
Abstract — Unmanned aerial vehicles (UAVs) are 

becoming more and more common. They show 

excellent potential for multiple types of autonomous 

work, although they must achieve these tasks safely. 

For flight safety, it must be assured that the UAV will 

not endanger its surroundings during autonomous 

operations; it will avoid collision with any objects in its 

flight path. Camera-based computer vision and 

artificial neural networks have shown to be effective in 

many applications. However, biological vision systems 

and the brain areas responsible for visual processing 

may hold solutions capable of acquiring information 

effectively. Previous work has shown the usability of 

biologically motivated algorithms using vision systems 

of insects or even behavioral patterns to solve computer 

vision problems. We are proposing a novel system, 

which performs visual cue extraction with algorithms 

based on the structure and functionality of the retina 

and the visual cortex of the mammalian visual system. 

We are also developing a modular artificial neural 

network with a training dataset, which will perform 

autonomous obstacle recognition tasks using the data 

from the image processing algorithm. 

Index Terms — vision-aided navigation, bio-

motivated algorithms, artificial neural networks 

I.  INTRODUCTION 

nmanned aerial vehicles (UAVs) are becoming 

more and more common, and they show excellent 

potential in many fields, such as aerial imaging, inspection 

tasks, and so on. [1]. Autonomous UAVs could achieve 

efficient task completion, but to do so, they would need 

precise and fast obstacle-avoidance algorithms, so they 

could operate without endangering themselves or their 

surroundings. To that end, more and more biologically 

inspired algorithms become available. For example, 

algorithms that mimic the behavior of bees [2], UAV 

structures and algorithms that show resemblance with the 

vision system of insects [3], and more are the focus of 

many research projects. 

The mammalian vision system is one of the most 

precise sensor systems, making animals capable of 

navigating complex tasks in various environments (for 

example, hunting or fleeing from a predator). The first 

stage of the visual processing is in the retina, a multi-

layered sensor system capable of converting photons into 

action potential coded information, which is the method of 

information flow throughout the nervous system. From the 

photoreceptors, rods are susceptible to luminance, while 

the three cone types (L-, M-, S-cones) are receptive to red, 

green, and blue wavelengths of the incoming light, 

respectively [4]. The retinal ganglion cells operate with 

concentric receptive fields of varying sizes. The receptive 

fields can be divided into ON and OFF regions; the 

interplay of these regions extract visual cues for further 

processing [4]. Information flows in parallel pathways 

from the retina towards the brain on the optic nerve, 

containing contrast [5], movement direction [6], edge 

information [7], and more. Thus, stimuli reaching the 

primary visual cortex (V1) already contain multiple types 

of information. In the primary visual cortex, detailed edge 

information is acquired from the field of vision by the 

cortical columns [8]. 

Further processing (color processing, motion- and 

depth perception, cognitive mapping) is achieved in the 

higher-order visual cortices (V2, V3, V4, and so on) [9]. 

Neural plasticity is the property, which makes neuronal 

circuits dynamic. The strength of a synapse depends on its 

previous activity. Long-term potentiation and depression 

play an essential role in enhancing more critical and 

meaningful inputs [10]. 

Artificial neural networks (ANN) try to mimic the 

behavior of neural networks through nonlinear activation 

functions and introducing plasticity through machine 

learning techniques. ANN is perfect for classification 
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problems, such as obstacle recognition in the flight path. 

Complex ANN can process multiple information 

modalities, thus increasing the probability of giving the 

right answer for a problem. To that end, we can increase 

the number of hidden layers slightly, but the best solution 

is to build a hierarchical network. These modular artificial 

neural networks have strongly separated architectures. 

Each ANN part will compute its domain [11]. Furthermore, 

applications of deep convolutional networks in computer 

vision are becoming more and more prevalent [12]. 

In this paper, we propose a bio-motivated vision 

system mimicking the processes of the retina and visual 

cortex of mammals to acquire visual cues (contrast and 

edge information) — the resulting information then 

processed by an ANN to determine the obstacle-free 

pathways. The system could be a base of autonomous flight 

in the future, or it could work as a pilot helping feature, 

which allows avoiding a collision in case of human error. 

II. PROPOSED METHOD 

Two main tasks must be performed to achieve 

obstacle awareness and avoidance: visual cue extraction 

and obstacle recognition after learning. We implemented 

algorithms modeling the retina and primary visual cortex 

functions to model the processes of biological systems in 

feature extraction. To achieve learning and autonomous 

obstacle detection, we will create a modular multilayer 

neural network. 

A. Bio-motivated feature extraction 

To achieve the goal of obstacle avoidance, first, we 

must extract features from the input images. Existing 

computer vision algorithms and biological visual systems 

determine visual cues such as contrast, edge, and 

movement information. In our model, two main features 

(contrast and edge information) were obtained using 

algorithms modeling the retina and a primary visual cortex 

(example outputs in Figure 1). 

Contrast can provide information about more 

significant differences in the input image. The basis of our 

contrast-detection algorithm is a two-dimensional 

Gaussian function: 

Φ(𝑥, 𝑦) =  
1
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𝑒
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where σ denotes the width of the bell-shaped surface 

and is the only free variable. 

The difference of Gaussians (DoG) function models 

the signal processing of retinal ganglion cells [13]. Retinal 

ganglion cells have a central and a surrounding receptive 

field. The interaction of these two regions provides 

information of contrast, movement, and so on, even before 

the information reaches higher-level processing brain 

regions (for example, primary visual cortex) [4]. As in the 

retina, multiple color channel comparison was performed 

to gain the contrast information, such as red-green and 

yellow-blue discrimination, using the following equations: 

𝑅𝐺𝑖𝑛𝑝𝑢𝑡 =  
(𝑅 + 𝐺)

√2
 

𝑌𝐵𝑖𝑛𝑝𝑢𝑡 =  
(𝑅 + 𝐺 − 2𝐵)

√6
 

where R is red, G is green, and B is the blue color 

channel of the input picture. 

 

Figure 1. Examples for the output images after processing 

(the six different contrast images and two cases from the 

20 separate images containing edge-information). 

Blue color channel and greyscale information were 

also processed using the DoG function, as in blue midget 

cells and the rod pathway in the retina [4]. The process of 

calculating the intensity based on the input of the three 

cones was performed by averaging all three color channels. 

The function was convolved on the pre-processed image 

(channel selection, discrimination, and modification with 

memory) to imitate the process. 

Edge information is also an essential visual cue in the 

case of obstacle detection. For that purpose, the Gabor 

function was used as follows: 

𝑔𝑐(𝑥, 𝑦) ∶= cos (𝜔𝑥𝑥 + 𝜔𝑦𝑦)𝑒
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where σ represents the width of the receptive field and 

was set to (5,7,9,14,20) to represent the size-dependent 

sensitivity of the primary visual cortex. ωx/ωy gives the 

preferred orientation of the receptive field, which was 

chosen to be {-45, 0, 45, 90}, which represents the four 

main directions. Gabor function was implemented on the 

output of the three-cone intensity process. The resulting 

output resembles the information gained in the primary 

visual cortex, where cortical columns gather information 

from edges with different directions separately [8]. 

As the algorithms try to model the functionality of 

biological visual systems, a memory was constructed to 

modify the current input, a feature that characterizes 

neuronal communication. The exponential fit of the current 

and previous four inputs adjust the current input before the 

processes modeling retinal ganglion cells; thus, the 

methods acquire some form of plasticity. 

As a result of the previously described processes, the 

system acquires 26 outputs (6 with contrast information, 20 

with edge-information). This information will be the input 

of the neural network trained to recognize obstacles in the 

flight path. 

B. Obstacle recognition with ANN 

To achieve autonomous flight in advance, the UAV 

must learn to interpret the information acquired by the 

visual processing algorithms presented before. To that end, 

we segmented the input images into 64*64 grids and want 

to build a neural network (with a training dataset), which 

will be able to determine if the grid holds an obstacle or 

not. To create and train the network, we will use one of the 

most popular open-source libraries: TensorFlow [14], 

which Google initially developed. 

For the proposed problem, we would like to construct 

a multi-layered ANN with a subnetwork system. The 

subnetwork will represent the information incoming from 

the individual grids. It will contain 26 input neurons, from 

which 6 depict contrast information, while 20 include edge 

information. There will be multiple hidden layers, which 

will be fully interconnected with the input layer. The 

subnetwork will end in a single neuron as an output layer 

in the case of each subnetwork. All activation functions are 

planned to be Rectified Linear Unit (ReLu) activation 

functions, except the output neuron, which will contain a 

sigmoid activation function. The number of subnetworks 

will be equal to the number of grids on the input image. 

The main network will include multiple hidden layers as 

well. Again, all the neurons will use the ReLu activation 

function. The output will have the same number of values 

as the number of inputs (thus the number of grids). This 

structure again follows the mammalian visual system, 

where the processing structure follows the representation 

of the input. 

In a different trial, we would like to examine the 

usability of the neural network by providing 3D inputs and 

outputs to it, where the third dimension will be time. In this 

approach, 10 or 20 consecutive images will be added and 

converted into 3D input and output after image processing. 

This approach may provide movement information based 

on the movement of the UAV. The acquired network will 

operate in a provided time interval, but it may be sufficient 

to estimate the motion of the obstacles in the surrounding 

environment; thus, flight changes may be prompted in time 

in case of danger of collision. 

During training, we would like to examine the 

effectiveness of different loss (like sigmoid cross-entropy, 

softmax cross-entropy, and so on) and optimizer functions 

(like gradient descent optimization, Adam optimizer, and 

so on) for this problem [15]. 

We recorded Parrot AR Drone 2.0 flights around 

display panels in a big hall to create a dataset for training 

and testing. The recordings were segmented, and the 

previously described image processing was performed on 

them. The output was saved as an n*26 matrix in mat files, 

where n is the number of grids on the image (220 in the 

64*64 sized grids) (Figure 2). 

 

Figure 2. An example for the manual obstacle labeling 

using predefined script sizes (64*64 pixels in the current 

case) 

Using a custom-written MATLAB script, grids 

containing obstacles (the display panel) were annotated on 

all images manually. Our dataset contains roughly 4000 

images, but the preliminary tests showed that it is not 

enough to learn the desired features with the desired 

accuracy in the current ANN.  

We are currently increasing the number of test images. 

The final training data set planned to contain around 8000 

images, from which roughly half of them will include the 

avoidable obstacle (display panel). 



III. CONCLUSION 

After the implementation and testing of the proposed 

neural network, we would like to examine the real-time 

usability of the system. For that purpose, the image 

processing algorithms are reimplemented in C++, to 

achieve the best possible computational speed as well as 

make the software more compatible with the core system 

of the UAV. 

We want to widen the obstacle types. Currently, we 

use display panels, but we would want to extend the 

recognizable obstacles to any kind of object in the room. In 

the long run, we would also like to implement the 

avoidance of the borders of the operation area (walls, floor, 

ceiling in case of an indoor environment). 

We also would like to extend the training set with 

more environments and obstacle types, as we could not find 

publicly available data sets for this problem. With this 

work, we would like to lay down the foundation for such a 

dataset. 

Later on, we would like to implement a “fovea”-like 

region, which is the location of sharp vision in the retina. It 

would be a small segment of the sight of the forward 

camera of the UAV, depending on its movement direction. 

We would try to use a neural network trained for such a 

smaller image size to decrease computation cost. The 

whole sight will be inspected if this smaller area holds 

obstacle(s) and flight path modification is needed. 
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