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Abstract—A great number of radiologic reports are
created each year which incorporate the expertise of
radiologists. This knowledge could be exploited via
machine understanding. This could provide valuable
statistics and visualization of the reports, and as train-
ing data, and it could also contribute to later au-
tomatic reporting applications. In our current work,
we present our first steps toward the machine under-
standing of clinical reports of the spinal region, writ-
ten in the Hungarian language. Our system provides
an automatic classification and connection detection
for various entities in the text. Our classification is
achieved via bi-directional long short-term memory and
conditional random fields producing 0.87-0.95 F1-score
values, while the extraction of connection relies on
linguistic analysis and predefined rules. The extracted
information is displayed in an easily comprehensible,
well-formed tree-structure.

Index Terms—mnlp, radiology, machine understand-
ing, visualization, bi-lstm-crf, clinical reports

I. MOTIVATION

Even though medical examinations usually result in
graphic data, the professionals’ actual medical expertise
often reflects only in the reports they composed viewing
these images. Machine understanding of this information
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could contribute to several aspects of the process and even
enable the automatization of the final diagnosis.

The reports are customarily created in a free-form text
which is easy to compose and comprehend by human
experts but represents a substantial obstacle for artificial
intelligence methods. Furthermore, the text is most often
composed in the native language of the author, which
presents additional complications.

This is true for our current scope, spinal magnetic reso-
nance imaging (MRI) examinations. Radiologists compose
reports routinely, a single specialist can create thousands
of these annually. In Hungary, the reports follow only
a very loose structure, and they are usually written in
the Hungarian language. Radiologists are encouraged to
declare not just the presence but also the absence of neg-
ative conditions. The radiologist receives the MRI images
and the patient’s previous history and composes both the
report and a medical opinion that contains similar content
but in a more concise and result-oriented manner. This
process is illustrated in Fig. 1.
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Fig. 1: The work of the radiologist during an examination



Precise machine understanding could contribute to this
process considerably. In real-time, it could automatically
check the consistency of the report and the opinion, a
graphic visualization could provide a quick glance of what
the radiologist might have missed, compare the current
report with the results of the previous examinations and
even warn the radiologist if the meaning of a sentence
is unusual. Valuable statistics could be generated, even
from archive data, aiding financial administration of hos-
pitals. Further possibilities lie in the standardization of
reports that could enable easier subsequent processing
and bring the reports from different institutions to a
common ground, contributing to patient-oriented health
system improvements [1], [2]. While these are potentially
beneficial uses, machine understanding of these texts could
provide a pathway for automatic report generation, which
is an even worthier goal that would open new doors for
more precise and objective reports.

Modern deep learning methods can analyze medical
images with high precision. The major setback of such an
approach is that these methods tend to require immense
amounts of data to work correctly. As the creation of such
data requires medical expertise, its gathering presents vast
time and resource costs. Traditionally, such data is gath-
ered by radiologists manually annotating tens of thousands
of MRI images, precisely pointing out the problems and
their locations. Reports are similarly composed by radiol-
ogists and represent a very similar, if less graphic source
of information. The expert opinion is already contained
within. Thus its proper extraction can contribute valid
training data even for such an image-based automatic
diagnostic tool, saving resources. Our current paper deals
with the extraction of such useful information from the
text of the reports.

The paper presents our efforts to extract various entities
and their connections from Hungarian radiologic reports of
the spinal region. This process involves the classification of
various anatomical locations, pathologies, and properties
via machine learning trained on 487 manually annotated
reports. The connections are determined based on lan-
guage models, and the data is visualized in an easy to
comprehend manner.

II. METHOD

The current section describes the methods used in our
experiments. 487 anonymized reports have been manually
annotated by a radiologist according to our classification
system, this serves as our training data. Our artificial
intelligence methods rely on linguistic analysis conducted
via the Magyarlanc [3] tool, which provides syntactic, mor-
phologic, constituent, and dependency analysis for general
Hungarian texts with high accuracy. Our machine learning
approach makes use of the various features extracted by
Magyarlanc while the connections rely on its sentence
parsing and constituent analysis functions.

A. Annotation

Our annotation system incorporates a few simple en-
tities that need to be classified. These are the anatomic
locations, disorders, and properties. These three classes
tend to cover most of the meaningful words found in
typical radiologic reports. An example of our system,
converted to English for better understanding, can be seen
in Fig. 2. Note that the reports are at no point translated
to English in our process. An entity can consist of multiple
words. A term was considered an anatomic location if it
describes a specific part of the human body such as "L2"
or "disc", or even as a part of a disorder itself like "disci"
in "hernia disci". These entities are relatively typical and
have a smaller vocabulary than the others. Disorders are
the various pathologies observed by the radiologist like
"hernia" or "dehydration". Positive or neutral statements
also belong here such as "intact" or "status idem". The
aspects under observation like liquid content or height are
also considered parts of our system’s disorders, as these
specify the disorder. Disorders can be easily confused with
properties such as in the case of "deforming" in our exam-
ple. Properties are usually describing the stage or degree
of a disorder, or in some cases, specify its precise location.
Some examples include "3 mm", "right", and "significantly".
Properties clearly have the largest vocabulary since they
are much less reliant on the medical terminology than the
other elements.

The annotation itself was conducted in the Brat [4] an-
notation tool by a radiologist and covered 487 Hungarian
reports at the current phase. Brat is a tool that facilitates
annotation by an easy-to-use web-based user interface, it is
highly configurable, and annotation results can be down-
loaded in a relatively simple, tab-separated format. Note
that it is a platform for the annotation, all the annotations
were conducted manually. Our annotation system is the
result of several meetings between the radiologist, linguists
and computer scientists. A thorough set of guidelines was
available for the radiologist during the annotation.

B. Classification

Our classification model is essentially a named entity
recognition (NER) model. It is based on a Bi-LSTM-CRF
(bi-directional long short-term memory [5], conditional
random fields [6]) architecture similar to the one published
by Ma et al. [7]. Since Hungarian is a morphologically
rich language, character level embedding was also utilized
in our solution, as suggested by Ling et al. [8]. Apart
from word and character embeddings, additional predic-
tive features such as lemmas, part-of-speech (POS) tags
and part-of-sentence tags were also utilized in the model.
The first layers of our NER model were embedding layers,
mostly initialized with random weights. For the textual
inputs, the corresponding embedding matrix is initialized
with pre-trained word vectors (trained on the Hungarian
Wikipedia). In a regular forward-pass, the integer en-
coded feature sequences were first passed through their
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Fig. 2: An English language illustration of our annotation
system

corresponding embedding layers where each feature (word,
lemma, POS tag, part-of-sentence tag) was mapped to
a dense vector representation. The character level vector
representations of words were generated by an additional
Bi-LSTM network. The main Bi-LSTM layer took the
concatenated vector representations of all the features
(word, lemma, POS tag, part-of-sentence tag, character)
as input. The Bi-LSTM layer’s output was passed through
a densely-connected feed-forward layer, on top of which a
CRF layer performed the final sequence tagging.

The generated embedding vectors for word, lemma,
POS tag, part-of-sentence, and character had dimensions
of 64, 64, 20, 20, 20, respectively. Sequence lengths to
represent sentences and words (for character embedding)
were fixed at 75 and 20, respectively. The main Bi-LSTM
layer consisted of 100 units. A recurrent dropout of 0.3,
an input dropout of 0.3, and an L2 regularization of 0.001
were used for regularization. The Bi-LSTM layer used for
character encoding had 20 units. No dropouts were used
in this layer. The densely-connected feed-forward layer
contained 50 units with ReLU activation. RMSprop, with
a learning rate of 0.001 was used as an optimizer. The
batch size during training was set to 32. Our model was
implemented in Tensorflow, Keras. The training ran on an
NVIDIA GTX 1060 graphics card with 6 GB of memory.

The model aims to classify whole terms, not just tokens.
Thus, the annotations are converted to inside-outside-
beginning tags before training and prediction. Conse-
quently, a location, for example, can consist of a single
token tagged with B-Location and any number of trailing
I-Location tokens.

C. Connections

The automatic extraction of connections utilizes the
constituent parser of the linguistic analyzer and our clas-
sification’s output. Almost all of the properties can be
attributed to a disorder rather than an anatomic loca-
tion. Many cases like in "compressed L5 disc', where
this presumption seems faulty, are the result of flawed
classification (as "compressed" should be a disorder itself
here). Thus, only two kinds of connections are determined,
between disorders and locations and between properties
and disorders. Our system also attempts to merge the
locations and the disorders that belong together (like in
the case of "L2-L3 level mildly deforming the thecal sac"
where the proper location would be "L2-L3 thecal sac".

Our method uses several predefined rules to cope with
the task of these automatic assignments. Our method
relies heavily on sentence parsing and the constituents of
the sentences as the entities that belong to the same con-
stituent are extremely likely to be connected semantically.
The following rules were constructed:

o Disorder-Location: The system first considers only
the constituent of a location. The preceding disorders
are prioritized first; if more than one exists, they
always receive the same treatment. If none exists, the
system looks for rightmost ones. If no such disorder
is found, the system broadens the search to the whole
sentence, but only considers the words on the left of
the location. Coordinations are also considered, the
locations that are coordinated with "and", "or", or a
comma always receive the same connections.

o Property-Disorder: If a disorder is proceeded by any
properties inside its constituent, they gain connec-
tions. Otherwise, the whole left side of the sentence
is considered.

o Location-Location: Some of the locations like "disc"
or "endplate' are not entirely specific, they need a
vertebra or at least a region to achieve precision. A
set of such locations was assembled manually, in their
cases, a suitable vertebra or vertebrae are attempted
to be found inside their sentence.

o Disorder-Disorder: Similarly to the previous prob-
lem, aspects like "height" do not convey meaningful
disorders but lend specificity to others. Since they
are also very typically worded with little variety, in
the same manner, a list of these was gathered, and
potentially suitable other disorders are found inside
their sentence.

We note that the Hungarian sentence structure dif-
fers significantly from that in English. Furthermore, the
sentences of radiologic reports tend to have relatively
simple structures. Thus, such rules are correct in the
overwhelming majority of the cases.

The detected entities are then displayed in a structured
manner, their connections highlighted by grouping via
frames. The result always forms a tree structure. An
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Fig. 3: An illustration of our structured visualization of
the text seen in Fig. 2

illustration of our visualization system adapted to English
can be seen in Fig. 3. This is a visualization of the report
seen previously in Fig. 2. Note that this example was
explicitly constructed as an illustration. Our system is
not suitable for processing English reports which vary
significantly from Hungarian reports in both terminology
and sentence structure.

Our entire method is displayed in Fig. 4 with a Hungar-
ian example. The 487 reports were manually annotated by
a radiologist, and with their extracted linguistic features,
these represented the training data for the Bi-LSTM-
CRF model. When the system receives a new report, its
text and linguistic features are given to the model for
prediction. The model performs the classification of the
locations, disorders and properties. The resulting entities
are then submitted to our connection extraction, which use
sentence and constituent parsing and predefined rules to
determine the probable connections. This results in a tree
visualization where the different entities are color coded
and displayed in a visual format in which the connected
entities are grouped together. The process is performed
automatically and runs extremely quickly, making it suit-
able for real-time display of reports during typing. The
negations are not handled in our examples, but it can be

noted that this is a relatively simple task as the negations
are detected by the linguistic analysis and are almost
always denying the presence of a disorder.

III. RESULTS AND DISCUSSION

The backbone of our process is formed by the Bi-LSTM-
CRF model that classifies the entities into three categories.
The radiologist’s manual annotation noted 7835 disorders,
6409 locations, 3490 properties. On a token level, this
corresponds to 12016 disorder, 11662 location, and 5285
property tokens. Since the model works on a token level,
it also assigns beginning and inside values for the tokens
to mark the complete entities. Our results are displayed
in Table I. During the process, 70% of the 487 reports
was used for training, 10% for validation and 20% as the
test set. The numbers of the table represent the results
measured on this 97 reports. Since this is still a relatively
small set, we also conducted three tenfold cross-validations
with different random seeds, and found that the results did
not show a decrease.

TABLE 1
OUR CLASSIFICATION RESULTS ON 20% OF THE MANUALLY
ANNOTATED DATA

Class Precision | Recall | Fl-score | Support
B-Disorder 0.9105 0.9111 0.9108 1608
I-Disorder 0.8475 0.8589 0.8532 893
B-Location 0.9518 0.9329 0.9422 1311
I-Location 0.9404 0.9568 0.9485 1203
B-Property 0.8712 0.8628 0.8670 729
I-Property 0.8939 0.8551 0.8741 414
Micro Average 0.9101 0.9076 0.9089 6158

It is visible that locations tend to offer the best results
while properties seem to lag behind. This can be partly due
to the visible difference in sample size, but an even more
likely cause is the size of the classes’ vocabulary. Properties
can take up a wide variety of forms while locations use a
fairly limited set of terms.

In the 487 reports, the model detected 7794 disorders,
6358 locations, and 3442 properties. Our system assigned
11016 connections, of which 6924 were Disorder-Location,
3382 were Property-Disorder, 425 mergings of locations,
and 285 mergings of disorders. The radiologist reviewed
these connections manually and found the connections pre-
cise. Some mistakes were detected where the classification
itself was faulty or in cases of rare, exceptionally complex
sentences.

As the refinement of the training data could further
improve the results, the same reports will be annotated
by at least one more radiologist, and conflicting cases
will be resolved. The inclusion of typo correction is also
likely to contribute to the process, this research is already
underway. The next step in our machine understanding
process will include the precise, ontology-based identifica-
tion of the locations and disorders that enables pinpointing
the tree elements of our visualization on the spine, and
eventually even on the MRI images.
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Fig. 4: Our proposed method for automatic visualization

The extension of our process to a new language would
require new training data for our detection model, and a
new set of possible names would have to be defined for
our ontology. If such exists, a similar ontology from the
target language could be extended to accommodate this.
New linguistic analysis tools with at least morphological
and constituent analysis capabilities should be enlisted to
handle the new langue. New rules would be required for the
connections based on manual experiments. This would be
a relatively high-effort transition, but besides the obvious
benefits, it would also enable a standardized translation of
the reports between different languages.

IV. RELATED WORK

Words in sentences follow distinct patterns. Sequence
tagging is a task where the class type of an individual
element can depend on the class type of neighboring
elements. To unravel and exploit these patterns and de-
pendencies recurrent neural networks have proven to be
very effective. Bi-LSTM-CRF is a widely used architec-
ture in these types of tasks [9]. In the medical domain,
Bi-LSTM-CRF and its derivative architectures are very
popular in drug name recognition (DNR), clinical con-
cept extraction (CCE) and adverse drug event recognition
(ADER) tasks [10]-[13]. In recent years, these networks
have been widely used and further improved for named
entity recognition tasks from Chinese medical reports [14],
[15]. Yin et al. used features extracted by convolutional

neural networks to enrich the semantic information of
the characters and applied a self-attention mechanism
to capture the dependencies between characters [16]. Li
at al. implemented attention mechanism into their Bi-
LSTM-CRF architecture, which enabled their model to
capture more useful context information and alleviated
the problem of missing information caused by long dis-
tances between related elements in the sequence [17].
Cai et al. suggested that named entity recognition on
Chinese medical reports can be improved by making entity
boundary detection more accurate [18]. They proposed
the utilization of POS tags using a BiLSTM-CRF ar-
chitecture with a self-matching attention layer. Zhao et
al. used a lattice LSTM-CRF system with adversarial
training [19]. The advantage of lattice LSTM was that
it could integrate word- and character-level information,
while adversarial training improved the model’s robustness
by adding perturbations to the training data. Zhang et al.
pointed out that recent NER models use only one layer to
encode information in texts [20]. They argued that these
shallow text representations could not capture in-depth
features and pose a limitation on model performance. They
proposed a stacked architecture combining an LSTM and
a gated recurrent unit (GRU) layer with a final CRF layer
as the classifier. Bi-LSTM-CRF systems have also been
successfully applied in information extraction tasks from
Portuguese medical texts. Lopes et al. used Bi-LSTM-CRF



neural networks with in-domain and out-of-domain word
embeddings [21]. They found that applying in-domain
embeddings results in better model performance than
using out-of-domain embeddings (even if the in-domain
embeddings are trained on a much smaller dataset than
the out-of-domain embeddings). In their recent work, they
compared the performance of a baseline CRF and differ-
ent Bi-LSTM-CRF derivatives in medical named entity
recognition task [22]. They showed that models trained on
public clinical texts could effectively extract information
from previously unseen hospital clinical texts.

An accurate and automatic NER model on clinical texts
opens the way to many possibilities. Such exciting applica-
tions could be automatic opinion generation, smart statis-
tics generation or visual summarization of the medical
records. Our goal is to develop a system that can automat-
ically understand free-text radiologic reports and visualize
them in real-time. In this study, a hybrid system was
used based on Bi-LSTM-CRF that could extract medical
named entities effectively, while other components of our
system grouped the corresponding entities. A framework
for a visualization system was also constructed to visualize
entities and their relations in a tree-like structure. In the
next iteration of this framework, the tree elements will be
connected to the corresponding parts of a schematic spine
image, this task needs proper identification of locations
which is already well underway. This kind of machine
learning based, real-time visualization systems are rela-
tively scarce in the literature [23] and to the best of our
knowledge they are entirely non-existent for the Hungarian
language. An earlier version of our training solution was
published previously in Hungarian [24] as well as various
supplementing solutions [25]-[27] that could contribute to
the future progress of the process but are not in the scope
of the current paper.

V. CONCLUSIONS

The paper described our efforts in creating an automatic
framework for the machine understanding of Hungarian
spinal region reports. Our current goals were the classifica-
tion of anatomic locations, disorders and their properties
in the free-form text of the reports. This was achieved
via a Bi-LSTM-CRF solution trained on 487 manually
annotated reports. The classification produced Fl-score
values between 0.8670 and 0.9485, with a micro-average of
0.9089. The detected entities are connected to each other
based on sentence and constituent parsing and pre-defined
rules specific to the Hungarian reports’ sentence structure.
The gathered information is displayed in a tree-structure
with the connected components grouped together. The
process is suitable for real-time visualization, even while
the report is being written.

Our future plans concern the refinement of our current
data, proper identification of locations and disorders, and
eventually their connection to the original MRI images
themselves.
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