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Abstract: Structural flexibility of advanced, large-wingspan aircrafts is a crucial factor which 

has huge influence on the dynamics and stability of these vehicles. In case of a highly flexible 

wing structure, there is a need for an efficient observer to measure and predict the structural 

changes and dynamics of the wing. However, the modal coordinates of the wing cannot be 

measured directly so designing a state observer is necessary. Since the flexible aircraft model 

is nonlinear, the classical Kalman filter approach can have limited performance. Instead, two 

state observer approaches are investigated in the paper. First, we present a model-based method 

for designing an extended Kalman filter (EKF) when only a linear parameter-varying model 

(LPV) is available to describe the behaviour of the real aircraft. Second, we present a data-

driven approach for this problem which is based on the new KalmanNet architecture. Finally, 

the results of the two methods are evaluated on the T-Flex model of the FLiPASED H2020 

project. 

 

1 INTRODUCTION 

In the recent years, research and development trends in the aerospace industry placed more 

emphasis on increasing fuel efficiency [1]. The greatest portion of the operating costs of an 

aircraft today comes from fuel consumption, so achieving better fuel economy is a key aspect 

for cost reduction. To achieve these goals the decrease of structural mass and use of more 

flexible components are the most widely investigated solutions. The use of flexible components 

can mean the utilization of highly flexible wings [2]. However, this approach is not without its 

difficulties. First, the fuel consumption of the aircraft is largely dependent on the aerodynamic 

drag acting on the wings, so reducing drag with a suitable wing shape controller results better 

fuel economy. The other difficulty is - for one - the aeroelastic flutter which can cause serious 

structural damage to the wings, and the occurring instability and handling quality issues of the 

flight controller caused by the flexible structure dynamics of the vehicle [3]. So, supressing 

these effects with a flutter controller is a must to ensure safe flights. Control based active flutter 

suppression is investigated in several recent research projects. These are the Performance 

Adaptive Aeroelastic Wing (PAAW) project in the USA [4]. However, both the controller for 

drag reduction and the flutter controller [5] requires some information about the flexible 



IFASD-2022-111 

2 

dynamics of the wings, which is not possible with direct measurements. As a result, a state 

observer/estimator is required to acquire information about the states which determine the 

flexible behaviour of the wings. This paper presents results from the ongoing Flight Phase 

Adaptive Aero-Servo-Elastic Aircraft Design Methods (FLiPASED) [6] project which is the 

continuation of the Flutter Free Flight Envelope Expansion for Economical Performance 

Improvement (FLEXOP) project. The FLEXOP [1] project’s main goal was to develop an 

effective flutter suppression system. Therefore, one of the main goals of the FLiPASED project 

is to develop drag reducing control for aircrafts with highly flexible wings. The main motivation 

of this paper is to present 2 different approaches to estimate the flexible dynamics of the T-Flex 

demonstrator which can be then used for the design of a wing shape controller for drag reduction 

purposes.  

The most straightforward solution for designing a state predictor is the Kalman filter [7] for 

linear systems and the extended Kalman filter (EKF) in the case of nonlinear systems. The EKF 

is proved to be useful in inertial estimation of wing shape [8]. However, it has two main 

drawbacks. First, the EKF requires the exact mathematical state-space description of the 

nonlinear system, which might not be available or simply it is too complex to be efficiently 

used in calculations. The second drawback is that the knowledge of the noises and disturbances 

related to observations and states is necessary. Defining observation noise is the less 

challenging task but giving an accurate estimation about the uncertainties and disturbances 

related to the model states might not be possible. 

To solve the first issue, the approximation of the full, nonlinear system with a Linear Parameter 

Varying (LPV) model [9] can be considered. Using an LPV model can be less computation 

heavy and implementing an LPV-based EKF for predicting states is a feasible solution [10]. 

However, this solution still requires noise information. Data-driven approaches have the great 

advantage that they can be used for inertial odometry [11] and inertial aided navigation [12] 

problems without needing any specific information about model or observation uncertainties. 

However, estimating flexible states is a more complex problem. This is where the new 

KalmanNet architecture can be useful [13]. The KalmanNet is based on Kalman filtering 

however it uses a Recurrent Neural Network (RNN) to estimate a Kalman gain. So as a result, 

it does not need any information about the noises and model uncertainties present. 

This paper presents the working of the LPV-based EKF and the KalmanNet for predicting the 

modal coordinates and aerodynamic lag states of the nonlinear model of an Unmanned Aerial 

Vehicle (UAV) T-Flex, which was created during the FLEXOP project for demonstrator 

purposes. The testing was carried out with MATLAB, Simulink simulations where the model 

received square wave, doublet control surface inputs to excite the flexible dynamics of the 

aircraft. The LPV-based EKF was also tested with the baseline controller of the aircraft which 

keeps the vehicle on an oval shaped track. The paper is organized as follows. In Section 2., the 

dynamic model of the FLEXOP demonstrator is presented. Section 3. introduces the reduced, 

LPV model of the original nonlinear system, while also discussing the working of the LPV-

based EKF. In Section 4. the KalmanNet’s basic structure is summarized with the chosen 

training hyperparameters. Section 5. contains the presentation of the results of the modal 

coordinate and lag state estimations. The accuracy of the LPV-based EKF and the KalmanNet 

is compared, while for the filter a real-life application is also presented. 

 

2 FLEXOP DEMONSTRATOR DYNAMIC MODEL 

The chosen system for our research is the nonlinear, state space representation of the FLEXOP 

demonstrator aircraft. The model consists of 3 main parts: states that are responsible for the 

description of the rigid body dynamics; states related to flexible dynamics and aerodynamics, 

and finally, states that represent the control surface inputs and their first derivatives. The 
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interconnection of these subsystems forms the nonlinear aeroservoelastic model of the aircraft 

as seen in 1. Figure.  

 

 
1. Figure – Aeroservoelastic subsystem interconnection 

 

The structural dynamics of the demonstrator was represented with the use of a finite element 

(FE) complemented by Guyan reduction to reduce the number of degrees of freedom (DOF). 

Based on this model the equations of motion were formulated both for the rigid and the flexible 

aircraft motion. The aerodynamic model is based on a set of trapezoidal aerodynamic boxes 

which represent the lifting surfaces. The flow field of the demonstrator is approximated either 

with vortices or doublets applied to the aerodynamic boxes. The first method is called vortex 

lattice method (VLM) while the second is the doublet lattice method (DLM). VLM represents 

the steady aerodynamics, DLM incorporates the unsteady aerodynamics as well which results 

in extra – so called – aerodynamic lag states. The complete aeroelastic model was created with 

connecting the structural dynamics and the aerodynamics using splining. The details of the 

modelling can be found in [2]. Since the aeroelastic model is of very high order, first model 

order reduction needs to be carried out. The model order reduction is based on the bottom-up 

modelling approach and the details are given in [14]-[15].  

 

The rigid body motion is represented with a 6-DOF model with 12 states: states of translational 

and angular velocities, position, and orientation. All of these are defined in the body coordinate 

system of the aircraft. 

 

 𝑥𝑟𝑖𝑔𝑖𝑑 = [𝑢 𝑣 𝑤 𝑝 𝑞 𝑟 𝜙 𝜃 𝜓 𝑥 𝑦 𝑧]𝑇 (1) 

 

The states which describe the flexible dynamics are the modal coordinates and their first 

derivatives. Due to the reduced order modelling only the 6 most significant modal coordinates 

and 2 aerodynamic lag states were considered. 

 

 𝑥𝑓𝑙𝑒𝑥 = [𝑈𝑓1 𝑈𝑓2 𝑈𝑓3 𝑈𝑓4 𝑈𝑓5 𝑈𝑓6 𝑈̇𝑓1 𝑈̇𝑓2 𝑈̇𝑓3 𝑈̇𝑓4 𝑈̇𝑓5 𝑈̇𝑓6 𝑙𝑎𝑔1 𝑙𝑎𝑔2] (2) 

 

The T-Flex aircraft model has 19 inputs (2. Figure): 2 landing gears (GearR/L), 2 landing gear 

wheel brakes (WheelbrakeR/L), 2 airbrakes located on the aircraft’s fuselage (AirbrakeR/L) and 

1 turbofan engine (Throttle). The demonstrator has 12 control surfaces:  4-4 ailerons 
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(AileronR/L) on each wing and on the V-tail 2-2 ‘ruddervators’. From the inputs, the landing 

gear related ones are insignificant in our research since the estimation of the structural dynamics 

only conducted during airborne operations. 

 

 
2. Figure – Demonstrator input and control surfaces 

 

The model has 23 rigid body related outputs, which provide information about the aircraft’s 

position (xE, yE, zE), orientation (Φ, Θ, ψ), translational (vN, vE, vD) and angular velocity (p, q, 

r), and acceleration (axB, ayB, azB). Furthermore, the course angle (χ), angle of attack (α), sideslip 

angle (β), air (pa) and total pressure (pT), barometric altitude (hbaro), indicated (vIAS) and the true 

airspeeds (vTAS) are measured as well. 

 

Each wing of the demonstrator has 6-6 inertial measurement units (IMUs). An IMU provides 

acceleration and angular velocity data around the x-, y- and z-axis of its coordinate system. The 

IMUs communicate with the flight control computer (FCC) via CAN. However, as the 

bandwidth of the CAN-bus is limited and other sensors use the CAN as well, one IMU can only 

provide 3 measurement data. We opted for such an IMU configuration, where the IMUs on the 

leading-edge measure accelerations in the x, y, and z directions. The IMUs on the trailing-edge 

provide angular velocity data around the x- and y-axis, and acceleration data in the z direction. 

The exact location of the IMUs can be seen on 3. Figure. So, in total, the 12 IMU measurements 

add up as 36 additional outputs. 

 

 
3. Figure - IMU configuration 

 

In addition – in the light of the recent research conducted by the Technical University of 

Munich (TUM) – we assumed, that the wingtip coordinates can be measured with a mono 



IFASD-2022-111 

5 

camera. On each wing, the coordinates of 4 wingtip points are measured in each direction which 

results 12 additional outputs. 

 

3 MODEL BASED ESTIMATION OF FLEXIBLE DYNAMICS 

3.1 LPV model 

The linear parameter varying (LPV) model is an approximation to describe the behaviour of a 

nonlinear system [9]. It is essentially a pointwise linearization of a state-space system: the 

nonlinear system is linearized at different trim points. These trim points are defined by – so 

called – scheduling parameters. The scheduling parameters create a multidimensional grid, and 

a linear, state-space model is assigned to every grid point. The state-space description of a 

discrete time LPV system can be written as: 

 

 
𝑥[𝑘] = 𝑨(𝜌[𝑘])𝑥[𝑘 − 1] + 𝑩(𝜌[𝑘])𝑢[𝑘] 

𝑦[𝑘] = 𝑪(𝜌[𝑘])𝑥[𝑘] + 𝑫(𝜌[𝑘])𝑢[𝑘] (3) 

 

where ρ[k] is the time varying vector of the scheduling parameters. 

 

In our work, we created an LPV approximation of the nonlinear bottom-up model of the T-Flex 

demonstrator aircraft with 2 scheduling parameters: the true airspeed (vTAS) and the roll angle 

(Φ) sensor outputs. The grid for the LPV model consisted of airspeed values form 30 m/s to 50 

m/s with a 1 m/s resolution while the roll angles from 0° to 40° with 10° resolution. Then the 

nonlinear model was trimmed at each grid-point. The resulting LPV model structure was then 

further refined to 0.1 m/s and 1° resolution with the spline interpolation method of the 

LPVTools MATLAB toolbox [16]. 

 

3.2 LPV-based Kalman filtering 

For the model-based wing-shape estimation, an extended Kalman filter (EKF) was used. The 

EKF pipeline requires the full, nonlinear state-space description of the system as well as 

information about the model noise and observation noise in the form of noise covariance 

matrices. The nonlinear system’s state-space representation in discrete time is written as: 

 

 
𝑥[𝑘] = 𝒇(𝑥[𝑘 − 1], 𝑢[𝑘]) + 𝑤[𝑘] 

𝑦[𝑘] = 𝒉(𝑥[𝑘], 𝑢[𝑘]) + 𝑣[𝑘] 
(4) 

 

where x[k] is the state vector, u[k] is the input vector, y[k] is the output vector at timestep k. 

Nonlinear function f(.) is called state-transition function, while h(.) is called state-observation 

function. The w[k] and v[k] vectors are the model noise and observation noise vectors 

respectively. However, the explicit mathematical description – the nonlinear state-transition 

and state-observation functions – of the T-Flex demonstrator was not available for us, therefore 

a unique approach was necessary for designing the EKF.  

 

The general workings of the EKF consists of 2 main steps: prediction and update. In these steps, 

pointwise linearization is used to approximate the behaviour of the nonlinear system. More 

precisely the Jacobians of the nonlinear state-transition and state-observation functions are 

calculated to get the linear, state-space matrices A, B, C and D at each timestep. 
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𝑨[𝑘] =  
𝜕𝒇

𝜕𝑥
(𝑥[𝑘 − 1], 𝑢[𝑘])      𝑩[𝑘] =  

𝜕𝒇

𝜕𝑢
(𝑥[𝑘 − 1], 𝑢[𝑘]) 

𝑪[𝑘] =  
𝜕𝒉

𝜕𝑥
(𝑥[𝑘 − 1], 𝑢[𝑘])      𝑫[𝑘] =  

𝜕𝒉

𝜕𝑢
(𝑥[𝑘 − 1], 𝑢[𝑘]) 

(5) 

 

In the prediction step the prior state estimation and the prior state estimation covariance is 

calculated using the inputs of the current timestep and the estimations from the previous 

timestep. 

 

 𝑥̂[𝑘|𝑘 − 1] = 𝒇(𝑥̂[𝑘 − 1|𝑘 − 1], 𝑢[𝑘]) (6) 

 

 𝑷[𝑘|𝑘 − 1] = 𝑨[𝑘]𝑷[𝑘 − 1|𝑘 − 1]𝑨[𝑘]𝑻 + 𝑸 (7) 

 

In the update step, first the so-called innovation and innovation covariance is calculated which 

is used directly to get the near-optimal Kalman gain. With the help of the Kalman gain, the 

posterior state vector and state prediction covariance is computed. 

 

 𝑦̃[𝑘] = 𝑦[𝑘] − 𝒉(𝑥̂[𝑘|𝑘 − 1], 𝑢[𝑘])) (8) 

 

 𝑺[𝑘] = 𝑪[𝑘]𝑷[𝑘|𝑘 − 1]𝑪[𝑘]𝑇 + 𝑹 (9) 

 

 𝑲[𝑘] = 𝑷[𝑘|𝑘 − 1]𝑪[𝑘]𝑇𝑺[𝑘]−1 (10) 

 

 𝑥̂[𝑘|𝑘] = 𝑥̂[𝑘|𝑘 − 1] + 𝑲[𝑘]𝑦̃[𝑘] (11) 

 

 𝑷[𝑘|𝑘] = (𝑰 − 𝑲[𝑘]𝑪[𝑘])𝑷[𝑘|𝑘 − 1] (12) 

 

In the equations, the Q and R matrices are the model and the observation noise covariance 

matrices respectively. 

 

To obtain an appropriate pointwise linearization we used our LPV model. During simulation 

the true airspeed and roll angle is measured at each timestep which then can be used to select 

an approximating linear system from the LPV model. The selected model’s state-space matrices 

are fed to the EKF as the current A, B, C and D matrices. Then the EKF conducts the prediction 

and update steps. Acquiring model and observation noise covariance matrices the following 

was done. Both the nonlinear and the LPV model was simulated with doublet inputs on the 

control surfaces and then the measured outputs and states where compared. The variance of the 

output and state differences were taken between the models and ordered into observation and 

model noise (co)variance matrices respectively. In the observation covariance matrix, the T-

Flex’s onboard sensors’ noise variances were incorporated as well. These were specified based 

on the sensors’ datasheets. Note that we used the assumption that both noises have 0 mean, 

normal distributions, and the noise vectors at each timestep are mutually independent. 

 

4 DATA-DRIVEN ESTIMATION OF FLEXIBLE DYNAMICS 

4.1 KalmanNet architecture 

The other approach for estimating the flexible dynamics of the demonstrator is to use artificial 

intelligence, more precisely a neural network. Our choice was to use the relatively new 

KalmanNet architecture. [13] 
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KalmanNet – as its name suggests – combines Kalman filtering with a neural network. It still 

uses the current inputs and observations for giving state estimations, however the near optimal 

Kalman gain is provided by a trained recurrent neural network. The main advantage of this is 

that KalmanNet does not require neither the model (Q) nor the observation noise covariance 

matrices (R) and it can effectively overcome any uncertainties or errors in the model of the 

dynamic system. 

 

The KalmanNet pipeline is the following. It still consists of a prediction and an update step just 

like a Kalman filter. In the prediction step however only the prior state prediction is calculated, 

the state prediction covariance (P) is not. 

 

 𝑥̂[𝑘|𝑘 − 1] = 𝑨[𝑘]𝑥̂[𝑘 − 1|𝑘 − 1] + 𝑩[𝑘]𝑢[𝑘] (13) 

 

In the update step, first the innovation difference (Δy[k]) and the forward update difference 

(Δx[k]) are computed: 

 

 ∆𝑦[𝑘] = 𝑦[𝑘] − 𝑦̂[𝑘|𝑘 − 1] (14) 

 

 ∆𝑥̂[𝑘] =  𝑥̂[𝑘 − 1|𝑘 − 1] −  𝑥̂[𝑘 − 1|𝑘 − 2] (15) 

 

These act as the input features for the recurrent neural network. The RNN uses Fully Connected 

Layers with Rectified Linear Units (ReLU) and a Gated Recurrent Unit (GRU) to provide the 

actual Kalman gain. The network architecture can be seen on 4. Figure with each layer's input 

and output dimensions where m denotes the number of states (in our case 50) and n denotes the 

number of outputs/observations (in our case 64). 

 

 
4. Figure - KalmanNet architecture 

 

With the Kalman gain and using the innovation, the a posteriori state prediction vector is 

calculated. 

 

 𝑦̃[𝑘] = 𝑦[𝑘] − 𝑪[𝑘]𝑥̂[𝑘|𝑘 − 1] + 𝑫[𝑘]𝑢[𝑘] (16) 

 

 𝑥̂[𝑘|𝑘] = 𝑥̂[𝑘|𝑘 − 1] + 𝑲[𝑘]𝑦̃[𝑘] (17) 

 

The whole pipeline for the KalmanNet is presented at 5. Figure. 

 

 
5. Figure - KalmanNet pipeline 

 

As it can be seen, since neither the state estimation covariance (P) nor the innovation covariance 

(S) is used, the noise covariance matrices are not required. The whole pipeline works without 

any information about the model or observation noises. 
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4.2 Training parameters 

The hyperparameters for training were set with the following values. The learning rate value 

was 5*10-7 with ‘on plateau’ learning rate scheduler. This method reduces the learning rate with 

a predefined factor if the validation accuracy hasn’t changed for a given number of ‘patience’ 

epochs. The reduction factor was set to 0.5 and the ‘patience’ epoch number was 3. The chosen 

optimizer for training was the ADAM algorithm with a weight decay value of 10-5. The 

prediction accuracy was calculated with mean squared error (MSE) function. However – 

although the linearized aircraft model is a stable system, the system’s poles are relatively close 

to the unstable region. So, a stability criterion was added to the MSE loss function.  

It is possible to describe the complex system of the aircraft model joined with the Kalman filter 

with an error system: 

 

 𝑒[𝑘 + 1] = (𝑨 − 𝑲𝑪)𝑒[𝑘], (18) 

 

where K is the Kalman gain, e[k] is the state prediction difference at timestep k. If the error 

system’s state transition matrix (A-KC) has any unstable poles, then the whole system is 

unstable. So, the MSE loss was extended with the distance of the error system poles from the 

boundary of stability if it is larger than 0, thus making the loss value larger if the computed 

Kalman gain results an unstable error system.  

As for weights initialization, both the linear layers’ and the GRU cell’s weights were initialized 

with 0 mean, 10-5 standard deviation normal distribution. The reason for having such a small 

standard deviation is the fact that if the initialized weights of the layers are too large, the newly 

initialized network produces such Kalman gains that makes the whole system so unstable, that 

the gradients explode because of the huge prediction error values. 

 

5 RESULTS 

5.1 LPV-based EKF 

The behaviour of the LPV-based EKF was tested with 2 different control signal configurations. 

The first configuration was 2.6 seconds long square-wave doublet inputs on each control surface 

with an amplitude of 6.6° (0.12 rad) while there was a 3-second-long throttle input with an 

amplitude of 10%, which accelerated the aircraft. For constructing the LPV model, the linear 

models were discretized with Ts = 5 ms sampling time. The used control surface inputs and a 

single control surface input is shown at 6. Figure. 

 

  
6. Figure – Single aileron input (left) and all control surface inputs (right) 
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The simulation lasted for 6 seconds which adds up to 1200 samples in total. The initial flight 

conditions of the aircraft model were 42 m/s true airspeed at 800 m altitude with an initial course 

angle of 2°. The initial vertical speed and the roll angle were set to 0. 

The results for the doublet inputs are shown in 7. Figure, where the data with the ground truth 

label show the states of the nonlinear model, while the predictions show the states estimated by 

the filter. Since the main purpose of the observer design is to observe the flexible dynamics of 

the states, only the results for these states are presented. The first 4 modal coordinates are 

plotted where Uf1 is the 1st symmetric bending and Uf2 the 1st asymmetric bending mode. Uf3 

denotes the 1st symmetric torsion mode and Uf4 is the 1st asymmetric torsion mode. The 2 

aerodynamic lag states are plotted as well. 

 

  

  

  
7. Figure - LPV-based EKF with doublet inputs 
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It can be seen, that the LPV-based EKF provides good estimations on the considered state 

dynamics. However, it is important to highlight that the predictions of Uf4 and lag1 have 

inaccuracies and small spikes can be seen around those timesteps where the doublet, square-

wave signal was given on a control surface. 

 

The second input configuration was provided by a baseline controller which keeps the aircraft 

at an oval – the so-called ‘horserace’ – track (8. Figure).  

 

 
8. Figure - Horserace track 

 

This controller is used during real-life flight tests on the T-Flex demonstrator. The LPV model 

was specifically designed for this application that is why the roll angle was selected as a 

scheduling parameter in addition to the true airspeed since during a turning manoeuvre the 

aircraft rotates around its longitudinal axis.  

The initial conditions were the same as in the previous case: 42 m/s flight speed at 800 m 

altitude, with 2° course angle. The whole simulation lasted for 120 seconds which corresponds 

to 1 full lap around the track. 
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9. Figure - LPV-based EKF with baseline controller 

 

From the results (7. Figure) it can be concluded that the designed filter accurately predicts the 

modal coordinates and the aerodynamic lag states. Minor errors occur only during turning 

manoeuvres in Uf3 and lag1 states. The reason behind these is that the LPV model is still just an 

approximation of the real, nonlinear system. However, these inaccuracies are inside the error 

tolerance for this problem. 

 

5.2 KalmanNet 

For training, 20 batches of 1200 sample long trajectories were created. For generating the 

training, validation and test data, the reduced, nonlinear model of the T-Flex was used in 

Simulink. The inputs for the neural network were the observations and control surface and 

throttle inputs of the nonlinear model. The target for the network were the nonlinear model’s 

states.  

During training, validation and testing the KalmanNet used the linear, state-space matrices of 

the nonlinear model trimmed at 42 m/s true airspeed at 800 m altitude with initial course angle 

of 2°. 

In each trajectory, similar doublet and throttle inputs were given to the model as in the case of 

the LPV model. However, the doublet amplitudes were randomly generated between [6°; 10°], 

the length of a doublet from [1.5 s; 2 s]. The exact start time of a doublet was also randomly 

picked to make the training, validation, and testing data more diverse. Also, observation and 

model noise were also incorporated into the data. The noise samples were taken from random 

normal distributions with 0 mean and R and Q covariance matrices respectively.  
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The whole training procedure lasted for 100 epochs. In each epoch 5-5 batches were randomly 

selected from the total 20 for training and validation. The error metrics were defined in decibels 

for the sake of convenience during plotting, because the freshly initialized network tends to 

produce large errors. It is simply calculated with the following formula: 

 

 𝑙𝑜𝑠𝑠𝑀𝑆𝐸
𝑑𝐵 = 10 log10(𝑙𝑜𝑠𝑠𝑀𝑆𝐸) (19) 

 

Before the training procedure, a simple Kalman filter was designed to the linear state-space 

model used by the KalmanNet as a reference. The summary of the training is presented at 10. 

Figure. 

 
10. Figure - Training graph (Kalman filter included for reference) 

 

The initial flight conditions for testing were set to 42 m/s true airspeed at 800 m altitude with 

initial course angle of 2° in the T-Flex nonlinear model. The results are shown in 11. Figure 
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11. Figure - KalmanNet predictions with doublet inputs 

 

The results indicate the following: the network manages to give better predictions in the case 

of Uf1, Uf4 and lag1 than the LPV-based filter. However, in the case of the other states, the 

accuracy of the predictions is worse than the EKF. The reason for this is that the KalmanNet 

only uses the linear state space model, corresponding to the initial flight conditions, but as the 

inputs are given on the control surfaces, the behaviour of the nonlinear model starts to differ 

more and more form the initial linear model. However, even with this handicap, it still manages 

to perform better than a standard Kalman filter designed for the initial flight condition’s linear 

model -23 dB test error compared to -11.3 dB for the Kalman filter. This suggests that it can 

alleviate some of the inaccuracies caused by the discrepancies between the linearized and the 

nonlinear model. 

 

The training of the neural network was carried out with a Nvidia Tesla V100 GPU with 32 GB 

RAM. Using this setup, the training lasted for approximately 4 - 4.5 hours. 

Considering the results, we can conclude that only using a simple Kalman filter fitted to a 

linearized/trimmed model is a suboptimal solution to accurately predict the flexible dynamics 

of the nonlinear system. However, using an LPV-based EKF can provide good estimations. The 

use of the new KalmanNet architecture shows that even when it only has access to the linearized 

model while seeing data from the nonlinear model, it can overcome some of the inaccuracies 

coming from the differences between the models while not using any information about these 

model uncertainties. In order to give quantitative comparison of the performance of the 2 

proposed architecture estimating the modal coordinates and lag states the previously mentioned 

logarithmic error metric was used. This is presented in 1. Table.  
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1. Table: Prediction errors 

Description lossdB
MSE, dB 

Kalman filter (as a 

reference) 
-11.3 

LPV-based EKF -29.5 

KalmanNet -23 

 

In case of the KalmanNet-based flexible dynamics estimation further research is needed in 

which the network will use the LPV model as the representation of the dynamic system. 

 

6 CONCLUSION 

To summarize, in this work we propose a model-based and a data-driven approach to estimate 

the flexible dynamics of a UAV with large wingspan and highly flexible wings. The model-

based approach uses an LPV-based EKF while the data-driven solution utilizes the KalmanNet 

architecture. We show that the EKF-based estimator is able to predict the flexible and 

aerodynamic lag states both for doublet ‘test’ control surface inputs and for baseline controller 

inputs. The neural network-based approach is also capable of estimating the above-mentioned 

states, however, to obtain better, more accurate results, further research is needed. Our long-

term goals include extending the KalmanNet architecture with the LPV system model to have 

a better approximation of the original, nonlinear system and conduct training with this 

modification. It is also a prospective goal to test both architectures in real life flight data and 

then incorporate them in the T-Flex’s FCC for real-time, airborne operations. With this, it will 

be possible to design a wing shape controller to minimize aerodynamic drag during flights. 
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