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Abstract—Mendelian randomization (MR) is often used in
medical studies and biostatistics, to reveal direct causation effects
between exposures and diseases, typically the effect of some
exposure (like chemicals, habits and other factors) to a known
disease or disorder. However, this procedure has some strict pre-
requisites, which often do not comply with the known variables,
or the exact causal structure of the variables is not known in
advance. In this study, we investigate the use of constraint-based
causal discovery algorithms (PC, FCI and RFCI) to produce a
sufficient causal structure from the known observations, to aid us
in finding variable triplets, upon which MR can be performed.
In addition, we show that the validity of MR cannot always
be determined based on its results alone. Finally, we investigate
the application of the MR principle to determine the direction
of causality between variable-pairs, which is a problem most
constraint-based causal discovery methods struggle with.

Index Terms—Mendelian Randomization, Bayesian networks,
constraint-based causal discovery, causal effect strength, bio-
statistics

I. INTRODUCTION

In this study, we investigate three constraint-based causal
discovery methods, and Mendelian Randomization (MR),
which is a well-known method for causal effect estimation
in biostatistics and medical studies, and then we examine
two different approaches to combine them. A similar study
including genetic anchors has been performed by Howey et al.
[1], in which they investigated some simple causal structures
regarding MR. Here, we take a more general approach with
regards to the size and number of the investigated causal
graphs, and we also examine the usability of the MR principle
to help determine the direction of causality in uncertain cases.

II. MENDELIAN RANDOMIZATION

MR can be classified as a local causal discovery method
applied in the field of genetic studies. However, while obser-
vational data based general causal discovery methods learn the
causal structure from data with no prior assumptions regarding
the structure, MR methods are based on a predefined causal
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structure relying on a set of assumptions which need to be
fulfilled [2]. The MR model (causal structure) is a causal chain
formed by a triplet of variables (G→ E → D) which consists
of the following elements:

• Genetic variant (G): the gene whose effect is being
studied.

• Exposure factor (E): an event, occurrence or influencing
factor to which susceptibility is influenced by a genetic
variant, and that factor has an effect on the disease.

• Disease (D): the diagnosis itself, which may be influenced
by the previous factors.

• Confounding factor (U): additional variable that is not
part of the chain but may affect the exposure and disease
variables.

MR methods use the effect size (e.g. log odds ratio in case
of categorical variables) between the gene - exposure (βGE)
and the gene - disease (βGD) variables to infer the magnitude
of the effect between the exposure and the disease (βED) as:
βED = βGD

βGE
, which can be treated as a Wald ratio and its

significance can be determined accordingly [3]. A significant
ratio can be considered as an indication that the causal effect
between the exposure and the disease is significant and that
the causal relationship E → D exist.

The assumed MR structure (displayed in Fig. 1) encodes
the following assumptions:

• A1: The association between the genetic variant and the
exposure factor should be strong. In its absence, the
strength of the MR is reduced and bias may occur.

• A2: The genetic variant is independent of the confound-
ing factor. Otherwise, the confounding factor would affect
both the disease and the genetic variant, which may imply
that the gene-disease effect detected by the method is only
indicative of the difference due to the confounding factor.

• A3: The disease is conditionally independent of the
genetic variant given the exposure factor. It follows that
the gene does not directly influence the presence of the
disease, instead it only has a mediated effect.

The main question of MR methods is how to ensure
this specific structure shown in Fig.1. In general, it requires



Fig. 1. The assumed MR model.

considerable background knowledge to exclude variables from
the dataset that do not satisfy the validity assumptions. The
main weakness of the MR method is its simplistic, rigid model.
Although it can be efficient when the investigated relationships
are simple, i.e. there are no confounding or interacting factors,
in more complex cases however, the assumptions of the MR
model are unrealistic. This either leads to the inability to
use MR methods in several real-word scenarios or to an
inappropriate application of MR disregarding some of the
validity assumptions. To address this issue, the basic model
has been extended in several ways to make the method more
robust: MR Egger [4], MR-link [5]. However, the main feature
of causal structure learning algorithms, i.e. the structure is
learned from the data, is still missing from MR methods.

III. CAUSAL STRUCTURE LEARNING METHODS

We selected three widely-known constraint-based methods
to investigate their integrated application with a MR method:
the Peter-Clark (or PC) algorithm, Fast Causal Inference (FCI)
and Really Fast Causal Inference (RFCI).

A. The Peter-Clark algorithm

The Peter-Clark (PC) algorithm is a local method [7], rely-
ing on examining variable pairs to determine if they are (con-
ditionally) dependent, and variable triplets - or more precisely,
chain structures containing exactly 3 variables - to determine
the direction of causality between the dependent variables. The
former step leads to a skeleton, i.e. an undirected graph of
dependency relationships which can be facilitated by applying
conditional independence tests on variables. The latter step
requires the detection of triplet-based uniquely identifiable
dependency structures, called V-structures [6] (X → Z ← Y ),
whose edges can be unambigously directed. The second step
leaves those edges undirected that are not part of a V-structure,
which may include a significant number of edges. Additional
steps using various heuristics may be applied to orient these
undirected edges.

B. Fast Causal Inference

While the PC algorithm is built to reconstruct the full
causal graph of the variables, the Fast Causal Inference (FCI)
[8] and its more efficient version, the Really Fast Causal
Inference (RFCI) algorithm [9] both aim to reconstruct the
equivalence class of the original causal structure, represented
by its essential graph, which is a partially directed acyclic
graph (PDAG).

IV. APPROACH NO. 1: AUGMENTING MR WITH CAUSAL
STRUCTURE LEARNING

In our first approach, we investigated the usefulness of
the causal discovery methods described in section III. to
determine if MR is applicable for a given Gene-Exposure-
Disease variable triplet. In our methods, if the three variables
form a directed chain in the same order (G→ E → D), then
it is considered as a valid candidate for MR, and considered
invalid otherwise.

First, we examined some simple causal structures, shown in
Fig. 2. For these models, the PC, FCI and RFCI algorithms
were all capable to reliably reconstruct the original causal
graph from at least 1000 samples. This is the expected result,
because almost all of the edges are part of at least one V-
structure, apart from the edge (3 → 4) in Model 1 and
the edges (3 → 4) and (3 → 5) in Model 3. In our tests,
all the variables were binary, which represents a discrete
variable case of MR. Note that it is also possible to apply
MR for continuous disease score and exposure variables.
The conditional probabilities were sampled randomly from
a uniform distribution. From the simpler graphs, the invalid
triplets (where at least one of the G → E and E → D
edges were missing) produced similar Wald-ratios (which are
estimations1 for βED given by βED = βGD

βGE
) to the valid

triplets. This suggests that there are certain cases, in which the
applicability of MR cannot be determined by the estimation
on βED alone.

To investigate this more generally, we made 50 randomly
generated causal graphs, using a simple stochastic algorithm,
which iteratively generated random parent-sets for every node
(selected from the previously visited nodes), thus creating
a guaranteed DAG. Out of the 50 models 25 models had
5 Gene, 3 Exposure and 2 Disease variables (10 in total),
while the other 25 had 15 Gene, 10 Exposure and 5 Disease
variables (30 in total). The 25 smaller graphs had 6.6 valid
and 23.4 invalid paths on average (30 possible paths in
total), while the 25 larger models had 20 valid and 730
invalid paths on average (750 possible paths in total). This
level of sparsity is roughly representative of the true causal
structures of real-world datasets containing Genetic, Exposure
and Disease variables. To examine the results of MR, we are
only concerned with the estimated strength of causal effect
between the Exposure and Disease variables. This value is
higher, if βED is far from 0 in any direction (positive or
negative), therefore it is appropriate to use the absolute value
of β as a measure for the strength of causal effect. The
resulting |β| values for the randomly generated partitioned
graphs are presented in Table I. From these results, it is evident
that the expected value (E) and standard error (σ) of |βED| is
significantly larger for invalid triplets, compared to the valid
ones.

1To estimate the β (effect size) between supposed cause-effect variable
pairs, we used logistic regression with 35 steps and the Newton-Raphson
optimizer, yielding logarithmic odds-ratios (log(OR)).



This can be explained by a simple phenomenon: if we take
four variables: {X , Y , Z, W}, where (X → Y → Z) form
a valid triplet, so Y is strongly dependent on X , and Z is
strongly dependent on Y , but W has no causal connection to
any of the other three variables. Therefore, the value of |βXZ |
will be high (because X affects Z through Y ), but the value
of βXW will be close to 0, because they are independent.
As a result, if we (wrongly) perform MR on the {X , W ,
Z} invalid triplet, then we will get a high value for |βWZ | =
|βXZ/βXW |. Because of this, we can get a significantly higher
|β| value for invalid triplets even compared to the valid ones,
therefore the use of causal discovery methods are well justified
to rule out the invalid cases.

In terms of predictive performance, all three methods were
able to find on average 50% of the valid triplets in our 50
partitioned models at 15.000 samples, with a precision of 98%,
which means, that 98% of the predicted triplets were correct.

Fig. 2. Models used to demonstrate typical MR β-values. The gene, exposure
and disease variables are marked accordingly with red, blue and yellow colors.

V. APPROACH NO. 2: ORIENTING UNDIRECTED EDGES
USING THE MR PRINCIPLE

As we have discussed before, the FCI and RFCI algorithms
produce a partially directed graph, where the undirected edges
are assumed to be undirected – by the algorithm – in the
original essential graph, which belongs to the equivalence
class of the original causal structure. In other words, the
algorithm assumes that these edges cannot be directed given
the known data. Although, within real-world datasets, the
number of known samples are finite, and often susceptible to
noise. Because of this, we assume that the predicted essential
graph will not be perfect, therefore in some cases, the edges
that are left undirected by the FCI and RFCI algorithms can
be directed by investigating the possible candidate triplets for
MR, which the edge in question is a part of. To examine this
theory, we propose a method, that consists of the following
steps:

1) Acquire a partially directed acyclic graph G from the
known samples using an arbitrary constraint-based struc-
ture learning algorithm.

2) For every undirected (X − Y ) edge in G, search for
all the possible genetic variables, which are not already
invalidated by the known directed edges. This includes
all the neighbors of X and Y , which are either their
parents or they are connected to either of them by an
undirected edge. Let’s mark the set of these candidate
variables by CX and CY for the neighbors of X (not
including Y ) and the neighbors of Y (not including X)
respectively.

3) For every undirected (X − Y ) edge in G, find the best
candidates for genetic variables GX and GY (in terms
of both directions), which are given by:

GX = argmax
GX∈CX

∣∣∣∣βGXY

βGXX

∣∣∣∣ GY = argmax
GY ∈CY

∣∣∣∣βGY X

βGY Y

∣∣∣∣ (1)

4) Use GX to calculate βXY and GY to calculate βY X . If
βXY > βY X then orient the edge as X → Y , otherwise
orient the edge as X ← Y

This method basically finds the best possible MR triplet
for both directions, and orients the edge at the direction
determined by the triplet with the highest |βED| score. While
the PC method does not give a direct estimation to the essential
graph of the original causal structure, it does not provide a
direction for most of the edges in the skeleton which are not
part of an V-structure. Therefore, we will also examine the
applicability of the above described method for the edges that
are left undirected by the PC algorithm.
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Fig. 3. Edge orientation accuracy (on undirected edges) by the MR β metric,
across multiple causal discovery algorithms on partitioned causal graphs with
10 and 30 nodes, with log(OR) beta values. Note, that in case of the
unoriented edges of the PC algorithm for the 10-node partitioned graphs,
a large number of edges could not be oriented by MR, because they had
at least one 0 value in their contingency table, therefore its results are not
significant for these graphs. This also explains the outlying accuracy numbers
of PC 10 compared to FCI 10 and RFCI 10.



TABLE I
ABSOLUTE β-SCORES ON VALID AND INVALID EXPOSURE-DISEASE TRIPLETS

Log Odds-Ratio
Variable count Valid Invalid

Sample count G E D E(|β|) σ(|β|) E(|β|) σ(|β|)
500 5 3 2 0.84 4.21 5.05 36.39

1000 5 3 2 0.69 2.43 5.16 18.57
5000 5 3 2 0.31 0.51 14.29 143.59

10000 5 3 2 0.32 0.98 8.89 37.49
15000 5 3 2 0.32 0.74 10.81 47.06

500 15 10 5 0.66 1.57 4.25 23.81
1000 15 10 5 0.91 4.76 7.08 181.81
5000 15 10 5 0.70 5.56 10.05 286.69

10000 15 10 5 0.45 4.20 6.96 60.45
15000 15 10 5 0.23 0.34 8.64 124.34

In terms of results, the orientation accuracy of our method
on the edges left undirected by the PC, FCI and RFCI
algorithms on the 50 randomly generated partitioned graphs
can be seen in Fig. 3. These results indicate, that our method
can predict the orientation of the undirected edges at above-
chance levels, from at least 1000 samples. Note, that the
partitioned nature of the original causal graph is not assumed
by the causal discovery algorithms, and neither by our method,
because of which most of the edges oriented by our method
are not actually between supposed Exposure-Disease variables.
If that were the case, the accuracy would be significantly
higher. However, this is an assumption which we cannot
make without prior knowledge about the variables, which
is not always available. In the partitioned graphs with 10
nodes and 15.000 samples, on average 34% of the edges
predicted by FCI and RFCI were undirected, while this ratio
rose to 41% in the partitioned graphs with 30 nodes with
both algorithms. The PC algorithm left 44% of the edges
undirected in the partitioned graphs with 10 nodes, and this
ratio fell to 38% for the partitioned graphs with 30 nodes.
If we orient these edges randomly (with an even distribution),
then in the partitioned graphs with 10 nodes, the FCI and RFCI
algorithms oriented 74% of all predicted edges correctly, while
this accuracy raises to 77% on average with both algorithms,
if we used our method to orient the undirected edges. In
case of the unoriented edges of the PC algorithm for the 10-
node partitioned graphs, a large number of edges could not be
oriented by MR, because they had at least one 0 value in their
contingency table, therefore the results were not significant.
This also explains the outlying metrics of PC 10 in Fig. 3.
In case of the partitioned graphs with 30 nodes and also
15.000 samples, MR improved the orientation accuracy of
the FCI and RFCI methods from 67% (with random edge
orientation) to 72% (with MR edge orientation). However, on
these 30-node graphs, the edge orientation accuracy of PC
only marginally improved to 74% with MR, compared to the
73% that the algorithm would produce with random undirected
edge orientation.

Finally, for the sake of completeness, we also examined the
edge orientation performance of this method on completely
random directed acyclic graphs (which are therefore not parti-

tioned). Unsurprisingly, it did not produce the same above-
chance accuracy values seen on partitioned graphs, further
supporting our belief that it only works on the second edge of
valid Gene-Exposure-Disease triplets.

VI. CONCLUSION

In this study, we showed that the validity of MR cannot
necessarily be determined based on its result, therefore it is
advisable to use causal discovery methods for this purpose. We
also showed, that MR (for a certain class of directed acyclic
causal structures) can improve the edge-orientation capability
of the PC, FCI and RFCI methods in terms of the edges that are
left unoriented by the original algorithm. As further research,
we plan to investigate the integration of MR into other types
of causal discovery algorithms, like score-based methods.
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