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Abstract
Sakurajima volcano is one of the world’s most active volcanoes with over 3,000 of explosive eruptions dur-
ing the last five years. A muography observatory is under construction in international collaboration since
2017 at a distance of approx. 2,800 m in south-west direction from the active craters. Currently, the Sakura-
jima Muography Observatory is operating with 11 Multi-Wire-Proportional-Chamber-based Muography
Observation Systems that are covering a sensitive surface area of 8.25 square meters. This work is focus-
ing on the volcanological implications of muographic monitoring of Sakurajima: (i) tephra deposition, and
erosion of the surface region exist due to heavy rains and post-eruptive lahars; (ii) magmatic plug for-
mation was observed beneath the active craters after the deactivation of Showa crater in 2018 and after
a dormant period of Central craters in 2020; (iii) machine-learning-based processing of daily muographic
images achieved a fair area under the receiver operating characteristic curve score of 0.76.
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1. INTRODUCTION
Volcanic hazards globally endanger the landscapes, economies, and societies (approx. 10% of Earth’s population). Most volcanic
hazards (e.g., volcanic bombs, pyroclastic flows, tephra fall, etc.) are induced by the eruptions. However, some hazards, such
as landslides or lahars (mud or debrish flows), can occur during the dormant periods. Various remote monitoring techniques are
utilized for real-time observation of volcanic edifices. A nonexhaustive list of monitoring techniques from land to the atmosphere is
provided as follows. (i) Video recording can measure the speed and direction of exploded ash (e.g., see [1]); (ii) synthetic aperture
radars measure the deformation, either sinking or rising, of the crater floor (e.g., see [2, 3]); (iii) seismic techniques are used to
reconstruct Earth’s vibration even a few minutes prior to eruptions (e.g., see [4]); (iv) gas emission monitoring is applied to quantify
the emission rates of volcanic gases (e.g., see [5]). The gaining of the amount of data and the possibility for real-time measurements
encourage the application of machine learning techniques for either characterization or forecasting of volcanic phenomena.

Muography is a novel imaging technique that can measure mass density changes related to volcanic processes by means of the
measurement of cosmic-ray muons penetrated through the volcanic edifice, e.g., see [6]. Since the 2010s, volcano observatories are
under development in Americas [7, 8], Asia [9, 10, 11, 12, 13, 14, 15, 16], and Europe [17, 18, 19, 20, 21, 22]. In this work, we review
the recent observations of the Multi-wire-proportional-chamber-based Muography Observation System (MMOS) [11, 23, 24] of
Sakurajima Muography Observatory (SMO).

2. SAKURAJIMA MUOGRAPHY OBSERVATORY
The Sakurajima is an active stratovolcano located on the “Ring of fire” within the Aira caldera in Kagoshima Bay, Kyushu, Japan.
The latest Plinian eruption occurred in 1914 and the next one is expected in the first half of the 21st century [25]. Two craters of the
southern peak (the so-called Central craters and Showa crater) erupted consecutively in recent years. There are a few hundreds of
(explosive) short-term eruptions per year. Short-term eruptions eject aerosols and gas with a bulk volume of below 10,000,000 m3

to a height from 1,000 to 5,000 meters above the crater rims, throwing fragments of volcanic plug and lava bombs usually within
approx. 3,000 m radius. Protection of tourists motivates the forecasting of short-term eruptions of the Sakurajima volcano.

Figure 1 shows the structure and data flow diagram of the MMOS. The MMOS is a modular instrument that is currently
operating with eleven tracking systems in the SMO. Each tracking system is assembled from at least seven MWPCs. The size of
MWPCs is 120 cm × 80 cm in six MMOSs and 80 cm × 80 cm in five MMOSs. Each detector provides two-dimensional positional
information. The detector segmentation of 12 mm and the tracking system length of 200 cm allow an angular resolution of approx.

1



Journal of Advanced Instrumentation in Science JAIS-285, 2022

FIGURE 1: The schematic diagram of the MMOS.

3 mrad. The MMOS can spatially resolve the crater region with a resolution of below 10 meters from a distance of approx. 2,800 m.
Five 2-cm-thick lead plates are installed between the detectors for background suppression. Currently, all the tracking systems are
installed at the same location and oriented to 30.25◦ from North and 0◦ from horizon (Figure 2(A)). The data acquisition is controlled
by microcomputers for each MMOS module. The modules communicate with a local server microcomputer that collects the data
from all modules. These data are transferred to a remote server where automated track reconstruction and data quality assurance
are performed based on a combinatorial algorithm [11]. The track count maps (muograms) are produced after the track selection,
which is based on the goodness of track fits. The muograms are transferred to a database of the International Virtual Muography
Institute [26]. An example of the measured flux map produced by off-line analysis is shown in Figure 2(B). An extensive description
of the construction of MWPC-based tracking systems and the readout system are described in another article of this issue by Varga
et al. [27].

3. OVERVIEW OF RECENT RESULTS
3.1. Muography of Hydrogeomorphic Changes on the Volcanic Edifice
Lahars are fast-moving gravity-driven flows of a mixture of volcanic rocks and water which occurred during either eruptions
or dormant periods. Wind- and water-driven erosion processes can destabilize and mobilize the tephra deposition before they
become fully incorporated into the soil. The generation and dynamics of lahars are controlled by the (i) local topography, (ii)
volcanic activity, (iii) amount and composition of tephra, and (iv) intensity and duration of rainfall. Muography has the potential
to measure the amount (mass and thickness) of tephra deposition [14, 15] and topographical changes that control the onset of
post-eruptive lahars [15].

Muon flux was monitored through the Central Craters (CC), Showa and Arimura Basin (SAB), Arimura Middle Reaches (AMR),
and two reference regions (RR1 and RR2). These regions are shown in Figure 2(B). The fluxes were averaged in each angular region
for time intervals of 4 days, and the averaged fluxes were smoothed by applying a moving average calculated from the previous
ten consecutive time intervals, i.e., over a period of 40 days. After September 2019, the relative averaged fluxes (measured relatively
the flux of the first time sequence, F0) decreased through the volcano regions from 10 to 40% (Figure 3) [15].

The mass was derived with the procedure detailed in [15]. Figure 4 shows the variations of total mass relative to M0 with
1σ errors (green bands), the daily number of lahars (orange impulses), the daily total precipitation (blue impulses), and hourly
maximum precipitation (red impulses), as well as the daily frequency of eruptions that occurred from the Central Crater vents
(yellow impulses) [15]. There was a change of volcanic ejecta mass that was measured to approx. 0.25 Mt between April and
September 2019 and approx. 2 Mt from September 2019 to July 2020 by the Japan Meteorological Agency. The total mass (volcanic
edifice and tephra) was measured to M0 = (7.54 ± 0.05)Mt for the 1st time-interval. Mass deposit showed significantly decreasing
trends through various periods, e.g., from November 2019 to January 2020, during March 2020 and October 2020. The interpretation
of the observation is the following:

(i) The volcanic sediments were transported from the selected peak regions to downstream regions of the volcano by the onset
of rain-triggered lahar events (Figure 4(A)).

(ii) The onsets of lahars were triggered by the heavy rainfalls with hourly maximum precipitation of above 10 mm per hour
instead of the total daily precipitation (Figure 4(B)).

(iii) Further mass decreases were observed without the occurrence of lahar events, e.g., after mid-September 2020. This observa-
tion suggests the water-driven erosion of the peak region of Sakurajima volcano.
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FIGURE 2: The measurement arrangement. (A) The map of the measurement site with the location and orientation (dashed white
line) of MMOS (source: Google Maps). (B) An example of the measured flux by the MMOS [15].
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FIGURE 3: The relative flux variations are shown as a function of time for the two Reference Regions (red and dark-green bands),
Central Craters (blue band), Showa Crater and Arimura Basin (cyan band), and Arimura Middle Reaches (gray band), respectively
[15]. The variations of averaged muon fluxes (F) were measured relatively to the fluxes measured for the 1st period (F0).

(iv) The mass deposition rate did not correlate with the eruption frequency and the amount of ejected materials per eruption
is larger when the interval between the eruptions is longer (Figure 4(C)). These are consistent with the observations of an
earlier measurement campaign [28].

Our observations demonstrate that muography can measure the hydrogeomorphic changes that occurred due to erosion processes
at a shorter duration. Muographic monitoring can improve the modeling of erosion of volcanic edifices and assessment of hazard
levels.
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FIGURE 4: The relative mass variations (green error bands) are shown as a function of time and compared to the variations of the
daily number of lahar events (orange impulses in panel A), total daily precipitation (blue impulses in panel B), maximum hourly
precipitation (red impulses in panel B), and the daily number of eruptions (yellow impulses in panel C) [15]. The variations of
averaged masses (M) were measured relatively to the masses measured for the 1st period (M-M0).

3.2. Muography of the Intrusion of Magmatic Materials beneath the Active Craters
Muographic imaging allows observing various volcanic phenomena in association with the subsurface movements of magmatic
materials [9]: the shape of the magma bodies either intruded or deposited, empty pathways, degassing processes, and ascent and
descent of magma.

During the measurement period from January 2017 to June 2018, we observed the formation of a magmatic plug underneath
the deactivated Showa crater with three MMOS modules [12]. The eruptive activity of the Central craters has also decreased signifi-
cantly after February 2020: 310 explosions occurred on 182 days from September 2019 to March 2020 and 69 explosions occurred on
291 days from March 2020 to December 2020. A similar analysis was performed for investigating the overlying phenomena. Figure
5 shows the corresponding density images for the crater region as a function of horizontal and vertical track slopes with a bin size
of 0.23 mrad by 23 mrad [29]. The solid black line shows a cross-section of the crater region along the a-b line of Figure 2(A). We
have investigated the density variations underneath the Central crater with the currently obtained data and found that there was
a significant density reduction right beneath the crater floor. If we define the density derived for the period before the eruptions
was deactivated to be ρ1 and that after the eruption were deactivated to be ρ2, (ρ2 − ρ1)/∆ρ1,lower ranged from 1.45 to 1.84 in bins
within the region surrounded by blue dashed lines in Figure 5. As a result, the average density was reduced from 1.68 g/cm3 to
1.37 g/cm3 in this region. This picture is consistent with our previous model constructed for the Sakurajima eruption mechanism
[29]: a volcanic plug is formed and continued to evolve during the active eruption period, but once it is deactivated, the volcanic
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plug is no longer formed or evolved. The corresponding mass change is approximated to 7.5 Mt. The observation suggests that
magma intrusion temporarily plugged the Central craters. Besides muographic observation, the presence of magmatic materials
was also suggested by the incandescence of the crater that was observed at night during the dormant periods of the volcano [30].

Based on the muographic observations of the active craters of the Sakurajima volcano, the existence of a low-density, debris-
filled volume is assumed under the two craters. This volume acts as a magma reservoir with a lateral extension of approx. 300 m
at depth of 100–200 m. Liquid magma fills the intergrain spaces in this volume a few tens of minutes before the onset of the
eruption. After the eruption, the liquid magma is drained back into the conduit. Thereafter, the solidification of this volume creates
a magmatic plug under the crater. The deactivation of the Showa crater and the latest dormant periods of Central craters were due
to the decrease in the permeability of the magma reservoir.

September 2, 2019 - February 29, 2020
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FIGURE 5: The densities measured through the craters are shown for the period before (A) and during (B) the dormant periods of
the Sakurajima volcano. The white-shaded regions have no density values due to the lack of muon counts during the data collection
period. The solid black line shows the cross-section along the a-b line of Figure 2(A). The blue dashed lines highlight the angular
regions with a significant density increase [29].

3.3. Volcano Eruption Forecasting with Muography
Machine learning [34] of time series data collected by a volcano monitoring technique can be utilized for classifying volcanic events
and forecasting short-term volcanic eruptions, e.g., see [31, 32]. We applied the concept of Nomura et al. [13] and developed our
methods for forecasting the eruptions of the Central craters of Sakurajima volcano with muographic images captured by the MMOS
[33]. Figure 6 shows the schematic drawing of the concept using a convolutional neural network (CNN) model. For this study, the
flux of penetrating particles was calculated for 24-hour time periods. The daily muograms were determined with an angular bin
size of 23 mrad that could resolve the volcanic edifice with a spatial resolution of 60 m. The CNN was applied for processing the
subimages extracted from three regions, the active Central craters, the dormant Showa crater, and the surface region [33], for a
period from October 2018 to June 2020. Furthermore, an eruption label was determined for each daily muogram: “1” if at least one
eruption occurred, else “0”.

The data set was divided into three parts for training, validating, and testing the CNN model. Adams’ methods was applied for
hyperparameter tunning of the CNN model [35]. The Receiver Operating Characteristic (ROC) analysis was applied for evaluating
the performance of the model. Figure 7 shows the ROC curves for the Central craters (red line), a crater (green line), and surface
region (blue line). The cutoff points of the ROC curves were chosen with the Youden’s index [36]. The sensitivity (true positive
rate) is determined by the ratio of the number of forecasted eruptions to the total number of eruptions. The specificity (1-false
positive rate) is corresponding to the rate of fake forecasts. As was expected, the active Central craters had a higher Area Under
the ROC Curve (AUC) than the dormant Showa crater and the surface region. Despite the application of an upgraded muography
observation system with enlarged (from 5 m2 to 8.25 m2) sensitive surface area and higher angular resolution (from 33 mrad to
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FIGURE 6: The schematic drawing of a convolutional neural network-based model applied for eruption forecasting [33]. Seven
consecutive daily muographic images were processed with CNN using Rectified Linear Unit (ReLU) activation functions. A fixed
filter size of 3 × 3 was used in this analysis. The output of CNN was processed with a fully connected neural network with a
Sigmoid activation function and the output neuron provided 2-bit information for the occurrence of the eruption on the 8th day.

23 mrad), the ROC AUC was not drastically improved, specifically 0.76 by our study and 0.72 by Nomura et al., due to the following
reasons:

(i) Fewer eruptions occurred in the Central craters (832) than in Showa (1432) that resulted in a smaller amount of training data,

(ii) Smaller amount of mass was transported underneath the Central craters than in Showa that resulted in smaller variations in
muographic images,

(iii) The geometrical difference between the two craters is also assumed to be an influencing factor.
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FIGURE 7: The ROC curve of convolutional neural network model for volcano eruption prediction [33].

The application of more sophisticated approaches, e.g., Recurrent Neural Network with Long-Short-Term Memory [37], is
expected to improve the current forecasting performances.

4. SUMMARY AND FUTURE PERSPECTIVES
We demonstrated the applicability of the MMOS of SMO for observation of hydrogeomorphic changes, and subsurface movements
of magmatic materials. Our muographic image processing methods achieved a fair ROC AUC score of 0.76 for eruption prediction.
The upgrade of MMOS is a prerequisite to improve time resolution and spatial resolution of muographic imaging. For improvement
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of the forecasting of short-term eruptions, the combination of muographic data with the data of conventional volcano monitoring
techniques is planned.

CONFLICTS OF INTEREST
The authors declare that there are no conflicts of interest regarding the publication of this paper.

ACKNOWLEDGMENTS
This work is supported by the Joint Usage Research Project (JURP) of the University of Tokyo, Earthquake Research Institute (ERI)
under project ID 2020-H-05, the “INTENSE” H2020 MSCA RISE project under Grant Agreement No. 822185, the Hungarian NKFIH
research grants under ID OTKA-FK-135349 and TKP2021-NKTA-10, Wigner Research Centre for Physics of the Eötvös Loránd
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