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A B S T R A C T   

Eye diseases such as diabetic retinopathy and diabetic macular edema pose a major threat in today’s world as 
they affect a significant portion of the global population. Therefore, it is of utmost importance to develop robust 
solutions that can accurately detect these diseases, especially in their early stages. However, current methods, 
based on hand-crafted features devised by experts, are not sufficiently accurate. Several solutions have been 
proposed that use deep learning techniques to improve the performance of such systems. However, they ignore 
the highly valuable hand-crafted features, that could contribute to more accurate prediction, which underlines 
the significance of our research. In this paper, we revisit the problem of combining these hand-crafted features 
with the features extracted by neural networks with the objective of delivering more accurate predictions. We 
systematically study several state-of-the-art neural networks and methods and propose a number of ways to 
integrate them into our framework. We show that we arrived at the conclusion that it is possible to achieve 
significantly better results and outperform networks that do not consider hand-crafted features using the pro-
posed methods.   

1. Introduction 

Nowadays, diabetic retinopathy (DR) is the most common cause of 
blindness in developed countries. It is an eye disease caused by long- 
standing diabetes. Moreover, about 1 in 15 people with diabetes will 
develop diabetic macular edema (DME). DME occurs when blood vessels 
of the retina leak fluid into the macula which causes blurry vision. In 
2019, an estimated 1.5 million deaths were directly caused by diabetes 
and the World Health Organization estimates that 422 million people 
worldwide have the disease [1]. Progression to vision impairment can be 
slowed down if DR/DME is detected at an early stage. 

Diabetic retinopathy (DR) is a diabetes complication, with possible 
consequences ranging from mild visual impairment to blindness. 
Currently, detecting the signs of DR/DME is a time-consuming and 
manual process that requires a trained clinician to examine and evaluate 
digital color fundus photographs of the retina. During the annual 
screening, a large number of digital images are taken and evaluated by 
an ophthalmologist. Only in the UK, the screening programs result in 
around two million retinal images for evaluation each year [2]. 
Repeated screening of DR is therefore not only costly but also 

exhausting, so there is a significant need to automate this process. 
Expectations for trustworthy automated screening systems are high 

in the case of DR and DME. Recently, deep learning has been increas-
ingly used in the field of medical image analysis, and many such 
methods have been proposed that use convolutional neural networks 
(CNNs) to detect microaneurysms (MAs), hemorrhages (HEs), hard ex-
udates (EXs), or soft exudates (SEs). In [3], Shan et al. proposed a so-
lution in which the entire fundus image was divided into patches that 
were considered as input without any further preprocessing steps. Then, 
the applied Stacked Sparse Autoencoder automatically extracted the 
distinguishing features to classify these patches. Tan et al. [4] showed 
how they used a single CNN to automatically segment and discriminate 
lesions on fundus images. They also divided the input image into 51 ×

51 pixel patches and used their convolutional neural network to classify 
them as background, EXs, HEs, or MAs. 

In addition to the publications mentioned above, there are many 
other papers in which the relevant features are extracted using con-
ventional digital image processing tools. Walter et al. [5] used 
morphological processes and kernel density estimation to segment MAs 
and evaluated the input images based on the number of detected lesions. 
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Quellec et al. [6] adapted optimal wavelet transform and template 
matching to perform automatic segmentation of MAs in retinal images. 
In [7], Agurto et al. proposed the use of multiscale amplitude 
modulation-frequency modulation (AM-FM) as a feature extraction 
method to discriminate between normal and pathological retinal 
images. 

In our previous work [8], we proposed a solution in which we 
combine the powerful, self-extracted, CNN-based features with tradi-
tional, hand-crafted ones into a single framework to enhance classifi-
cation performance. Our idea derived from [9], where the authors 
claimed that a CNN can automatically extract many important local, 
textual features from images by convolving with a sliding window and 
forming a filter. However, besides the local features, the global image 
descriptors also have been playing an important role in many image 
processing tasks. While the local features can be called textural features, 
the global features usually mean contour features and structural fea-
tures. In the case of DR and DME, the presence of diseases is charac-
terized by detecting one or more retinal lesions like MAs, HEs, EXs, and 
SEs. These signs can be described well by their contour feature and we 
can successfully apply them to improve the final accuracy of a CNN- 
based screening system. 

In this paper, we extend our previous work by investigating the 
applicability of some additional state-of-the-art neural networks. We 
show that our experimental results support our former statement, 
namely, that we can improve the final classification results of a CNN- 
based solution by using hand-crafted features besides deep learning 
ones. Moreover, we investigate the advantages of the proposed meth-
odology and also its limitations by a comprehensive comparison, where 
we test different ways to concatenate the automatically extracted 
textural features with the hand-crafted ones. 

2. Materials and methods 

Deep learning techniques have been widely used for solving a variety 
of problems in the area of medical diagnosis [10–12]. The reason why 
these solutions are so popular is the fact that modern, state-of-the-art 
deep CNNs have the ability to automatically and efficiently extract 
features that are required for classification. This means that experts do 
not need to manually extract these features, thus saving time and effort, 
while still being able to extract features that are required for a precise 
diagnosis. Besides this positive property of CNNs we also need to 
consider that although these neural networks could take spatial relations 
into account by pooling local features into a global representation but 
they are known to perform sub-optimally when learning long-range 
patterns [13]. Baker et al. in [14] tested exhaustively their hypothesis 
that CNNs are sensitive to an object’s local contour features but have no 
access to global shape information. There is also evidence that there are 
certain features that CNNs simply cannot learn, such as global features, 
like Scale Invariant Feature Transform (SIFT) and Histogram of Oriented 
Gradient (HOG) as mentioned in [9]. This suggests that it may be worth 
to somehow fuse the hand-crafted features, which can take into account 
these properties, and the features extracted by neural networks, which 
tend to perform better than the traditional solutions. Ultimately, this 
fusion could retain the best of both worlds, thus leading to better 
generalization and more accurate diagnosis capabilities. 

In this section, we present methods to combine hand-crafted features 
with ones extracted by neural networks to deliver more accurate pre-
dictions. First, we introduce the datasets used for our experiments. We 
also outline how hand-crafted feature extraction works and what fea-
tures are extracted in the process. Then, we show that these features can 
be combined with those extracted by a variety of CNNs in several 
different ways. Finally, we give a detailed overview of how these algo-
rithms performed on our test set and compare the results of the neural 
networks with and without the hand-crafted features. 

2.1. Datasets 

In this section, we give a brief description of the publicly available 
datasets that were used to train and evaluate the methods described in 
this work. The Kaggle DR and Messidor datasets and the training part of 
the Indian Diabetic Retinopathy Image Dataset (IDRiD) were used for 
training, while all evaluations were performed using the test part of the 
IDRiD dataset. 

2.1.1. Indian diabetic retinopathy image dataset 
The IDRiD dataset [15] consists of 516 color fundus images divided 

into a training part of 413 images and a test part of 103 ones, approxi-
mately maintaining the mixture of disease stratification. The images 
have a resolution of 4288 × 2848 pixels and a 50◦ field of view. Each 
image is categorized according to the severity of DR (5 classes) and the 
risk of DME (3 classes). Regarding DR, the training (test) set contains 
134 (33) images labeled as no DR (DR0), 20 (5) as mild DR (DR1), 136 
(32) as moderate DR (DR2), 74 (19) as severe DR (DR3), and 49 (13) as 
proliferative DR (DR4). Concerning DME, the training (test) set includes 
177 (44) images categorized as no risk of macular edema (DME0), 41 
(10) as moderate risk of macular edema (DME1), and 195 (48) as high 
risk of macular edema (DME2) based on presence of hard exudates near 
the macular center. 

2.1.2. Kaggle DR dataset 
The Kaggle DR dataset is the train portion of the dataset provided by 

EyePACS for a DR grading challenge [16] held by Kaggle. It contains 
35126 color fundus images with resolutions ranging from 400 × 315 to 
5184 × 3456 pixels and different fields of view. For each image, a DR 
grading score is provided: 25810 of these images are categorized as 
DR0, 2443 as DR1, 5292 as DR2, 873 as DR3, and 708 as DR4. In 
addition, 7806 of the images in this dataset were labeled by an experi-
enced local ophthalmologist for the risk of DME: 5949 of the images are 
categorized as DME0, 1033 as DME1, and 824 as DME2. It is important 
to note that several images in this dataset are affected by imaging arti-
facts, blurring, under- or overexposure. 

2.1.3. Messidor dataset 
The Messidor dataset [17] comprises 1200 color fundus images with 

three different resolutions (1440 × 960, 2240 × 1488, and 2304 × 1536 
pixels) and a 45◦ field of view. Both DR and DME grading scores are 
available for the images of this dataset; however, DR scoring differs 
slightly from the method used for the other two datasets. Using the DR 
severity classes of IDRiD and Kaggle DR, 546 of the images in this dataset 
are categorized as DR0, 153 as DR1, 247 as DR2, and 254 as DR4. 
Regarding DME, 974 images are categorized as DME0, 75 as DME1, and 
151 as DME2. 

2.2. Extracting the hand-crafted features 

The image-level and lesion-specific approaches used to extract the 
traditional features considered in our methods are described in this 
section. 

2.2.1. Image-level feature extraction 
For image-level feature extraction, we employed an amplitude and 

frequency modulation-based approach [7], which extracts various fea-
tures from a retinal image by decomposing its green channel into AM-FM 
components at different scales [18]. A collection of twenty-five band-
pass channel filters, coupled with four frequency scales, is used to 
generate the different scales for feature extraction. After the image 
features are extracted, the information is clustered into 30 groups using 
k-means clustering. As a result, a 30-element feature vector is generated 
that reflects the intensity, shape, and texture of the structures of the 
image. 
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2.2.2. Lesion-specific feature extraction 
We employed two detector ensembles consisting of a set of 

〈preprocessing method, candidate extractor〉 pairs (〈PP, CE〉 for short) 
organized into a voting system to extract lesion-specific features asso-
ciated with microaneurysms (MAs) and exudates (EXs). By applying a PP 
to the input retinal image and a CE to the PP output, a 〈PP, CE〉 pair is 
formed. A 〈PP, CE〉 pair extracts a set of candidate lesions from the input 
image and functions as a single detector method in this way.Number of 
MAs Because MAs are the earliest manifestations of DR and indicators of 
its progression, their number is an important factor in DR classification. 
MAs are capillary swellings that appear as tiny red dots; however, their 
similarity to vascular fragments makes them difficult to detect. 

The combined output of the MA detector ensemble is obtained in the 
following way: If the Euclidean distances of the candidates in the result 
sets of 〈PP, CE〉 pairs are smaller than a given value, they are merged. 
The ratio of the number of 〈PP, CE〉 pairs suggesting this candidate to the 
total number of pairs in the ensemble is used to assign a confidence value 
to each common candidate in the ensemble. 

We used the results of Antal and Hajdu [19] to form the 〈PP, CE〉
pairs of the ensemble. Five PPs (contrast-limited adaptive histogram 
equalization (CLAHE) [20], illumination equalization (IE) [21], vessel 
removal with inpainting (VR) [22], Walter-Klein contrast enhancement 
(WK) [23], and ”no preprocessing” (NP) for formal reasons) and three 
CEs (the method of Lazar et al. [24], Walter et al. [25], and Zhang et al. 
[26]) were selected. Table 1 (a) lists the 〈PP, CE〉 pairs in our MA de-
tector ensemble. 

After the MA candidate set of the ensemble is obtained, it is 
thresholded at six confidence levels and the number of candidates at 
each level is counted to obtain six features.EX-specific features EXs 
have properties useful in determining the severity of nonproliferative 
DR and the risk of DME. EXs are lipid residues of serous leakage from 
injured capillaries that appear as bright spots of various shapes in retinal 
images. 

The combined output of the EX detector ensemble is obtained as 
follows: Each 〈PP, CE〉 pair produces a binary mask containing EX can-
didates. The probability that a pixel belongs to an EX is determined by 
the ratio of the number of pairs that marked the pixel as EX to the total 
number of pairs, which is then used to construct a probability map using 
the output of the different pairs. 

The results of Nagy et al. [27] were used to create the ensemble 
described above. Four PPs (gray-world normalization (GN) [28], 

illumination equalization (IE) [21], morphological contrast enhance-
ment (MC) [29], and vessel removal with inpainting (VR) [22]) and 
three CEs (the method of Sopharak et al. [30], Walter et al. [Wal-
ter2002], and Welfer et al. [31]) were selected. Table 1 (b) lists the eight 
〈PP, CE〉 pairs that were used in the ensemble. 

As the last step, the result set of the EX ensemble is thresholded at 
eight different confidence levels, resulting in a total of 32 features: the 
ratio of all EX pixels to ROI pixels, the number of EXs (8-connected 
components), the ratio of the largest EX (8-connected component) to 
ROI, and the average EX size to ROI. 

2.3. Combining the hand-crafted features with deep learning techniques 

In our previous work [8], we showed that by merging the hand- 
crafted features with the features extracted by a CNN we could attain 
state-of-the-art accuracy for this problem. To achieve this, we extended 
the last fully connected (FC) layer (4096 neurons) with additional 
neurons (68 in total) and then reduced the weights to the given class 
probabilities. More precisely, for any given image x(i), we calculated the 
feature vectors extracted by AlexNet and the traditional extractors, 
denoting them as y(i)1 and y(i)2 respectively. The hand-crafted features 
were normalized to bring y(i)2 to the same scale as y(i)1 . Then, we 
concatenated these vectors to get y(i)c =< y(i)1 , y(i)2 > and passed them 
through an additional fully connected layer. Namely, we used a weight 
matrix A of size 4164 x 5 (or 4164 x 3 for DME) to calculate y(i) = A⊤y(i)c . 
Then, we used the softmax function to obtain the predictive class 
probabilities ŷ(i). 

2.3.1. Extending the original method by using other architectures 
Although we managed to get really good results with this solution, it 

can also be seen how optimizing for more descriptive y(i)1 , in other words, 
choosing the architecture, can affect performance. This is why in this 
paper, we extend this idea to several commonly used networks other 
than AlexNet [32] and objectively compare the results of those networks 
and their variants that use the hand-crafted features to demonstrate that 
our solution greatly improves the classification accuracy. All the archi-
tectures received the input images in the shape that the original net-
works operated on. This meant that each RGB input image x(i) was 
resized to the size of 224x224x3 before being given to the given 
network. During the research, we chose AlexNet as our baseline network 
and tried to improve its accuracy. To this end, we used several state-of- 
the-art networks, such as MobileNetv3 [33] and Resnet-50 [34] and 
compared their results to that of the baseline – both with and without the 
hand-crafted features. In the case of the first one, for any given input 
image x(i) the hand-crafted features were calculated and then concate-
nated with the extracted CNN features of the given network, while for 
the latter one only the input image was given to the algorithm. For this 
version V1 of the algorithm, we kept the original structure [8] but 
swapped the feature extracting part with the given network (AlexNet, 
MobileNetv3, and Resnet-50, respectively), as can be seen in Fig. 1. 

While by substituting AlexNet with the other variants, we could 
greatly improve classification accuracy as can be seen later in Section 3, 
but this method had some shortcomings. Namely, we can clearly see that 
although we take into account both the hand-crafted and CNN features, 
we only pass them through one layer by calculating y(i)c = < y(i)1 ,y(i)2 >. 
This makes combining y(i)1 and y(i)2 hard, since we need to do that with 
only a single hidden layer (A). For this reason, in this paper we also 
explore new architectural solutions that may more effectively combine 
the information extracted by these hand-crafted features with that of the 
features extracted by a neural network. 

2.3.2. Learning the features in parallel 
One reasonable solution is to divide the computational graph of the 

Table 1 
The 〈PP, CE〉 pairs of the (a) MA, and (b) EX detector ensembles.  

(a)  

PP CE 

1 NP Lazar et al. 
2 CLAHE Lazar et al. 
3 IE Lazar et al. 
4 WK Lazar et al. 
5 NP Walter et al. 
6 CLAHE Walter et al. 
7 NP Zhang et al. 
8 VR Zhang et al. 
9 WK Zhang et al.  

(b)  

PP CE 

1 GN Sopharak et al. 
2 MC Sopharak et al. 
3 VR Sopharak et al. 
4 IE Walter et al. 
5 MC Walter et al. 
6 VR Walter et al. 
7 IE Welfer et al. 
8 MC Welfer et al.  
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network into two sub-parts as can be seen in Fig. 2: one that is respon-
sible for processing hand-crafted features and one that processes the 
input image. These parts would calculate their predictions separately 
and we could merge the results to get our final predictions. Namely, 

instead of calculating the feature vectors y(i)1 and y(i)2 , we could calculate 
the approximate predictions y(i)1 and y(i)2 for each part and then average 
the outputs. This would in fact act like a “mini” ensemble network that 

Fig. 1. Fusing the hand-crafted features with those extracted by a CNN in the last layer of the given neural network.  

Fig. 2. Fusing the hand-crafted features with those extracted by a CNN by learning in two separate paths.  
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uses majority voting, but where each path of the computational graph is 
trained at the same time. This is possible since the backpropagation of 
the predicted error is executed with one step from the calculated 
predictions: 

y(i) =
y(i)1 + y(i)2

2
. (1) 

This approach has many strong points. First of all, the features are 
processed separately and undergo more steps, making it possible to 
derive more high-level information. Moreover, we could benefit from 
the advantages of using an ensemble solution, which often yields better 
and more stable results. Finally, the network could also learn when it 
should emphasize the hand-crafted features y(i)

1 and when the CNN 
features y(i)

2 , depending on the input image x(i) by adjusting its weights 
accordingly. This can be especially important if sometimes the first one 
and sometimes the latter one is more accurate, and when thus having the 
ability to weight these predictions depending on the input image x(i)

could result in more stable predictions. 

2.3.3. A deeper combination of the hand-crafted and CNN features 
The method described in 2.3.2 guarantees that both the features 

extracted by the CNN and the hand-crafted ones undergo a longer pro-
cessing step due to the increased number of fully connected layers. 
However, in the long run, it may not always be beneficial to entirely 
separate the processing of the hand-crafted and CNN features as it may 
make the learning process much harder due to the increased number of 
parameters and by having the network concentrate on essentially two 
different things: making sense of the hand-crafted features and making 
sense of the input image. This could greatly disrupt the learning process, 
ultimately leading to poor results in some cases. Instead, we could move 
the concatenation step y(i)c =< y(i)1 , y(i)2 > up in the algorithm described in 

2.3.1 to merge the features y(i)1 that have been extracted by purely the 
convolutional layers with the hand-crafted ones, denoted as y(i)2 , and 
then use more fully connected layers to process the joint features y(i)c . 
This process can be observed in Fig. 3. 

With this approach, we could get the benefits of both worlds: the 
network would have more capabilities to process the feature vectors, 
thanks to the increased number of dense layers, and both the features 
extracted by the convolutional layers and the hand-crafted ones would 
be processed at the same time, layer by layer. This gives the network the 
ability to learn and recognize more complex patterns that would require 
both of them, ultimately leading to more robust and accurate 
predictions. 

3. Results and discussion 

In this section, we explain what methods we used to divide the 
dataset into training and validation sets and how the different hyper-
parameters were optimized for each architecture. We also detail how the 
experimental results were obtained, what metrics we used, how we 
evaluated the different algorithms, and draw some experimental 
conclusions. 

3.1. Cross-validation 

As noted in 2.1, we used a total of 36739 images (413 from IDRiD, 
35126 from the Kaggle and 1200 from the Messidor dataset) for training 
and the test part of the IDRiD dataset for testing. To get a better un-
derstanding of the results, we divided the dataset into smaller cross- 
validation sets. For each set and every problem type (DME or DR), we 
divided the original data into training and validation parts in the ratio of 
4:1 (80% training, 20% validation), while keeping the relative fre-
quencies of the different classes the same. With the latter, we tried to 

Fig. 3. Fusing the hand-crafted features with those extracted by a CNN by moving the concatenation step up in the architecture.  
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mitigate the distribution shift between the training and validation set. 
Furthermore, there was no overlap between the cross-validation sets, 
meaning that the validation sets were disjunct. This meant that if an 
image appeared in the validation set of one cross-validation set, then it 
could no longer appear in the validation set of any subsequent cross- 
validation set. As for the classes themselves, we made sure that all an-
notations followed the same grading procedure. The manual annotations 
of the images were made by ophthalmologists according to the Inter-
national Clinical Diabetic Retinopathy (ICDR) disease severity scale [35] 
for all three of the original image datasets (Messidor [17], Kaggle [16], 
and IDRiD [15] datasets) that we used. The ICDR scale is one of the most 
commonly used clinical scales and consists of a 5-point grade for DR: no, 
mild, moderate, severe, and proliferative. 

3.2. Hyperparameter search 

We thoroughly searched the optimal hyperparameters for each al-
gorithm. This search included looking for the optimal batch size, opti-
mizer, learning rate, and the number of epochs. The hyperparameter 
search was naturally carried out purely on the training set. In the case of 
optimizers, we experimented with Stochastic Gradient Descent (SGD) 
[36] (both with and without momentum) and Adam [37] and looked for 
the one that made the loss decrease in the smoothest way possible, with 
minimal oscillations and continuous decreases over the epochs. For the 
batch size, we looked for the value that made the learning process the 
most stable and led to the smallest oscillation in the training loss. In the 
case of the learning rate, we used learning rate scheduling and examined 
the change of the loss. Then, we picked the learning rate lr that had the 
lowest observed loss value and had a sufficiently large environment 
[lr − ∊, lr+∊] in which the loss values did not oscillate and did not in-
crease rapidly. Finally, we chose the number of epochs so that training 
was terminated when the validation loss started to continuously 
increase. 

We found the batch size of 32 and the Adam optimizer to be the best 
for every algorithm, while the optimal learning rate and the number of 
epochs varied from network to network. Table 2 and 3 below summarize 
the best hyperparameter settings for each network and problem type 
(DR and DME). These were the ones that we used for evaluating the 
different algorithms in Section 3.5. 

3.3. Evaluation 

All of the algorithms were evaluated on the test part of the IDRiD 
dataset, as described in 2.1. Each image x(i) had its corresponding DR 
and DME labels, as well as the hand-crafted features associated with the 
given image. As the test set that we had access to was heavily imbal-
anced and skewed towards certain classes, we took several metrics into 

account during the evaluation process to make it fairer. Namely, since a 
standard accuracy value would give biased results in our case, we used a 
weighted average of the accuracies calculated at the class level, where 
each weight represented how many times a given class occurred in the 
test set. Furthermore, we calculated a number of metrics regarding the 
performance of the algorithms and their ability to differentiate healthy 
and non–healthy images, such as Positive Predictive Value (PPV), 
Sensitivity (SE), Specificity (SP), F1-score, and weighted accuracy 
(ACCw). To calculate these, we considered the following quantities for 
every prediction: true positives (TP), true negatives (TN), false positives 
(FP), and false negatives (FN). In our case TP meant that both the pre-
diction and the ground truth said the given image x(i) belonged to a 
non–healthy specimen, while TN meant the same but with healthy 
specimens. The number of FPs indicated how many times the algorithm 
predicted the non–healthy label, while the ground truth was healthy, 
and the number of FNs showed the exact opposite. The exact formulas of 
the used metrics are given as: 

PPV =
TP

TP + FP
(2)  

SE =
TP

TP + FN
, SP =

TN
TN + FP

(3)  

F1 − score =
2TP

2TP + FP + FN
(4)  

ACC =
TP + TN

TP + FP + FN + TN
(5)  

ACCw =
∑

c∈classes
wc ∗ ACC(c), (6)  

where wc is the ratio of the samples in the class c to the total number of 
samples. 

3.4. Project setup 

The experiments were carried out on a computer with an Nvidia RTX 
3080 video card and a total of 128 GB RAM. The codebase was written 
purely in Python and we used the PyTorch framework for writing the 
experiment code. 

3.5. Experimental results 

As noted in 3.3, we used a variety of metrics to reliably evaluate the 
performance of the different algorithms, which is why we have included 
multiple tables for each problem type (DR and DME). Furthermore, as 

Table 2 
The list of optimal hyperparameters for the DR problem.  

Network Type Optimizer Batch size Learning rate Epochs 

AlexNet original Adam 32 0.0001 100 
MobileNetv3 original Adam 32 0.001 150 

ResNet-50 original Adam 32 0.001 100       

AlexNet V1 Adam 32 0.0001 100 
MobileNetv3 V1 Adam 32 0.001 150 

ResNet-50 V1 Adam 32 0.0001 100       

AlexNet V2 Adam 32 0.001 150 
MobileNetv3 V2 Adam 32 0.001 200 

ResNet-50 V2 Adam 32 0.001 150       

AlexNet V3 Adam 32 0.0001 150 
MobileNetv3 V3 Adam 32 0.0003 200 

ResNet-50 V3 Adam 32 0.0001 100  

Table 3 
The list of optimal hyperparameters for the DME problem.  

Network Type Optimizer Batch size Learning rate Epochs 

AlexNet original Adam 32 0.0001 150 
MobileNetv3 original Adam 32 0.0001 200 

ResNet-50 original Adam 32 0.001 200       

AlexNet V1 Adam 32 0.0003 150 
MobileNetv3 V1 Adam 32 0.0001 200 

ResNet-50 V1 Adam 32 0.001 200       

AlexNet V2 Adam 32 0.001 150 
MobileNetv3 V2 Adam 32 0.001 200 

ResNet-50 V2 Adam 32 0.001 150       

AlexNet V3 Adam 32 0.0003 200 
MobileNetv3 V3 Adam 32 0.0003 200 

ResNet-50 V3 Adam 32 0.001 200  
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we noted in 3.1, we divided the dataset into cross-validation sets. 
Consequently, all the tables in this section show the results of the 
different algorithms measured after being trained on both of these cross- 
validation sets. The results shown are calculated at 95% confidence 
levels and are sorted by network and algorithm type. For the original 
networks, we refer to as original, while the algorithms introduced in 
2.3.1, 2.3.2 and 2.3.3 are noted as V1, V2, and V3, respectively. We 
would also like to note that since the ResNet-50 architecture only had a 
total of one fully connected layer, the V3 version of the network is fully 
equivalent to the V1 version. Therefore, the tables presented contain the 
same results for these two versions of the ResNet-50 architecture. 

We have also trained several baselines that only used the hand- 
crafted features y(i)2 but did not use the input images to measure the 
predictive capabilities of the hand-crafted features alone. We have 
considered three different approaches for this task. In the first approach, 
we optimized directly for the best set of weights A to calculate y(i) =

A⊤y(i)2 , then, similarly to Section 2.3.1, we used the softmax function to 
calculate the predicted class probabilities ŷ(i). We will refer to this 
approach as Softmax in the subsequent tables. In the second and third 
approaches, we used an SVM and a neural network (MLP) respectively to 
calculate ŷ(i). For the SVM, we used the Radial Basis Function (RBF) 
kernel, while for the MLP, we used 2 hidden layers with 64 and 32 units 
respectively. Furthermore, we have also considered another set of ar-
chitectures from [38] as additional baselines to compare our results 
with. We will refer to this last approach as LightCNN in all the subse-
quent tables while also specifying the type of architecture used as dis-
cussed in the original paper [38] by abbreviating random forest with RF 
and decision tree with DT. 

3.5.1. Diabetic retinopathy 
First, we measured the ability of the networks to differentiate be-

tween healthy and non–healthy images as a starting point. While the 
networks that used only the hand-crafted features performed surpris-
ingly well, they achieved substantially worse results in terms of SE and 
F1-score as compared to the original networks that received only the 
images as inputs. In other words, – according to the formulas (2) and (3) 
– the number of FNs was substantially greater than the number of FPs for 
the networks that only used the hand-crafted features. This increase in 
the FNs resulted in the model misclassifying numerous ill specimens as 
non–healthy. The architectures proposed in [38] achieved really good 
results similar to that of the original ResNet-50 model but were still 
outperformed by the networks that used the hand-crafted features. 
While all of the original networks were able to more or less determine 
these classes without the hand-crafted features, as can be seen in 
Table 4, the usage of hand-crafted features improved the performance 
greatly in all cases. The improvements were the most substantial for 
networks derived from the original AlexNet architecture, while the best 
performing algorithms were the V2 versions of the two newer networks. 

Since all of the networks were able to differentiate between healthy 
and non–healthy specimens, we measured their performance with re-
gard to their accuracies per class. These class-level accuracies can be 
seen in Table 5. The networks that used only the hand-crafted features 
performed surprisingly well yet again for some classes (DR1, DR3 and 
DR4) but performed really poorly for other classes (DR2). The reason 
behind their remarkably good results for DR4 was that they did not 
predict DR4 for any given sample; meaning that they only predicted 
0 values for this class. Since the total number of DR4 specimens was 
really low compared to other classes, this resulted in only a handful of 
DR4 cases, leading to a great number of 0 values and only a few 1 values 
in the ground truth, which combined with the fact that the networks 
predicted 0 values for each sample resulted in a high accuracy value for 
this class. The architectures proposed in [38] delivered much better 
results, surpassing several networks that only used the input images but 
they were still outperformed by the networks that used both the hand- 

crafted features and image inputs. For these networks, while the same 
ones (the V2 version of MobileNetv3 and Resnet-50) seemed to perform 
the best for DR0 and DR1 as in Table 4, for the other classes, there were 
better performing alternatives. 3 out of 5 of these used hand-crafted 
features with DR4 being an exception due to its low cardinality, and 
even in the case of DR3 and DR4, the difference between the best and 
second-best network (which used the hand-crafted features) was negli-
gible (0.005 and 0.005). While on the other hand, in the case of the other 
classes, the difference between networks without and with the hand- 
crafted features was quite substantial, in favor of the latter. This dem-
onstrates again that using the hand-crafted features is beneficial for any 
of these networks and can drastically increase the accuracy. 

To get a general overview of how the different networks performed 
on the test set, we also measured their weighted accuracies. For this 
purpose, we calculated the accuracies on the class level and then 
weighted the results depending on the number of samples per class in the 
test set. The results can be seen in Table 6. It can be seen that although 
the networks that only used the hand-crafted features performed well for 
some classes as we noted for Table 5, the overall accuracy of these 
networks was substantially lower than that of the networks that used the 
input images as well. The architectures proposed in [38] performed 
considerably better but were yet again outperformed by some of the 
networks that used both the hand-crafted features and the input images. 

Table 4 
A summary of the metrics measured on the DR dataset.  

Network Type PPV SE SP F1-score 

LightCNN  
[38] 

SVM 0.905 ±
0.044 

0.804 ±
0.128 

0.824 ±
0.115 

0.849 ±
0.052 

LightCNN  
[38] 

RF 0.858 ±
0.017 

0.826 ±
0.142 

0.721 ±
0.086 

0.840 ±
0.066 

LightCNN  
[38] 

MLP 0.909 ±
0.038 

0.790 ±
0.071 

0.838 ±
0.087 

0.845 ±
0.025 

LightCNN  
[38] 

DT 0.801 ±
0.003 

0.848 ±
0.043 

0.574 ±
0.029 

0.824 ±
0.019       

Hand-crafted Softmax 0.780 ±
0.012 

0.616 ±
0.043 

0.647 ±
0.001 

0.688 ±
0.031 

Hand-crafted SVM 0.793 ±
0.042 

0.638 ±
0.001 

0.662 ±
0.086 

0.707 ±
0.017 

Hand-crafted MLP 0.888 ±
0.017 

0.746 ±
0.014 

0.809 ±
0.029 

0.811 ±
0.015       

AlexNet original 0.746 ±
0.053 

0.783 ±
0.142 

0.412 ±
0.173 

0.774 ±
0.016 

MobileNetv3 original 0.820 ±
0.017 

0.855 ±
0.028 

0.544 ±
0.086 

0.828 ±
0.012 

ResNet-50 original 0.908 ±
0.108 

0.797 ±
0.085 

0.824 ±
0.231 

0.846 ±
0.001       

AlexNet V1 0.741 ±
0.005 

0.833 ±
0.014 

0.662 ±
0.087 

0.800 ±
0.021 

MobileNetv3 V1 0.893 ±
0.054 

0.841 ±
0.000 

0.794 ±
0.115 

0.866 ±
0.025 

ResNet-50 V1 0.932 ±
0.029 

0.783 ±
0.028 

0.882 ±
0.058 

0.850 ±
0.005       

AlexNet V2 0.880 ±
0.030 

0.783 ±
0.028 

0.794 ±
0.058 

0.809 ±
0.001 

MobileNetv3 V2 0.876 ±
0.056 

0.877 ±
0.099 

0.750 ±
0.140 

0.873 ±
0.019 

ResNet-50 V2 0.938 ±
0.013 

0.797 ±
0.028 

0.897 ±
0.029 

0.840 ±
0.021       

AlexNet V3 0.835 ±
0.013 

0.848 ±
0.071 

0.691 ±
0.029 

0.824 ±
0.024 

MobileNetv3 V3 0.924 ±
0.047 

0.783 ±
0.000 

0.868 ±
0.087 

0.847 ±
0.020 

ResNet-50 V3 0.932 ±
0.029 

0.783 ±
0.028 

0.882 ±
0.058 

0.850 ±
0.005  
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We can once again see that by using the hand-crafted features, the 
overall accuracy has greatly improved for all of the networks. The best 
performing networks were once again the ones based on the Mobile-
Netv3 and Resnet-50 architectures, but even the ones using AlexNet 
benefitted greatly from the usage of the hand-crafted features. 

3.5.2. Diabetic macular edema 
For DME, we followed the exact same steps as outlined previously in 

3.5.1. First, we measured how reliably the various algorithms could 
differentiate the healthy specimens from the non–healthy ones using the 
PPV, SE, SP, and F1-score metrics. As it can be seen in Table 7, all the 
networks were able to achieve this task. The networks that only used the 
hand-crafted features had the exact same problem that we discussed in 
Section 3.5.1: their SE scores were substantially lower than that of the 
other networks, except for the network that used the two-layer neural 
network (MLP). As for the architectures proposed in [38], they achieved 
really good results, surpassing most (but not all) of the original networks 
but were still outperformed by the networks that used both the hand- 
crafted features and the input images. As for AlexNet, MobileNetv3 
and ResNet-50, comparing the solutions that did not use the hand- 
crafted features with those that did, it is clearly visible that the results 
of the latter were substantially better. The network with the most 
notable and drastic improvements was MobileNetv3, which turned out 
to be the best performing solution regarding these metrics. 

Next, we measured how accurately the networks could classify the 
specimens into different classes. In the case of DME, there were a total of 
3 classes: DME0, DME1, and DME2. Table 8 shows the measured class- 
level accuracies. Among the networks that only used the hand-crafted 
features, the Softmax and SVM versions performed substantially worse 
than the other networks in the case of DME0 and DME2. The version that 
used the MLP as its backbone performed remarkably well, almost sur-
passing the original AlexNet network in all aspects but was out-
performed by both the other original networks and the ones that used 
the hand-crafted features as well as the input images. The LightCNN 
variants performed quite uniformly, meaning that the accuracy values 
were almost the same for each architecture but were now outperformed 
by not only the networks that used the hand-crafted features and the 
input images but also by the original networks as well. It can be also seen 
that the networks using the hand-crafted features performed substan-
tially better than the networks that did not use these features. Only the 
MobileNetv3 architecture was a slight exception since it achieved good 
results for the DME2 class. However, the results of this network without 
the hand-crafted features were significantly lower in the case of the 
other classes. The best performing network was the ResNet-50 network 

Table 5 
A summary of the class-level accuracies measured on the DR dataset.  

Network Type DR0 DR1 DR2 DR3 DR4 

LightCNN  
[38] 

SVM 0.811 
±

0.048 

0.951 
±

0.001 

0.651 
±

0.057 

0.835 
±

0.019 

0.859 
±

0.029 
LightCNN  

[38] 
RF 0.791 

±

0.067 

0.918 
±

0.048 

0.675 
±

0.086 

0.835 
±

0.019 

0.869 
±

0.010 
LightCNN  

[38] 
MLP 0.806 

±

0.019 

0.947 
±

0.010 

0.694 
±

0.029 

0.835 
±

0.057 

0.874 
±

0.019 
LightCNN  

[38] 
DT 0.757 

±

0.019 

0.850 
±

0.048 

0.617 
±

0.029 

0.777 
±

0.019 

0.835 
±

0.001        

Hand-crafted Softmax 0.626 
±

0.029 

0.951 
±

0.001 

0.452 
±

0.010 

0.816 
±

0.001 

0.874 
±

0.001 
Hand-crafted SVM 0.646 

±

0.029 

0.951 
±

0.001 

0.495 
±

0.095 

0.840 
±

0.010 

0.874 
±

0.001 
Hand-crafted MLP 0.767 

±

0.019 

0.951 
±

0.001 

0.612 
±

0.019 

0.835 
±

0.001 

0.864 
±

0.001        

AlexNet original 0.695 
±

0.028 

0.947 
±

0.009 

0.534 
±

0.020 

0.753 
±

0.105 

0.762 
±

0.086 
MobileNetv3 original 0.763 

±

0.028 

0.937 
±

0.028 

0.631 
±

0.057 

0.840 
±

0.028 

0.830 
±

0.010 
ResNet-50 original 0.806 

±

0.020 

0.942 
±

0.019 

0.709 
±

0.095 

0.884 
±

0.019 

0.855 
±

0.019        

AlexNet V1 0.777 
±

0.038 

0.951 
±

0.000 

0.549 
±

0.085 

0.840 
±

0.028 

0.850 
±

0.009 
MobileNetv3 V1 0.796 

±

0.020 

0.947 
±

0.009 

0.641 
±

0.019 

0.850 
±

0.028 

0.869 
±

0.010 
ResNet-50 V1 0.806 

±

0.020 

0.947 
±

0.009 

0.728 
±

0.114 

0.864 
±

0.020 

0.859 
±

0.010        

AlexNet V2 0.738 
±

0.020 

0.947 
±

0.009 

0.622 
±

0.019 

0.869 
±

0.028 

0.753 
±

0.008 
MobileNetv3 V2 0.830 

±

0.010 

0.956 
±

0.010 

0.612 
±

0.095 

0.821 
±

0.028 

0.845 
±

0.019 
ResNet-50 V2 0.806 

±

0.020 

0.956 
±

0.010 

0.675 
±

0.048 

0.879 
±

0.028 

0.788 
±

0.002        

AlexNet V3 0.758 
±

0.019 

0.932 
±

0.037 

0.622 
±

0.038 

0.826 
±

0.019 

0.731 
±

0.008 
MobileNetv3 V3 0.811 

±

0.028 

0.937 
±

0.028 

0.743 
±

0.028 

0.869 
±

0.010 

0.831 
±

0.028 
ResNet-50 V3 0.806 

±

0.020 

0.947 
±

0.009 

0.728 
±

0.114 

0.864 
±

0.020 

0.859 
±

0.010  

Table 6 
The weighted accuracies measured on the DR dataset.  

Network Type ACCw 

LightCNN [38] SVM 0.778 ± 0.002 
LightCNN [38] RF 0.779 ± 0.007 
LightCNN [38] MLP 0.792 ± 0.016 
LightCNN [38] DT 0.731 ± 0.014    

Hand-crafted Softmax 0.654 ± 0.012 
Hand-crafted SVM 0.678 ± 0.041 
Hand-crafted MLP 0.752 ± 0.001    

AlexNet original 0.687 ± 0.011 
MobileNetv3 original 0.771 ± 0.022 

ResNet-50 original 0.807 ± 0.030    

AlexNet V1 0.723 ± 0.025 
MobileNetv3 V1 0.799 ± 0.007 

ResNet-50 V1 0.805 ± 0.048    

AlexNet V2 0.725 ± 0.004 
MobileNetv3 V2 0.763 ± 0.021 

ResNet-50 V2 0.788 ± 0.002    

AlexNet V3 0.731 ± 0.008 
MobileNetv3 V3 0.803 ± 0.034 

ResNet-50 V3 0.805 ± 0.048  
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and its V1 and V3 versions, which achieved top 1 scores for 2 out of the 3 
classes. 

Finally, we measured the weighted accuracies (ACCw) of the net-
works on the test set. As it can be seen in Table 9, we can once again 
confirm that the usage of the hand-crafted features led to significant 
improvements. The networks that only used the hand-crafted features 
performed significantly worse yet again with the exception of the MLP 
variant which performed almost comparably to the AlexNet original 
network. The results of the LightCNN architectures was once again 
really uniform but they were outperformed by both the majority of the 
original networks and the ones that used both the hand-crafted features 
and the input images. The best performing networks were the Mobile-
Netv3 (V3) and ResNet-50 (V1 and V3) architectures, which corresponds 
to the previous tables (Table 7 and Table 8) and other metrics as well. 

4. Conclusions 

In this work, we explored how diabetic retinopathy and diabetic 
macular edema can be detected on fundus images. We revisited the 
problem of combining the hand-crafted features with those extracted by 
neural networks. We built upon our previous work [8] to show that 
several architectures can be used to extract the CNN features and 
denoted this version as V1. We also noted that choosing the optimal 

architecture is challenging and can greatly affect the final results. Then, 
we proposed two more methods, which increase the computational ca-
pabilities of V1. In V2, we separated the computational graph into two 
distinct paths: one that processes only the hand-crafted features and one 
that processes those extracted by the neural network. We noted that this 
separation may not always be optimal, as it totally isolates these fea-
tures. To overcome this issue, we proposed another method, V3, where 
both kinds of features are processed at the same time, layer by layer, 
resulting in the detection of more complex patterns. 

We have shown that each of the proposed versions has advantages 

Table 7 
A summary of the metrics measured on the DME dataset.  

Network Type PPV SE SP F1-score 

LightCNN  
[38] 

SVM 0.913 ±
0.001 

0.724 ±
0.001 

0.911 ±
0.001 

0.808 ±
0.001 

LightCNN  
[38] 

RF 0.897 ±
0.002 

0.750 ±
0.017 

0.889 ±
0.001 

0.817 ±
0.011 

LightCNN  
[38] 

MLP 0.922 ±
0.020 

0.707 ±
0.001 

0.922 ±
0.022 

0.800 ±
0.008 

LightCNN  
[38] 

DT 0.898 ±
0.04 

0.759 ±
0.034 

0.889 ±
0.044 

0.822 ±
0.037       

Hand-crafted Softmax 0.786 ±
0.027 

0.285 ±
0.017 

0.900 ±
0.022 

0.418 ±
0.015 

Hand-crafted SVM 0.781 ±
0.142 

0.595 ±
0.017 

0.778 ±
0.174 

0.674 ±
0.064 

Hand-crafted MLP 0.859 ±
0.003 

0.733 ±
0.017 

0.844 ±
0.001 

0.791 ±
0.011       

AlexNet original 0.815 ±
0.023 

0.681 ±
0.085 

0.789 ±
0.022 

0.757 ±
0.048 

MobileNetv3 original 0.848 ±
0.007 

0.785 ±
0.017 

0.811 ±
0.022 

0.831 ±
0.019 

ResNet-50 original 0.938 ±
0.001 

0.785 ±
0.017 

0.956 ±
0.044 

0.855 ±
0.011       

AlexNet V1 0.851 ±
0.078 

0.724 ±
0.034 

0.833 ±
0.109 

0.782 ±
0.013 

MobileNetv3 V1 0.900 ±
0.039 

0.810 ±
0.034 

0.889 ±
0.044 

0.833 ±
0.036 

ResNet-50 V1 0.940 ±
0.002 

0.836 ±
0.017 

0.922 ±
0.022 

0.878 ±
0.006       

AlexNet V2 0.897 ±
0.068 

0.724 ±
0.068 

0.889 ±
0.087 

0.806 ±
0.003 

MobileNetv3 V2 0.859 ±
0.109 

0.750 ±
0.017 

0.845 ±
0.131 

0.787 ±
0.069 

ResNet-50 V2 0.832 ±
0.010 

0.724 ±
0.034 

0.811 ±
0.022 

0.774 ±
0.015       

AlexNet V3 0.797 ±
0.014 

0.802 ±
0.017 

0.745 ±
0.022 

0.786 ±
0.007 

MobileNetv3 V3 0.951 ±
0.019 

0.836 ±
0.017 

0.945 ±
0.022 

0.890 ±
0.018 

ResNet-50 V3 0.940 ±
0.002 

0.836 ±
0.017 

0.922 ±
0.022 

0.878 ±
0.006  

Table 8 
A summary of the class-level accuracies measured on the DME dataset.  

Network Type DME0 DME1 DME2 

LightCNN [38] SVM 0.806 ± 0.001 0.816 ± 0.019 0.777 ± 0.057 
LightCNN [38] RF 0.811 ± 0.010 0.806 ± 0.001 0.772 ± 0.086 
LightCNN [38] MLP 0.801 ± 0.010 0.816 ± 0.019 0.782 ± 0.067 
LightCNN [38] DT 0.816 ± 0.038 0.825 ± 0.001 0.786 ± 0.057      

Hand-crafted Softmax 0.553 ± 0.001 0.903 ± 0.001 0.563 ± 0.019 
Hand-crafted SVM 0.675 ± 0.085 0.903 ± 0.001 0.675 ± 0.085 
Hand-crafted MLP 0.782 ± 0.010 0.893 ± 0.001 0.752 ± 0.010      

AlexNet original 0.753 ± 0.028 0.859 ± 0.047 0.801 ± 0.029 
MobileNetv3 original 0.816 ± 0.019 0.879 ± 0.009 0.869 ± 0.010 

ResNet-50 original 0.850 ± 0.009 0.874 ± 0.038 0.840 ± 0.047      

AlexNet V1 0.772 ± 0.028 0.893 ± 0.020 0.762 ± 0.047 
MobileNetv3 V1 0.826 ± 0.038 0.893 ± 0.020 0.840 ± 0.047 

ResNet-50 V1 0.869 ± 0.010 0.913 ± 0.019 0.869 ± 0.010      

AlexNet V2 0.801 ± 0.010 0.908 ± 0.010 0.797 ± 0.038 
MobileNetv3 V2 0.777 ± 0.076 0.893 ± 0.020 0.782 ± 0.105 

ResNet-50 V2 0.762 ± 0.010 0.884 ± 0.019 0.748 ± 0.038      

AlexNet V3 0.762 ± 0.010 0.898 ± 0.029 0.719 ± 0.038 
MobileNetv3 V3 0.884 ± 0.019 0.888 ± 0.010 0.864 ± 0.037 

ResNet-50 V3 0.869 ± 0.010 0.913 ± 0.019 0.869 ± 0.010  

Table 9 
The weighted accuracies measured on the DME dataset.  

Network Type ACCw  

LightCNN [38] SVM 0.793 ± 0.029  
LightCNN [38] RF 0.792 ± 0.044  
LightCNN [38] MLP 0.793 ± 0.029  
LightCNN [38] DT 0.803 ± 0.043      

Hand-crafted Softmax 0.592 ± 0.009  
Hand-crafted SVM 0.697 ± 0.077  
Hand-crafted MLP 0.779 ± 0.009      

AlexNet original 0.783 ± 0.026  
MobileNetv3 original 0.847 ± 0.012  

ResNet-50 original 0.852 ± 0.022      

AlexNet V1 0.779 ± 0.037  
MobileNetv3 V1 0.837 ± 0.043  

ResNet-50 V1 0.874 ± 0.007      

AlexNet V2 0.809 ± 0.024  
MobileNetv3 V2 0.789 ± 0.082  

ResNet-50 V2 0.764 ± 0.018      

AlexNet V3 0.754 ± 0.028  
MobileNetv3 V3 0.875 ± 0.011  

ResNet-50 V3 0.874 ± 0.007   
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and disadvantages, which makes choosing the best architecture a really 
difficult task. We measured the performance of all of these algorithms, as 
well as their original networks on our test set, and also compared these 
results to several baselines that only used the hand-crafted features as 
well as different architectures proposed in [38] and used a variety of 
metrics to make the evaluation more precise and fair. We have shown 
that all of the algorithms that used the hand-crafted features achieved 
substantially better results than the networks that did not use them and 
outperformed the aforementioned baselines and architectures as well. 
Then, we concluded that while the overall performance of the different 
versions of the proposed algorithm were close to each other, for our 
problem the V3 version of MobileNetv3 and the V1 version of ResNet 50 
architectures performed the best. We made the hand-crafted features 
used in this paper openly available in FigShare at [39] and the code at 
[40]. 

CRediT authorship contribution statement 

Gergo Bogacsovics: Conceptualization, Methodology, Investiga-
tion, Writing - original draft, Writing - review & editing, Software, 
Validation. Janos Toth: Methodology, Investigation, Writing - original 
draft, Writing - review & editing, Validation. Andras Hajdu: Concep-
tualization, Writing - review & editing, Validation. Balazs Harangi: 
Conceptualization, Methodology, Investigation, Writing - original draft, 
Writing - review & editing, Validation. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements 

This research was supported by the ÚNKP-21–3-I-DE-99 and the 
ÚNKP-21-5-DE-485 New National Excellence Program of the Ministry 
for Innovation and Technology from the source of the National 
Research, Development and Innovation Fund. Moreover, the research 
was supported in part by the Janos Bolyai Research Scholarship of the 
Hungarian Academy of Sciences. This paper was supported also by the 
FIKP-20428–3/2018/FEKUTSTRAT project of the University of 
Debrecen. 

References 

[1] World Health Organization, Global report on diabetes, World Health Organization, 
2016. 

[2] A.D. Fleming, S. Philip, K.A. Goatman, G.J. Prescott, P.F. Sharp, J.A. Olson, The 
evidence for automated grading in diabetic retinopathy screening, Curr. Diabetes 
Rev. 7 (4) (2011) 246–252. 

[3] J. Shan, L. Li, A deep learning method for microaneurysm detection in fundus 
images, in: Connected Health: Applications, Systems and Engineering Technologies 
(CHASE) 2016 IEEE First International Conference on, IEEE, 2016, pp. 357–358. 

[4] J.H. Tan, H. Fujita, S. Sivaprasad, S.V. Bhandary, A.K. Rao, K.C. Chua, U. 
R. Acharya, Automated segmentation of exudates, haemorrhages, microaneurysms 
using single convolutional neural network, Inf. Sci. 420 (2017) 66–76. 

[5] T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin, J.-C. Klein, Automatic 
detection of microaneurysms in color fundus images, Med. Image Anal. 11 (6) 
(2007) 555–566. 

[6] G. Quellec, M. Lamard, P.M. Josselin, G. Cazuguel, B. Cochener, C. Roux, Optimal 
wavelet transform for the detection of microaneurysms in retina photographs, IEEE 
Trans. Med. Imaging 27 (9) (2008) 1230–1241. 

[7] C. Agurto, V. Murray, E. Barriga, S. Murillo, M. Pattichis, H. Davis, S. Russell, 
M. Abramoff, P. Soliz, Multiscale AM-FM methods for diabetic retinopathy lesion 
detection, IEEE Trans. Med. Imaging 29 (Feb 2010) 502–512. 

[8] B. Harangi, J. Toth, A. Baran, A. Hajdu, Automatic screening of fundus images 
using a combination of convolutional neural network and hand-crafted features, in: 
2019 41st Annual International Conference of the IEEE Engineering in Medicine 
and Biology Society (EMBC), IEEE, 2019, pp. 2699–2702. 

[9] T. Zhang, Y. Zeng, B. Xu, Hcnn: A neural network model for combining local and 
global features towards human-like classification, Int. J. Pattern Recognit Artif 
Intell. 30 (01) (2016) 1655004. 

[10] X. Zhou, Y. Li, W. Liang, Cnn-rnn based intelligent recommendation for online 
medical pre-diagnosis support, IEEE/ACM Trans. Comput. Biol. Bioinf. (2020). 

[11] M. Polsinelli, L. Cinque, G. Placidi, A light cnn for detecting covid-19 from ct scans 
of the chest, Pattern Recogn. Lett. 140 (2020) 95–100. 

[12] S. Gehlot, A. Gupta, R. Gupta, Sdct-auxnetθ: Dct augmented stain deconvolutional 
cnn with auxiliary classifier for cancer diagnosis, Med. Image Anal. 61 (2020), 
101661. 

[13] N. Liu, M. Rogers, H. Cui, W. Liu, X. Li, P. Delmas, Deep convolutional neural 
networks for regular texture recognition, PeerJ Comput. Sci. 8 (2022), e869. 

[14] N. Baker, H. Lu, G. Erlikhman, P.J. Kellman, Local features and global shape 
information in object classification by deep convolutional neural networks, Vision 
Res. 172 (2020) 46–61. 

[15] P. Porwal, S. Pachade, R. Kamble, M. Kokare, G. Deshmukh, V. Sahasrabuddhe, F. 
Meriaudeau, Indian diabetic retinopathy image dataset (idrid): A database for 
diabetic retinopathy screening research, Data 3(3) 2018. 

[16] Kaggle Inc, Diabetic Retinopathy Detection, Accessed: 2021-08-29. 
[17] E. Decencière, X. Zhang, G. Cazuguel, B. Lay, B. Cochener, C. Trone, P. Gain, 

R. Ordonez, P. Massin, A. Erginay, B. Charton, J.-C. Klein, Feedback on a publicly 
distributed database: the messidor database, Image Anal. Stereol. 33 (Aug 2014) 
231–234. 

[18] J.P. Havlicek, AM-FM image models. PhD thesis, The University of Texas at Austin, 
1996. 

[19] B. Antal, A. Hajdu, Improving microaneurysm detection using an optimally 
selected subset of candidate extractors and preprocessing methods, Pattern Recogn. 
45 (1) (2012) 264–270. 

[20] K. Zuiderveld, Contrast limited adaptive histogram equalization, in Graphics Gems 
IV (P.S. Heckbert, ed.), pp. 474–485, Academic Press Professional, Inc., 1994. 

[21] A. Youssif, A. Ghalwash, A. Ghoneim, Comparative study of contrast enhancement 
and illumination equalization methods for retinal vasculature segmentation, in: 
Cairo International Biomedical Engineering Conference, 2006, pp. 1–5. 

[22] A. Criminisi, P. Perez, K. Toyama, Object removal by exemplar-based inpainting, 
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) 2 (2003) 
721–728. 

[23] T. Walter, J.-C. Klein, Automatic detection of microaneurysms in color fundus 
images of the human retina by means of the bounding box closing, in: in Medical 
Data Analysis: Third International Symposium (ISMDA), 2002, pp. 210–220. 

[24] I. Lazar, A. Hajdu, Retinal microaneurysm detection through local rotating cross- 
section profile analysis, IEEE Trans. Med. Imaging 32 (2) (2013) 400–407. 

[25] T. Walter, P. Massin, A. Erginay, R. Ordonez, C. Jeulin, J.-C. Klein, Automatic 
detection of microaneurysms in color fundus images, Med. Image Anal. 11 (6) 
(2007) 555–566. 

[26] B. Zhang, X. Wu, J. You, Q. Li, F. Karray, Detection of microaneurysms using multi- 
scale correlation coefficients, Pattern Recogn. 43 (6) (2010) 2237–2248. 

[27] B. Nagy, B. Harangi, B. Antal, A. Hajdu, Ensemble-based exudate detection in color 
fundus images, in: Symposium on Image and Signal Processing and Analysis, 2011, 
pp. 700–703. 

[28] G.D. Finlayson, B. Schiele, J.L. Crowley, Comprehensive colour image 
normalization, in Computer Vision — ECCV’98 (H. Burkhardt and B. Neumann, 
eds.), (Berlin, Heidelberg), pp. 475–490, Springer, Berlin Heidelberg, 1998. 

[29] P. Soille, Morphological Image Analysis: Principles and Applications, Springer- 
Verlag, 2004. 

[30] A. Sopharak, B. Uyyanonvara, S. Barman, T.H. Williamson, Automatic detection of 
diabetic retinopathy exudates from non-dilated retinal images using mathematical 
morphology methods, Comp. Med. Im. Grap. 32 (8) (2008) 720–727. 

[31] D. Welfer, J. Scharcanski, D. Marinho, A coarse-to-fine strategy for automatically 
detecting exudates in color eye fundus images, Comput. Med. Imaging Graph. 34 
(3) (2010) 228–235. 

[32] A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep 
convolutional neural networks, Commun. ACM 60 (6) (2017) 84–90. 

[33] A. Howard, M. Sandler, G. Chu, L.-C. Chen, B. Chen, M. Tan, W. Wang, Y. Zhu, 
R. Pang, V. Vasudevan, et al., Searching for mobilenetv3, in: Proceedings of the 
IEEE/CVF International Conference on Computer Vision, 2019, pp. 1314–1324. 

[34] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 
Proceedings of the IEEE conference on computer vision and pattern recognition, 
2016, pp. 770–778. 

[35] American academy of ophthalmology. international clinical diabetic retinopathy 
disease severity scale, detailed table.http://www.icoph.org/dynamic/attachment 
s/resources/diabetic-retinopathy-detail.pdf. Accessed: Oct 14, 2016. 

[36] H. Robbins, S. Monro, A stochastic approximation method, Ann. Math. Stat., pp. 
400–407, 1951. 

[37] D.P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint 
arXiv:1412.6980, 2014. 

[38] S. Gayathri, V.P. Gopi, P. Palanisamy, A lightweight cnn for diabetic retinopathy 
classification from fundus images, Biomed. Signal Process. Control 62 (2020), 
102115. 

[39] G. Bogacsovics, B. Harangi, J. Toth, A. Hajdu, Handcrafted features for fundus 
image classification. doi: 10.6084/m9.figshare.16543107.v2 Accessed: 2021-08- 
31. 

[40] G. Bogacsovics, B. Harangi, J. Toth, A. Hajdu, Fundus Image Classification 
software,https://github.com/gergobogacsovics/FundusImageClassification 
Accessed: 2021-08-31. 

G. Bogacsovics et al.                                                                                                                                                                                                                           

http://refhub.elsevier.com/S1746-8094(22)00207-5/h0005
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0005
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0010
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0010
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0010
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0015
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0015
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0015
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0020
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0020
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0020
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0025
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0025
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0025
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0030
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0030
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0030
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0035
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0035
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0035
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0040
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0040
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0040
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0040
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0045
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0045
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0045
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0050
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0050
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0055
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0055
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0060
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0060
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0060
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0065
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0065
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0070
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0070
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0070
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0085
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0085
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0085
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0085
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0095
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0095
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0095
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0105
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0105
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0105
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0110
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0110
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0110
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0115
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0115
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0115
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0120
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0120
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0125
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0125
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0125
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0130
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0130
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0135
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0135
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0135
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0145
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0145
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0150
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0150
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0150
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0155
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0155
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0155
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0160
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0160
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0165
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0165
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0165
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0170
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0170
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0170
http://www.icoph.org/dynamic/attachments/resources/diabetic-retinopathy-detail.pdf
http://www.icoph.org/dynamic/attachments/resources/diabetic-retinopathy-detail.pdf
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0190
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0190
http://refhub.elsevier.com/S1746-8094(22)00207-5/h0190
https://github.com/gergobogacsovics/FundusImageClassification

	Enhancing CNNs through the use of hand-crafted features in automated fundus image classification
	1 Introduction
	2 Materials and methods
	2.1 Datasets
	2.1.1 Indian diabetic retinopathy image dataset
	2.1.2 Kaggle DR dataset
	2.1.3 Messidor dataset

	2.2 Extracting the hand-crafted features
	2.2.1 Image-level feature extraction
	2.2.2 Lesion-specific feature extraction

	2.3 Combining the hand-crafted features with deep learning techniques
	2.3.1 Extending the original method by using other architectures
	2.3.2 Learning the features in parallel
	2.3.3 A deeper combination of the hand-crafted and CNN features


	3 Results and discussion
	3.1 Cross-validation
	3.2 Hyperparameter search
	3.3 Evaluation
	3.4 Project setup
	3.5 Experimental results
	3.5.1 Diabetic retinopathy
	3.5.2 Diabetic macular edema


	4 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	References


