is at least (200n2
+ 1)u2 +

(200n2+1
2

)
= Vs + 200n2 , because these jobs are scheduled after

he last medium job of the first period completes, i.e., not earlier than 200n2
+ 1. Since 200n2 > 2A ·

(n/2+1
2

)
, the value of

∗ is larger than V ′
= Vb + Vm + Vs.

Finally, if there is idle time before u2 in S∗, then we can suppose that the number of the medium jobs that start before
is n/2, otherwise the objective value of S∗ could be decreased by scheduling a small job before u , which contradicts
2 2
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Fig. 2. Illustration of list scheduling for 1|nr = 1, aj = ā|
∑

Cj .

he optimality of this schedule. Since the machine is idle in [u2 − 1, u2], the big jobs cannot start before
∑

j∈Jm∪Js
pj + 1,

herefore their contribution to the objective is at least Vb + 200n2 . The small jobs are scheduled in
[
u2, u2 + 200n2

]
, thus

heir contribution is exactly Vs. The contribution of the medium jobs is at least 2 · (20n2 ) ·
(n/2+1

2

)
+ (u2 + 200n2 ) · n/2 =

Vm − 2A ·
(n/2+1

2

)
, thus the objective function value of S∗ is at least Vb + Vm + Vs + 200n2

− 2A ·
(n/2+1

2

)
, which is clearly

arger than V ′
= Vb + Vm + Vs. □

. A factor 2 approximation algorithm for 1|nr = 1, aj = ā|
∑

Cj

In this section we describe a simple factor 2 approximation algorithm for the problem 1|nr = 1, aj = ā|
∑

Cj. The
algorithm is based on list scheduling, i.e., scheduling the jobs in a given order and introducing a gap only if no more
material is available when scheduling the next job.

In order to prove that the list-scheduling algorithm using the non-decreasing processing-time order is a factor 2
approximation algorithm we need some additional definitions. Recall the definition of nℓ from Section 1.3. Let νkℓ denote
the difference nℓ − nk for 0 ≤ k ≤ ℓ ≤ q, where n0 := 0. Let SPT denote the optimum value of the problem 1 ∥

∑
Cj,

.e., minimize the sum of job completion times on a single machine. SPT can be obtained by scheduling the jobs in
on-decreasing processing time order without any delays, a classical result of [19].

emma 2. For any problem instance of 1|nr = 1, aj = ā|
∑

Cj, the optimum value OPT admits the following lower bounds:

(i) SPT ≤ OPT ,
(ii)

∑q
ℓ=2 uℓ · νℓ−1,ℓ ≤ OPT .

roof. Since 1 ∥
∑

Cj is a relaxation of 1|nr = 1, aj = ā|
∑

Cj, (i) follows immediately. As for (ii), fix an instance of
|nr = 1, aj = ā|

∑
Cj and consider an optimal schedule for that instance. Let C∗

j denote the completion time of job j in
he optimal schedule. We can express each C∗

j as the sum of a supply time point uℓ(j) ∈ {u1, . . . , uq} and some integer
umber vj such that C∗

j = uℓ(j) + vj and uℓ(j) ≤ C∗

j − pj < uℓ(j)+1 (i.e., job j starts in supply period ℓ). Let γ ∗

ℓ be the number
f those jobs that start in supply period ℓ in the optimal schedule. Then we have

OPT =

n∑
j=1

C∗

j =

n∑
j=1

(uℓ(j) + vj) >

n∑
j=1

uℓ(j) =

q∑
ℓ=1

uℓ · γ ∗

ℓ ≥

q∑
ℓ=1

uℓ · νℓ−1,ℓ, (1)

here only the last inequality needs justification. Consider a relaxed problem, where all the job processing times are
et to 0. Then the optimal schedule for 1|nr = 1, aj = ā|

∑
Cj is just a feasible schedule for this relaxed problem with

bjective function value
∑q

ℓ=1 uℓ · γ ∗

ℓ , whereas in the optimal solution, νℓ−1,ℓ jobs are scheduled at time point uℓ. This
mmediately gives the last inequality in (1). □

roof of Theorem 2. The main idea of the proof is that we express the objective function value of the schedule SAlg
btained by the algorithm using the gaps in the schedule and then we upper bound it appropriately. Let Gℓ be the idle
ime or gap in the interval [uℓ, uℓ+1) in the schedule SAlg , and Cj the completion time of job j. Let γkℓ denote the number
f jobs that start in the interval [uk, uℓ+1), see Fig. 2. Furthermore, let {ℓ1, . . . , ℓt} be the set of supply period indices such
hat Gℓi−1 > 0 (there is a gap in the schedule in supply period ℓ − 1), and suppose ℓi < ℓi+1 for 1 ≤ i < t . If this set is
ot empty, then ℓ1 ≥ 2 must hold by definition. We also define ℓt+1 := q + 1. Then we have

n∑
j=1

Cj = SPT +

t∑
i=1

(
ℓi∑

k=1

Gk

)
· γℓi,ℓi+1−1 ≤ SPT +

t∑
i=1

uℓi · γℓi,ℓi+1−1

≤ SPT +

t∑
i=1

uℓi · νℓi−1,ℓi+1−1 ≤ SPT +

t∑
ℓ=1

uℓ · νℓ−1,ℓ ≤ 2 · OPT ,

here the first equation is based on the same idea as we used in the previous lemma, the second inequality uses the
bvious fact that the total idle time before uℓ is at most uℓ, the third inequality exploits that for each i, there is a gap
ight before uℓi , and before uℓi+1 as well, the fourth from νℓi−1,ℓi+1−1 =

∑ℓi+1−1
k=ℓi

νk−1,k, and the last from the previous
emma. □
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Finally, we mention that the above list scheduling algorithm can be extended the hme-input and the same approxi-
ation guarantee can be proved.

. FPTAS for 1|nr = 1, aj = ā, q = const, hme, h = const|
∑

wjCj

.1. FPTAS for normal input

Firstly, we describe a dynamic program, and then we sketch how to turn it into an FPTAS. We assume that the jobs
re indexed in non-increasing wj/pj order, i.e., w1/p1 ≥ · · · ≥ wn/pn.
Our dynamic program is defined by an acyclic graph, where the nodes represent states, and the edges the transitions

etween them. Each state σ is a 4q tuple (Nσ
1 , . . . ,Nσ

q ; Pσ
1 , . . . , Pσ

q ;W σ
1 , . . . ,W σ

q ;WPσ
1 , . . . ,WPσ

q ) ∈ R4q, where Nσ
ℓ , P

σ
ℓ ,

W σ
ℓ , and WPσ

ℓ represent the total number, the total processing time, the total weight, and the total weighted completion
time (if started at time 0) of those jobs assigned to the supply period ℓ. Note that if j1, . . . , jk are the jobs assigned to
supply period ℓ in state σ such that j1 < j2 < · · · < jk, then WPσ

ℓ =
∑k

i=1 wji

(∑i
s=1 pjs

)
. The initial state is the all

0 vector. Consider any state σ = (Nσ
1 , . . . ,Nσ

q ; Pσ
1 , . . . , Pσ

q ;W σ
1 , . . . ,W σ

q ;WPσ
1 , . . . ,WPσ

q ) with
∑ℓ

ℓ′=1 N
σ
ℓ′ ≤ nℓ for each

ℓ ∈ {1, . . . , q}, and with strict inequality for at least one ℓ. Let j :=
∑q

ℓ=1 N
σ
ℓ + 1 be the index of the next job to be

scheduled. For each ℓ such that
∑ℓ

ℓ′=1 N
σ
ℓ′ < nℓ, we define a successor state σ ′, unless it is already defined, as follows.

In σ ′, the values of Nσ ′

ℓ , Pσ ′

ℓ , W σ ′

ℓ and WPσ ′

ℓ are computed as Nσ
ℓ + 1, Pσ

ℓ + pj, WPσ
ℓ + wj, and WPσ

ℓ + (Pσ
ℓ + pj) · wj,

respectively; while all other components are inherited from σ . The terminal states are those σ with
∑q

ℓ=1 N
σ
ℓ = n. The

objective function value of a terminal state is computed as

value(σ ) :=

q∑
ℓ=1

(
WPσ

ℓ + max

{
uℓ,max

ℓ′<ℓ

(
uℓ′ +

ℓ−1∑
k=ℓ′

Pσ
k

)}
· W σ

ℓ

)
. (2)

Note that in the above expression, WPσ
ℓ +max

{
uℓ,maxℓ′<ℓ uℓ′ +

∑ℓ−1
k=ℓ′ Pσ

k

}
·W σ

ℓ expresses the total weighted completion
time of those jobs assigned to supply period ℓ. To see this, observe that in σ , the first job in supply period ℓ starts at
tℓ := max

{
uℓ,maxℓ′<ℓ

(
uℓ′ +

∑ℓ−1
k=ℓ′ Pσ

k

)}
. Since the total weight of those jobs assigned to supply period ℓ is W σ

ℓ , WPσ
ℓ

must be increased by tℓ · W σ
ℓ to get the total weighted completion time of these jobs, and this yields the formula (2).

We determine all the terminal states, and choose the best one, i.e., with the smallest value. Note that resource feasibility
is ensured by the definition of nℓ and the fact that

∑ℓ

k=1 N
σ
k ≤ nℓ in each (terminal) state σ .

We claim that the running time of this procedure is pseudo polynomial. To see this, notice that any number in any
state can be bounded by (n · MAXNUM)2, where MAXNUM is the maximum number in the input. Since q is a constant,
the number of states can be bounded by SOL(n, q) · (nMAXNUM)5q, where SOL(n, q) is the total number of solutions of
the Diophantine equation system

∑ℓ

k=1 Nk ≤ nℓ, ℓ = 1, . . . , q. This can be bounded by nq. Therefore, the running time
can be bounded by a polynomial in n and MAXNUM, if q is a constant. Therefore, we have proved the following:

Lemma 3. The problem 1|nr = 1, q = const, aj = ā|
∑

wjCj can be solved in pseudo-polynomial time.

Luckily, this pseudo-polynomial time algorithm can be turned into an FPTAS under the same conditions.
Let ∆ = 1 + ε/(2n). We shall use the following rounding function:

r(v) =

{
0, if v = 0
∆⌈log∆ v⌉, if v > 0.

A notable property of this function is that if v1, . . . , vt is a sequence of t ≤ n non-negative numbers, and gi = r(vi +gi−1),
where g0 = 0, then

i∑
j=1

vj ≤ gi ≤ (1 + ε)
i∑

j=1

vj, i = 1, . . . , t. (3)

The first inequality follows from g(v) ≥ v, and the second from (1 + α/n)n ≤ eα
≤ 1 + 2α for 0 ≤ α < 1, see [17]. In the

following algorithm we modify the above dynamic program by rounding the states. A state is non-terminal if at least one
job is not assigned to a supply period in it. Consider the following algorithm:

1. The initial state is the 4q-dimensional 0 vector. The successors of a non-terminal state σ = (Nσ
1 , . . . ,Nσ

q ; P̃σ
1 , . . . ,

P̃σ
q ; W̃ σ

1 , . . . , W̃ σ
q ; W̃P

σ

1 , . . . , W̃P
σ

q ) are computed as follows. If
∑ℓ

ℓ′=1 N
σ
ℓ′ < nℓ, then job j = 1 +

∑q
ℓ′=1 N

σ
ℓ′ can be

assigned to supply period ℓ. The components of the corresponding state σ ′ are inherited from σ , except Nσ ′

ℓ , P̃σ ′

ℓ ,

W̃ σ ′

ℓ , and W̃P
σ ′

ℓ , which are computed as Nσ
ℓ + 1, r(P̃σ

ℓ + pj), r(W̃ σ
ℓ + wj) and r(W̃P

σ

ℓ + wj(P̃σ
+ pj)), respectively.

2. After computing the (rounded) terminal states of this dynamic program, we take a terminal state σ ′ of smallest
value, and pick any path from the initial state leading to σ ′. By following this path, a solution to the scheduling
problem is constructed, and this is the output of the algorithm.
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irstly, we observe that the output of the algorithm is a feasible schedule and it has a value at most that of σ ′ by the
roperties of the function r(·). Therefore, in order to show that the above algorithm constitutes an FPTAS for the scheduling
rogram, we have to show that for any ε > 0, value(σ ′) is at most (1 + O(ε)) times the optimum, and also provide a
olynomial bound on the time complexity in terms of the size of the scheduling problem instance and 1/ε.
Now consider the original (unrounded) dynamic program and a path Π from the initial state to an optimal terminal

tate σ ∗ (i.e., value(σ ∗) takes the optimum value). Clearly, the assignment of jobs to supply periods can be read out from
, and a terminal state σ̃ of the rounded dynamic program is reached by making these assignments in the algorithm

bove. Since P̃ σ̃
ℓ ≤ (1 + ε)P∗

ℓ , W̃
σ̃
ℓ ≤ (1 + ε)W ∗

ℓ , and W̃P
σ̃

ℓ ≤ (1 + ε)WP∗

ℓ by (3), we can bound the value of σ̃ as follows:

value(σ̃ ) ≤ (1 + ε)2
q∑

ℓ=1

(
WPσ∗

ℓ + max

{
uℓ,max

ℓ′<ℓ

(
uℓ′ +

ℓ−1∑
k=ℓ′

Pσ∗

k

)}
· W σ∗

ℓ

)
< (1 + 3ε) value(σ ∗),

hat is, the value of σ̃ is at most (1 + 3ε) times the optimum. Since we pick the best solution of the rounded dynamic
rogram, the output of the algorithm has the same approximation guarantee.
It remains to verify the time complexity of the dynamic program with the rounded states. The crucial factor in

etermining the running time is the number of distinct values of the components P̃ℓ, W̃ℓ and W̃Pℓ of the rounded states.
ince log∆

∑
pj = ln

∑
pj/ ln∆ ≤ 4n ln

∑
pj/ε for any 0 < ε < 1, the number of distinct P̃ℓ values is bounded by a

olynomial poly(|I|, 1/ε) in the size of the input and in 1/ε. A similar bound can be given for the number of distinct W̃ℓ

alues, while the number of distinct W̃Pℓ can be bounded by log∆(
∑

pj)(
∑

wj), which is also bounded by polynomial in
he input size and in 1/ε. Therefore, the time complexity of the algorithm on any input I with n jobs is O(nqpoly(|I|, 1/ε)3q).
ence, we proved Theorem 3.

.2. FPTAS for hme -input

In this section we describe how to modify the FPTAS of the previous section to deal with hme-input. Recall that in such
n input, there are h job classes and the number of jobs in class Ji is si. Since

∑h
i=1 si may not be polynomially bounded in

he size of the hme-input, the FPTAS of the previous section would have a pseudo-polynomial time complexity if applied
irectly to hme-input.
Firstly, we need a slightly different rounding function. Let ∆̄ := (1 + ε/(2h)), and

r̄(v) :=

{
0, if v = 0,
∆̄⌈log∆̄ v⌉, if v > 0.

ecall that the FPTAS of the previous section runs in n-stages (n is the number of the jobs), and in stage j, job j is assigned
o one of the ℓ supply periods. We modify this strategy as follows. In the FPTAS for hme-input, there are h stages, one
or each job class. We assume that w1/p1 ≥ · · · ≥ wh/ph, where wi and pi are the common weight and processing time,
espectively, of all the jobs of job class i. The states of the new dynamic program are labeled by 4q+ 1 tuples of the form
i;Nσ

1 , . . . ,Nσ
q ; P̃σ

1 , . . . , P̃σ
q ; W̃ σ

1 , . . . , W̃ σ
q ; W̃P

σ

1 , . . . , W̃P
σ

q ), and they differ from the states of the dynamic program of the
revious section in one important aspect: the first component is the index of the job class scheduled last. The initial state
s the all-zero vector. Each arc connects a state σ at some stage i − 1 ≥ 0 with a state σ ′ at stage i ≤ h, and it is labeled
ith a tuple (δi1, . . . , δiq), where

∑q
ℓ=1 δiℓ = si, which provides the number of jobs from class Ji assigned to each of the

upply periods. Since the number of such tuples is in the order of Ω(sqi ), which is not bounded by a polynomial in the
ize of the hme-input in general, we cannot enumerate all the possible assignments of the jobs from class Ji to supply
eriods in an algorithm of polynomial running time in the size of the hme-input and in 1/ε. For this reason, consider the
uantities (1 + ε)k, for k ∈ Ki := {z ∈ Z | 0 ≤ z ≤ ⌈log(1+ε) si⌉}. We will use the tuples (k1, . . . , kq), where each kℓ ∈ Ki.
et Ei be the set of eligible tuples, where a tuple (k1, . . . , kq) is eligible if and only if si ≤

∑q
ℓ=1⌊(1+ ε)kℓ⌋. The number of

ligible tuples is bounded by |Ki|
q, which is bounded by ((2 ln si)/ε)q, since |Ki| ≤ (2 ln si)/ε as a standard computation

hows. However, this is polynomially bounded in the size of the hme-input and in 1/ε. For each tuple (k1, . . . , kq) ∈ Ei,
e compute an assignment of jobs to supply periods by the following Allocation algorithm:

1. Let t = si, and ℓ = q.
2. While ℓ > 0 do
3. Let δiℓ := min{t, ⌊(1 + ε)kℓ⌋}, and t := t − δiℓ
4. Let ℓ := ℓ − 1
5. End do
6. Output: (δi1, . . . , δiq).

learly, the output of the algorithm satisfies
∑q

ℓ=1 δiℓ = si provided that (k1, . . . , kq) ∈ Ei. Observe that the jobs of class
i are assigned backward, from supply period q to supply period 1. The use of this allocation strategy is in the proof of
easibility of the set of tuples corresponding to the optimal solution, as we will see later.
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Consider any state σ = (i − 1;Nσ
1 , . . . ,Nσ

q ; P̃σ
1 , . . . , P̃σ

q ; W̃ σ
1 , . . . , W̃ σ

q ; W̃P
σ

1 , . . . , W̃P
σ

q ). For each distinct tuple

(δi1, . . . , δiq), a subsequent state σ ′ of σ is defined as σ ′
= (i;Nσ ′

1 , . . . ,Nσ ′

q ; P̃σ ′

1 , . . . , P̃σ ′

q ; W̃ σ ′

1 , . . . , W̃ σ ′

q ; W̃P
σ ′

1 , . . . , W̃P
σ ′

q ),

here Nσ ′

ℓ := Nσ
ℓ +δiℓ, P̃σ ′

ℓ := r̄(P̃σ
ℓ +δiℓ ·pi), W̃ σ ′

ℓ := r̄(W̃ σ
ℓ +δiℓ ·wi), and W̃P

σ ′

ℓ := r̄(W̃P
σ

ℓ + (δiℓ · P̃σ
ℓ +δiℓ · (δiℓ +1)/2 ·pi) ·wi).

f σ ′ is already stored at stage i, then the processing of σ ′ is finished. Otherwise, we check the feasibility of σ ′ by verifying
he condition

ℓ∑
ℓ′=1

Nσ ′

ℓ′ ≤ nℓ, for ℓ = 1, . . . , q − 1. (4)

e store σ ′ at stage i only if it satisfies (4).
The states obtained at stage h are the terminal states. Clearly, all terminal states represent feasible allocation of jobs to

upply periods. Among the terminal states, we pick the one with smallest value, computed by the formula (2). The solution
s obtained by repeatedly moving to the predecessor states until the initial state is reached. The arcs visited provide an
ligible assignment from each Ei, that together determine a solution of the problem.
It remains to verify the approximation ratio and the time complexity of the algorithm. Consider an optimal solution of

he scheduling problem, and for each job class Ji and supply period ℓ, let n∗

iℓ denote the number of jobs from class
i started in the interval [uℓ, uℓ+1), if ℓ < q, and not before uq if ℓ = q. Let kiℓ be the smallest integer such that
∗

iℓ ≤ ⌊(1 + ε)kiℓ⌋. Clearly, all the tuples (ki1, . . . , kiq) are eligible. Let (δi1, . . . , δiq) be the job allocation returned by the
llocation algorithm for the tuple (ki1, . . . , kiq) for i = 1, . . . , q. Consider the sequence of states σ1, σ2, . . . , σh obtained
y applying the job allocations (δi1, . . . , δiq) in increasing order of the index i.

laim 1. The states σ1, . . . , σh satisfy the condition (4), and for each i, σi is a state stored at stage i of the algorithm.

roof. Clearly, the algorithm will generate σ1. If it satisfies the condition (4), then it will generate σ2 from it, etc. It suffices
o prove that σh satisfies the condition (4), because it implies that all previous states do. By the rules of the Allocation
lgorithm,

∑q
ℓ′=ℓ

δiℓ′ ≥
∑q

ℓ′=ℓ
n∗

iℓ′ for each ℓ and i. Consequently,
∑ℓ

ℓ′=1 δiℓ′ ≤
∑ℓ

ℓ′=1 n
∗

iℓ′ , since si =
∑q

ℓ′=1 δiℓ′ =
∑q

ℓ′=1 n
∗

iℓ′ .
ince the optimal solution is feasible, we have

ℓ∑
ℓ′=1

Nσh
ℓ′ =

h∑
i=1

ℓ∑
ℓ=1

δiℓ′ ≤

h∑
i=1

ℓ∑
ℓ′=1

n∗

iℓ′ ≤ nℓ, for ℓ = 1, . . . , q − 1,

hich proves our claim. □

Let σ be the state that is obtained from the initial state by applying the job allocations (δi1, . . . , δiq) in increasing order
f the index i, but without rounding the components Pℓ, Wℓ and WPℓ by r̄(·). Using σ , the value of σh can be bounded as
ollows:

value(σh) < (1 + ε)2
q∑

ℓ=1

(
WPσ

ℓ + max

{
uℓ,max

ℓ′<ℓ

(
uℓ′ +

ℓ−1∑
k=ℓ′

Pσ
k

)}
· W σ

ℓ

)
, (5)

here the inequality follows from the properties of the rounding function r̄(·). We have to relate the right-hand-side of
he above expression to the value of the optimal solution. Let P∗

ℓ , W
∗

ℓ and WP∗

ℓ denote the total processing time, the total
eight, and the total weighted completion time (if started at time 0) of those jobs assigned to supply period ℓ in the
ptimal solution. Notice that δiℓ ≤ ⌊(1 + ε)kiℓ⌋ ≤ (1 + ε)n∗

iℓ. It follows that

Pσ
ℓ =

h∑
i=1

δiℓ · pi ≤ (1 + ε)
h∑

i=1

n∗

iℓ · pi = (1 + ε)P∗

ℓ ,

W σ
ℓ =

h∑
i=1

δiℓ · wi ≤ (1 + ε)
h∑

i=1

n∗

iℓ · wi = (1 + ε)W ∗

ℓ , and

WPσ
ℓ =

h∑
i=1

⎛⎝δiℓ ·

⎛⎝ i−1∑
j=1

δjℓ · pj

⎞⎠+ pi · δiℓ · (δiℓ + 1)/2

⎞⎠ · wi

≤ (1 + ε)2
h∑

i=1

⎛⎝n∗

iℓ ·

⎛⎝ i−1∑
j=1

n∗

jℓ · pj

⎞⎠+ pi · n∗

iℓ · (n∗

iℓ + 1)/2

⎞⎠ · wi

2 ∗

= (1 + ε) WPℓ .
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ince the optimum value can be expressed as

OPT =

q∑
ℓ=1

(
WP∗

ℓ + max

{
uℓ,max

ℓ′<ℓ

(
uℓ′ +

ℓ−1∑
k=ℓ′

P∗

k

)}
· W ∗

ℓ

)
,

he right-hind-side of (5) can be bounded by (1+ε)4·OPT , hence, the value of σh is at most (1+ε)4·OPT . Since the algorithm
hooses the terminal state with smallest value, and σh is one of the terminal states, the value of the best terminal state
s at most (1 + ε)4 · OPT , which is (1 + O(ε)) · OPT , since we can assume that 0 < ε ≤ 1.

Finally, the time complexity of the algorithm is proportional to the number of distinct N1, . . . ,Nq values that can
e obtained by choosing an eligible tuple from each Ei. This can be bounded by O(Πh

i=1(2(ln si)/ε)q), which is bounded
y O((2/ε)q·h · (Πh

i=1 ln si)q), a polynomial in the size of the hme-input and in 1/ε, provided that q and h are constants.
herefore, Theorem 4 is proved.

. Approximation of 1|nr = 1, pj = 1, wj = aj|
∑

wjCj

In this section first we prove Theorem 5, and then Theorem 6. For the sake of simpler notation, we assume that the
obs are indexed in non-increasing wj order, i.e., w1 ≥ w2 ≥ · · · ≥ wn.

roof of Theorem 5. Let S be the solution obtained by scheduling the jobs in non-increasing wj order as early as possible
hile respecting the resource constraint, and S∗ an optimal schedule. Let Wℓ and W ∗

ℓ be the total weight of the jobs that
tart in [uℓ, uℓ+1) in S, and in S∗, respectively. For ℓ = 1, . . . , q − 1, let kℓ be the index of the last job that starts before
ℓ+1 in S. Let Gℓ and G∗

ℓ denote the length of the idle period in [uℓ, uℓ+1) in S and in S∗, respectively. Let sℓ := Gℓ − G∗

ℓ .
ince wj = aj for all jobs, and job kℓ + 1 is started not sooner that uℓ+1 in S, we have

ℓ∑
ℓ′=1

Wℓ′ + wkℓ+1 > bℓ ≥

ℓ∑
ℓ′=1

W ∗

ℓ′ , ℓ = 1, . . . , q − 1,

hus
∑q

ℓ′=ℓ+1 Wℓ′ <
∑q

ℓ′=ℓ+1 W
∗

ℓ′ + wkℓ+1 for ℓ = 1, . . . , q − 1.
Note that both of Gℓ and G∗

ℓ are at most uℓ+1 − uℓ.
Since the jobs are scheduled in non-increasing wj order in schedule S, the objective function value of this schedule is:

n∑
j=1

jwj +

q−1∑
ℓ=1

Gℓ

( q∑
ℓ′=ℓ+1

Wℓ′

)
≤

n∑
j=1

jwj +

q−1∑
ℓ=1

Gℓ

( q∑
ℓ′=ℓ+1

W ∗

ℓ′ + wkℓ+1

)
(6)

n the other hand, we can bound the optimum value from below as follows:
n∑

j=1

jwj +

q−1∑
ℓ=1

G∗

ℓ

( q∑
ℓ′=ℓ+1

W ∗

ℓ′

)
≤ OPT .

ence, the difference between the value of S and the optimum can be bounded from above by
q−1∑
ℓ=1

sℓ

( q∑
ℓ′=ℓ+1

W ∗

ℓ′

)
+

q−1∑
ℓ=1

wkℓ+1Gℓ. (7)

he first part of the above expression is at most the optimum value, because sℓ ≤ uℓ+1 − uℓ, and then
q−1∑
ℓ=1

sℓ

( q∑
ℓ′=ℓ+1

W ∗

ℓ′

)
≤

q−1∑
ℓ=1

(uℓ+1 − uℓ)

( q∑
ℓ′=ℓ+1

W ∗

ℓ′

)

=

q∑
ℓ=1

W ∗

ℓ

ℓ−1∑
ℓ′=1

(uℓ′+1 − uℓ′ ) =

q∑
ℓ=1

W ∗

ℓ uℓ ≤ OPT .

he second term of (7) can be bounded by
∑q−1

ℓ=1 wkℓ+1(uℓ+1 − uℓ), since Gℓ ≤ uℓ+1 − uℓ. It remains to bound this latter
erm.

Since in S the jobs are scheduled in non-increasing wj order, there is a job j1 ≤ k1+1 that starts after u2 in S∗. Suppose
hat it starts in [uℓ1 , uℓ1+1). It contributes to the optimum by at least wk1+1uℓ1 , which is at least

∑ℓ1−1
ℓ=1 wkℓ+1(uℓ+1 − uℓ).

urthermore, if ℓ1 < q, there is a job j2 ≤ kℓ1 + 1 that starts after u(ℓ1+1) in S∗. Suppose j2 starts in [uℓ2 , uℓ2+1), thus it
ontributes to the optimum by at least w u ≥

∑ℓ2−1
w (u − u ). We can continue this until we encounter a
kℓ1+1 ℓ2 ℓ=ℓ1 kℓ+1 ℓ+1 ℓ
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Fig. 3. Schedule S, where the jobs are in non-increasing wj order.

ob jt that must start after uq in schedule S∗. Consequently,

q−1∑
ℓ=1

wkℓ+1Gℓ ≤

q−1∑
ℓ=1

wkℓ+1(uℓ+1 − uℓ) ≤ wk1+1uℓ1 +

t∑
i=2

wkℓi−1+1uℓi ≤ OPT .

hus the second term of (7) is also at most the optimum, hence (7) is at most two times the optimum, therefore S has
n objective function value of at most 3 · OPT . □

roof of Theorem 6. Let S be the schedule found by the algorithm and S∗ an optimal schedule. We use the same notation
s in the proof of Theorem 5, but for simplicity we introduce G∗

:= G∗

1. Note that if G∗
= 0, then the algorithm yields an

ptimal schedule. For the sake of a contradiction, suppose that there is an instance where the theorem is not true. Consider
counterexample I with minimal number of jobs, i.e.,

∑n
j=1 wjCj > 2

∑n
j=1 wjC∗

j , where Cj = Sj + 1 and C∗

j = S∗

j + 1.

laim 2. Job J1 starts at u2 in S∗, i.e., S∗

1 = u2.

roof. Since J1 has the largest weight, if J1 is not started at u2 in the optimal schedule, then it must be started at time 0,
.e., S∗

1 = 0. Then consider the instance I ′ obtained from I by dropping J1 and by decreasing b1 by w1 and u2 by 1. Then
he algorithm gives a schedule S ′ such that S ′

j = Sj − 1 for each j = 2, . . . , n. Furthermore, the objective function value of
′ is related to that of S as follows:

n∑
j=2

wjC ′

j =

n∑
j=1

wj(Cj − 1) =

n∑
j=1

wjCj −

n∑
j=1

wj. (8)

On the other hand, we can derive a new feasible schedule for I ′ from S∗. Let S̃j = S∗

j − 1 for j = 2, . . . , n. This schedule is
again feasible, and its value is

n∑
j=2

wjC̃j =

n∑
j=1

wj(C∗

j − 1) =

n∑
j=1

wjC∗

j −

n∑
j=1

wj. (9)

Comparing (8), and (9), we get that I ′ is also a counterexample with fewer jobs than I , a contradiction. □

From now on we assume that S∗

1 = u2.
Let Jk be the last job scheduled before u2 in S, see Fig. 3. We can describe the objective function value of S as a special

case of (6), but now we choose a slightly different form for technical reasons:
n∑

j=1

wjCj =

k∑
j=1

jwj + u2

n∑
j=k+1

wj +

n∑
j=k+1

(j − k)wj =

k∑
j=1

jwj + (u2 − k + 1)
n∑

j=k+1

wj +

n∑
j=k+1

(j − 1)wj. (10)

We also give a new expression for the objective function of the optimum schedule S∗. Let π∗ be bijection between the
set of positions {1, . . . , n}, and the set of jobs such that π∗(i) = j if job j is in position i of the optimal schedule S∗. Then
we have

n∑
j=1

wjC∗

j =

n∑
i=1

i · wπ∗(i) + W ∗

2 · G∗

= (u2 + 1)w1 +

n∑
i=2

(i − 1) · wπ∗(i) + (W ∗

2 − w1)(G∗
+ 1)

≥ (u2 + 1)w1 +

n∑
j=2

(j − 1)wj + (W ∗

2 − w1) · (G∗
+ 1), (11)
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here the inequality follows from the fact that w2 ≥ w3 ≥ · · · ≥ wn, and thus the sum
∑n

i=2(i − 1) · wπ∗(i) is minimized
y the permutation which assigns job j to position j. The difference of (10) and (11) is

k∑
j=1

jwj + (u2 − k + 1)
n∑

j=k+1

wj − (u2 + 1)w1 −

k∑
j=2

(j − 1)wj − (W ∗

2 − w1)G∗
−

W ∗

2 + w1 =

k∑
j=1

wj + (u2 − k + 1)(W ∗

1 + W ∗

2 −

k∑
j=1

wj) − u2w1 − (W ∗

2 − w1)G∗
− W ∗

2 . (12)

We have to prove that (12) cannot be larger than the optimum. Since G∗
̸= 0 and wj = aj for all job j,

∑k+1
j=1 wj > b1

ollows, because otherwise the algorithm could have scheduled job k+1 earlier. However, W ∗

1 ≤ b1, because S∗ is feasible,
hus we have W ∗

1 <
∑k+1

j=1 wj and therefore the difference is at most

k∑
j=1

wj + (u2 − k + 1)(W ∗

2 + wk+1) − u2w1 − (W ∗

2 − w1)G∗
− W ∗

2 =

k∑
j=1

wj + u2W ∗

2 + u2(wk+1 − w1) − kW ∗

2 − (k − 1)wk+1 − (W ∗

2 − w1)G∗. (13)

ow, if k = 0, then (13) simplifies to

u2W ∗

2 + w1 − (W ∗

2 − w1)G∗.

owever, this last expression is a lower bound on the optimum value, since the contribution of those jobs that start after
2 in S∗ is at least (u2 + 1)W ∗

2 and the largest-weight job starts at u2 in S∗ as well.
Finally, suppose that k ≥ 1. Then (13) can be bounded from above by

k∑
j=1

wj + u2W ∗

2 ,

ecause W ∗

2 ≥ w1 ≥ wk+1. Furthermore,
∑n

j=1 wjC∗

j ≥
∑k

j=1 wj + u2W ∗

2 , because each C∗

j ≥ 1 and there are jobs with a
otal weight of at least W ∗

2 with a completion time of at least u2 + 1 in S∗, thus the theorem follows. □

We have a tight example for this case. Consider an instance where we have only 2 jobs: j1 with weight w and j2 with
eight w − ε. Let b̃1 := w − ε, b̃2 := w and u2 := w. The algorithm schedules j1 from u2, and j2 from u2 + 1, thus the
bjective function value of the resulting schedule is

(u2 + 1) · w + (u2 + 2) · (w − ε) = 2w2
+ 3w − ε(w + 2).

owever, we can schedule j2 from t = 0 and j1 from u2 and the value of the resulting schedule is

w − ε + (u2 + 1) · w = w2
+ 2w − ε.

ote that the relative error of the algorithm on this instance is
(

2w2
+O(w)

w2+O(w)

)
, which tends to 2 as w goes to infinity.

7. Conclusion

We have shown several approximation results for different variants of 1|nr = 1|
∑

wjCj. However, there are still a lot of
open problems in this area. For instance, it is unknown whether there is a polynomial time constant factor approximation
algorithm for 1|nr = 1|

∑
wjCj or not. We have conjectured that scheduling the jobs in non-increasing wj order is a factor

2 approximation algorithm for 1|nr = 1, pj = 1, wj = aj|
∑

wjCj, but until now we could not prove it.
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