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Abstract. A surrogate model-based method is proposed for the optimisation of batch distillation processes and applied 

to the recovery of methanol from a five-component azeotropic waste solvent mixture, where pollutants are removed in 

two fore-cuts and an after-cut. The objective function is the profit of a single batch, while constraints are given on the 

purity of the main cut and composition of the second fore-cut. Simulations are performed by a flow-sheet simulator in 

a set of points (generated by Latin hypercube sampling) in the space of optimisation variables (reflux ratios of steps, 

stopping criteria of the fore-cuts). Algebraic surrogate models are fitted by ALAMO to the simulation results to 

describe the objective function and the constraints. The resulting optimisation problem is solved numerically. The 

profit obtained is 5 % higher than the one previously obtained by a genetic algorithm, while the number of simulations 

is reduced to its third. 
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Introduction 
The treatment of waste solvent mixtures is frequently performed by batch distillation (BD). These mixtures often form 

azeotropes. Components or azeotropes more volatile than the main component can be removed in fore-cut(s), after 

which the main component is obtained in high purity as main cut. An after-cut can also be taken to remove either 

pollutants or the main component from the still residue. 

For optimizating BD processes, Mujtaba (2004) distinguished three optimisation problems: maximum distillate, 

minimum time and maximum profit. Minimising the time also decreases the energy demand. As BD is a dynamic 

process, a dynamic optimisation problem must be solved. By the commonly used feasible path approach, the objective 

function (OF) is evaluated by solving the model of the process repeatedly at different points in the space of optimisation 

variables. However, simulation of the process is time-consuming. If a flow-sheet simulator is applied, the optimisation 

is most frequently performed by an external tool using an evolutionary (usually a genetic) algorithm. These methods 

require a large number of evaluations of the OF, making the optimisation computationally very intensive. 

To make optimisation faster, a new surrogate model-based optimisation (SMBO) method is proposed here. Surrogate 

models (SMs) or metamodels are reduced models constructed from the inputs and outputs of rigorous models, whose 

evaluation is considerably less computationally intensive yet mimic the behaviour of the rigorous models. If SMs of 

OF (and eventually of the constraints) are available, an estimation of the real optimum can be rapidly obtained by 

finding the optimum of the surrogate OF. Several surrogate modelling techniques were applied recently for the 

optimisation of continuous distillation columns, such as kriging (Quirante et al., 2015), support vector machines (Jia 

et al., 2017) or artificial neural networks (ANN; Ibrahim et al., 2017). However, SMBO of BD was only performed in 

a few number works. For such a dynamic optimisation problem, two different approaches can be distinguished. In the 

first one, SMs are used to describe the evolution of certain variables (e.g. concentration of the desired component in 

the distillate) in time. The optimisation, in this case, is still a dynamic optimisation problem, but the dynamic SMs are 

used to evaluate OF. Greaves et al. (2003) developed a dynamic SM to replace the rigorous one for the optimisation 

of a middle-vessel column. The behaviour of the real plant was reproduced with good accuracy. The amount of 

products was maximised using SQP with low computational effort. Khazraee et al. (2011) applied an adaptive neuro-

fuzzy inference system to describe the evolution of the amount and composition of the distillate of a batch reactive 

distillation process. Optimisation was performed by differential evolution (DE); however, a questionable, 

dimensionally heterogeneous OF was used. The optimisation variables were reflux ratio and total batch time. In the 

second approach, SMs are fitted to the results of a large number of dynamic simulations, and the optimum of the 

surrogate OF is determined without a need for dynamic optimisation. Safe et al. (2013) studied a reactive distillation 

process in a batch dividing-wall column. A polynomial response surface was fitted to OF as a function of the only two 
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optimisation variables, the vapour and liquid split ratios. The optimum of the surface was then determined by DE. (It 

is not clear whether the presence of the dividing wall is advantageous.) 

The goal of this work is to propose a SM-based method for the fast optimisation of BD processes. In the space of the 

optimisation variables, a set of points is selected with Latin hypercube sampling (LHS). At each point, OF is evaluated 

by dynamic simulation with a professional flow-sheet simulator, and algebraic SMs are fitted to the results by using 

ALAMO (Automatic Learning of Algebraic MOdel) software (Cozad et al., 2014). If necessary, the search space can 

be narrowed based on the results, and additional sampling can be performed. ALAMO is a machine learning tool that 

constructs algebraic models from predefined basis functions without the need to specify a function form a priori. The 

advantages of algebraic models are that they can be readily interpreted by humans and their sensitivity to the input 

parameters is easy to calculate. The novelty of the work is that non-dynamic SMs are applied to optimise a BD process 

by considering all operational parameters for the first time. Moreover, the SMs used can provide a better fit than the 

polynomials applied by Safe et al. (2013). 

Recovery of methanol (B) from an azeotropic waste solvent mixture containing acetone (A), tetrahydrofuran (C), water 

(D) and toluene (E) by batch distillation is optimised. The profit of one batch is maximised. The results are compared 

with those obtained with a genetic algorithm (Hegely and Lang, 2016).  

Process description 
The waste solvent mixture to be treated contains 0.07 mass% acetone (A), 37.4 % methanol (B), 4.89 % tetrahydrofuran 

(C), 56.34 % water (D) and 1.56 % toluene (E). B must be recovered with a purity of 99.5 %. Five minimum-boiling 

azeotropes are formed, in increasing order of boiling points: A-B, B-C, B-E, C-D and D-E. The azeotropes (except D-

E) and A have lower boiling points than B. The recovery of B is hindered by the B-C and B-E azeotropes. (The 

concentration of A is very low, while the azeotrope C-D does not present a problem since C leaves earlier in a mixture 

of B and C.) Therefore, C and E must be removed in fore-cuts, causing a considerable loss of B. VLE calculations 

were performed by using the UNIQUAC model. A more detailed description is given in Hegely and Lang (2016). 

The separation is performed in a distillation column with 27 theoretical plates (including the reboiler and the total 

condenser) (Hegely and Lang, 2016). The top of the column is at atmospheric pressure, while the total pressure drop 

is 0.25 bar. The volume of the charge is 25 m3 (at 20 °C). The liquid hold-up of the condenser is 0.45 m3, that of the 

column is 0.05 m3/plate. The reboiler is heated with a heat duty (Qst=1800 MJ/h), provided by saturated steam with a 

pressure of 3 bar (its heat of condensation is rst=2263.5 MJ/t). 

The treatment of one batch consists of the following steps: 

Step 0: heating-up of the column with total reflux in order to approach steady-state conditions. The step is finished 

after 360 min. At this point, the condensate contains mainly B and C with a composition close to the azeotropic one. 

Step 1: taking of the first fore-cut with a finite reflux ratio R1 to remove the bulk C and E with a considerable loss of 

B. Fore-cut 1 is incinerated. Step 1 is finished when xd,C<Cr1 where xd,C is the instantaneous mass fraction of C in the 

distillate, and Cr1 is the stopping criterion for Step 1. 

Step 2: taking of the second fore-cut with reflux ratio R2. This cut already contains B in a considerable concentration, 

but its pollutant (C and E) content is still too high. This cut is recycled to the next batch to limit the loss of B. This step 

is stopped when xd,C<Cr2. 

Step 3: taking of the main cut (B product) with R3. This step is finished (because of the increasing xd,D) when 

xmc,B<0.9952 where xmc,B is the mass fraction of B in the main cut. 

Step 4: taking of the after-cut with R4. The aim of the after-cut is to remove B from the still residue so that it can be 

sent to biological purification. The after-cut has a considerable B content, and it is recycled to the next batch. Taking 

of the cut is finished when the B content of the still residue (xsr,B) becomes lower than 0.25 %. 

Calculation method 
The objective function (OF; Eq. 1) is the profit of a single batch. It is composed of the price of methanol in the main 

cut, the costs of incineration of the Fore-cut 1 and of steam consumption during the process (Hegely and Lang, 2016). 

𝑂𝐹 = 𝑝𝐵𝑚𝑚𝑐 − 𝑐𝑖𝑛𝑐𝑚𝑓𝑐1 − 𝑐𝑠𝑡
𝑄𝑠𝑡

𝑟𝑠𝑡
𝑡 (1) 

where: pB: price of methanol, 0.46 US$/kg, mmc: mass of the main cut, kg, cinc: cost of incineration, 0.21 $/kg, mfc1: 

mass of Fore-cut 1, kg, cst: cost of steam, 57.6 $/t, t: duration of the process, h. 

The optimization problem is subject to the inequality constraints: Constraint 1: xmc,B≥0.9952, Constraint 2: 

xmc,C/xmc,B≤0.107, Constraint 3: xmc,E/xmc,B≤0.12, where xfc2,B, xfc2,C and xfc2,E are the concentration of B, C and E in 

Fore-cut 2, respectively.  
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Constraint 1 guarantees the required purity of the product. Constraints 2 and 3 are needed to ensure that the organic 

pollutants C and E are not accumulated in Fore-cut 2 so that it can be recycled to the next batch. The optimisation 

variables are: R1, R2, R3, and Cr1, Cr2. Since previous calculations showed that the effect of R4 on OF is negligible, its 

value is kept constant at 5.41. 

In this work, a SMBO method is proposed (Fig. 1). First, a large number of test points are generated in the space of 

the optimization variables by Latin hypercube sampling (LHS). In each point, simulation is performed by using 

ChemCad, whose results are the values of dependent variables necessary to calculate OF and the left-hand side of the 

constraints. If the number of feasible points (that is, where the constraints are not violated) is deemed sufficient for 

model fitting, surrogate models are generated by ALAMO; otherwise, the generation of test points is repeated by using 

a narrower range of the optimisation variables. Optimisation of the surrogate OF is then performed in Maple. Finally, 

a simulation is performed with the values of the optimisation variables obtained to evaluate the difference of the OF 

values calculated by the SMs and by rigorous simulation. The smallest the difference, the better the fit of the SMs and 

the more likely that a good approximation of the true optimum is obtained. 

 

Fig. 1 Flow chart of the surrogate model-based optimisation method. 

 

In order to obtain accurate SMs for the whole range of the optimisation variables, a more uniform sampling pattern 

than simple random sampling is preferred. In the space of the optimisation variables given in Table 1 as the original 

range, 500 points are generated by LHS. Inside the intervals selected by LHS, the values of the optimisation variables 

are randomly generated. These ranges are selected based on previous calculation experience. 

Table 1. 

Ranges of the values of the optimisation variables used for Latin hypercube sampling. 

 R1 R2 R3 Cr1 Cr2 

Original range 1-10 1-10 1-5 0.10-0.30 0.015-0.050 

Narrowed range 2-7 2-7 2-4.5 0.13-0.25 0.020-0.035 

 

Simulation is then performed at each point. The batch distillation process is modelled in ChemCad Version 7.1 in 

dynamic mode. To automate the calculation, ChemCad is coupled to Excel. A VBA macro is used to control the 

simulation by detecting the fulfilment of termination criteria and updating the value of R and the setting of a divider 

at the end of the steps. The divider is used to switch between the accumulators. At each time step, the current values 

of R and divider setting are transferred to ChemCad, which then gives back selected results. To reduce the time 

requirement of the simulation, several measures are implemented. Since Step 0 has no optimisation variables, it is only 

simulated once; subsequent calculation starts from the end of Step 0. If, at the end of Step 2, Constraints 2 or 3 are 

violated, the simulation is terminated. In Step 3, the B content of the main cut has a maximum value (xmc,B,max) in time. 

If xmc,B,max does not reach 0.9952, the simulation is also terminated since the purity of the product will not be acceptable. 

Performing the calculations on the original range results in a low number of points with acceptable purity. Model 

fitting to too few points might lead to low accuracy of the models. To avoid this, a second set of 500 points are 

generated by LHS on a narrower domain (Table 1) based on those points with acceptable purity. All the models are 

fitted by using the narrower domain. 

Surrogate models are fitted by ALAMO to the results of the simulation necessary to calculate OF and the left-hand 

sides of Constraints 2 and 3: mfc1, mmc, t, xfc2,B, xfc2,C, xfc2,E and additionally to xmc,B,max. The latter value shows not only 

if Constraint 1 is violated (the product purity is unacceptable) but also the level of the violation. (The value of xmc,B is 

not suitable for this purpose.) Alternatively, it would also be possible to fit a SM directly to OF; however, this would 

reduce the level of insight that can be obtained by analysing the models and would likely lead to a less accurate model. 
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Fig. 2 Mass of Fore-cut 1 calculated by simulation (dots) and by the surrogate model fitted (surface). 

 

The independent (optimisation) variables influencing each dependent one are the following ones. mfc1 is a function of 

only R1 and Cr1. The composition of Fore-cut 2 (xfc2,B, xfc2,C and xfc2,E) depends on R1, R2, Cr1 and Cr2. mmc, xmc,B,max 

and t can be influenced by all the independent variables (R1, R2, R3, and Cr1, Cr2). 

ALAMO fits algebraic models by optimising a selected criterion describing the goodness of the fit. The models are 

generated as combinations of previously chosen basis functions, not necessarily used in the final model. Here, Bayesian 

information criterion is selected as the measure of the goodness of the fit, which not only takes the model error into 

account but also penalises the model size to avoid overfitting. The basis functions allowed are constant terms, linear, 

logarithmic, and exponential functions, as well as polynomials of the variables and their binary and ternary products. 

Optimisation is performed with SQP by using the NLPSolve function of Maple. The function takes as arguments the 

OF and (optionally) the optimisation constraints. Here, the bounds of the ranges of the independent variables were also 

given as constraints to avoid extrapolation. With the values of the independent variables obtained from the 

optimisation, a simulation is performed to verify the accuracy of SMs at the estimated optimum. Additionally, the 

gradient vector is calculated at the optimum determined by SMs. Simulations are performed following the direction of 

the gradient vector in order to verify whether it is possible to further increase OF by approaching the constraints more. 

Results 
From the original range, all the data points can be used for model fitting for mfc1, xfc2,B, xfc2,C and xfc2,E. However, only 

51 calculations do not violate Constraints 2 or 3 and thus can be used for xmc,B,max. More importantly, there are only 18 

feasible points where the product purity is acceptable, and that can be used for model fitting for mmc and t. The highest 

OF value is 429.6 $ with R1=5.77, R2=3.23, R3=2.62, Cr1=0.1483 and Cr2=0.0286. 

By using the narrowed range, the number of feasible points increased from 18 to 46, which is deemed to be sufficient. 

The number of points that can be used for xmc,B,max increased slightly to 56. At the best point, OF equals 480.7 $ with 

R1=5.80, R2=2.13, R3=3.22, Cr1=0.2168 and Cr2=0.0241. 

The SMs are fitted on the narrowed ranges. The size of the models varies between 7 (xfc2,B) and 25 (xfc2,B). Interestingly, 

Cr2 does not influence the distillation time: 

𝑡 =  95.93 ∙ 𝑅1 + 16.04 ∙ 𝑅2 + 78.61 ∙ 𝑙𝑛 𝑅2 − 0.89 ∙ 𝑒𝑅3 + 939.52 ∙ 𝑒𝐶𝑟1 − 3,59 ∙ 𝑅1
2 + 24.95 ∙ 𝑅3

2 − 4531 ∙ 𝐶𝑟1
2 (2) 

By increasing Cr2, the duration of Step 2 decreases (less Fore-cut 2 is taken), but that of Step 3 is likely to increase to 

a very similar extent. As it is shown in Fig. 2, the surrogate model (surface) was able to predict the mass of Fore-cut 1 

(dots) with good accuracy. On the increase of R1, mfc1 decreases at low Cr1 values but increases slightly at higher Cr1 

values. On the increase of Cr1, mfc1decreases since Step 1 is stopped earlier. 

The results of SMBO are given in Table 2. In the optimum, both Constraints 2 and 3 are active. The results of the 

simulation and the SMs are very close to each other: the difference in OF is 2.6 $ (0.53 %). By the simulation, the 

constraints are fulfilled, but the concentration ratios are also very close to the constraints, with the higher deviation 

being only 0.57% for xfc2,E/xfc2,B. 

Comparing the simulation results to the optimum found by Hegely and Lang (2016) by GA, SMBO gives a 5.0 % 

higher profit. Moreover, GA required 3000 simulations instead of 1000 by the present method. The suboptimality of 

the GA result is hinted at by the significant distance of xfc2,C/xfc2,B from the limit of Constraint 2. R1 decreased by 8.7 
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%, whereas R3 and Cr2 changed only slightly. R2 decreased by 19 %. Cr1 increased by 22 %, thereby reducing the cost 

of incineration. The mass of the main cut, and thus the income decreased slightly (by 2.5 %); however, the steam cost 

also decreased (by 3.1 %) due to the lower reflux ratios. It must also be noted that, in the narrowed ranges, a higher 

OF value than that of GA is already obtained by LHS only. 

Table 2. 

Comparison of the results of the surrogate model-based optimisation with those of GA (Hegely and Lang, 2016). 

Optimisation variable GA SMBO Difference, % 

R1 6.22 5.68   -8.68 

R2 3.07 2.49   -18.8 

R3 3.05 3.09   +1.31 

Cr1  0.175 0.2138   +22.2 

Cr2  0.0262 0.0255   -2.67 

Constraints  Model Simulation  

xfc2,C/xfc2,B 0.0951 0.1070 0.1064 +11.9 

xfc2,E/xfc2,B 0.1191 0.1200 0.1198 +0.588 

Profit (OF) and its elements  Model Simulation  

Income, $ 2597 2534 2533  -2.46 

Incineration cost, $ 492 456 454  -7.72 

Steam cost, $ 1638 1585 1588  -3.05 

Profit (OF), $ 467 493.0 490.4  +5.01 

 

 

Fig. 3 a. Contour plot of OF (red lines) with R1 and Cr1 as independent variables. Constraint 2 is shown as a green line, Constraint 

3 as a blue one, b. plot of the active constraints (multicolour surfaces), the limit of surrogate model validity (yellow surface) and 

the optimum obtained from the surrogate models (red dot). 
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Since SMs are explicitly known, a more detailed analysis of the optimization problem is possible. To study the 

interaction between the variables related to Fore-cut 1, a contour plot of OF with R1 and Cr1 as independent variables 

is drawn (Fig. 3a; all other variables take their optimal value). Either Constraint 2 (green line) or Constraint 3 (blue 

line) are violated outside the shaded area. As in the optimum both constraints are active, the corresponding contour 

line and the constraint lines intersect in one point. By increasing R1, Cr1 must be decreased (more Fore-cut 1 must be 

taken) to keep OF constant (except at high R1 values for low OF). The maximum possible Cr1 value is determined by 

Constraint 2 below the optimal R1 and by Constraint 3 above. 
Although OF is a five-variable function, the visualisation of the optimum is still possible. An active Constraint 3 

corresponds to the three-dimensional space shown in Fig. 3b. In each point of this space, R2 is determined by the values 

of R1, Cr1 and Cr2. The set of points where Constraint 2 is also active are the multicolour surfaces on which the optimum 

(red dot) is located. At lower R1 values, Constraint 2 is violated. Points below the yellow surface correspond to R2 

values outside the range used for model fitting and thus represent an extrapolation of the models that should be avoided. 

The gradient of the objective function calculated from the SMs at the optimum is (17.2, 10.8, -2.3∙10-6, 913, 4017), 

meaning that OF is most sensitive to Cr2 and least sensitive to R3. Since by the simulation, the constraints are not 

active, it is likely that OF can be further increased by approaching the constraints better. To follow the direction of the 

gradient, Cr2 must be increased, which decreases the duration of Step 2. Even if the duration decreases by one time 

step (2 min), the constraints are violated, thus it was not possible to further increase OF. 

Conclusions 
A surrogate model-based method was proposed to reduce the computational intensity of the optimisation of batch 

distillation processes. The batch distillation treatment of a five-component azeotropic waste solvent mixture was 

optimized by Hegely and Lang (2016) using a genetic algorithm (GA). Methanol was obtained as main cut, while 

pollutants were removed in two fore-cuts and an after-cut. The objective function (OF) was the profit of a single batch, 

while constraints were given on the purity of the main cut and the composition of the second fore-cut. 

By the method proposed, simulations were performed by a flow-sheet simulator in a set of points (generated by Latin 

hypercube sampling) in the space of optimisation variables (reflux ratios of the steps, stopping criteria of the fore-

cuts).Algebraic surrogate models were then fitted to the simulation results to describe OF and the constraints by the 

ALAMO machine learning technique. The resulting optimisation problem was solved very easily by SQP. 

The surrogate models accurately described the results of the simulation. The profit obtained by the surrogate model-

based optimization was by 5 % higher than the one obtained by Hegely and Lang (2016), while the number of 

simulations was reduced from 3000 to 1000. By refining the iterative sampling step, further reduction in the number 

of simulations might be achieved. 
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