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Abstract
The setoid model of Martin-Löf’s type theory bootstraps extensional features of type theory from
intensional type theory equipped with a universe of definitionally proof irrelevant (strict) propositions.
Extensional features include a Prop-valued identity type with a strong transport rule and function
extensionality. We show that a setoid model supporting these features can be defined in intensional
type theory without any of these features. The key component is a point-free notion of propositions.
Our construction suggests that strict algebraic structures can be defined along the same lines in
intensional type theory.
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1 Introduction

The setoid model of type theory pioneered by Hofmann [15] supports the following extensional
features that are missing from intensional type theory: function extensionality, propositional
extensionality (univalence for propositions [4]) and quotient inductive-inductive types [18].
If the setoid model is defined in an intensional metatheory and all equations of the model
(such as the β rule) hold definitionally, then it constitutes a model construction (also called
syntactic translation): any model of intensional type theory can be turned into its “setoidified”
variant which supports the extensional features, thus bootstrapping the extensional features
from intensional type theory. Hofmann’s original model only justified some of the equations
definitionally. Altenkirch showed that if the metatheory supports a sort TyP of definitionally
proof irrelevant propositions in addition to the sort Ty of types, then there is a version of
the setoid model where all equations are definitional [2]. After he presented this model
construction at the Symposium on Logic in Computer Science in 1999 [2], Per Martin-Löf
asked whether it is possible to remove the extra requirement of TyP. As far as we know, the
question is still open.
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6:2 Internal Strict Propositions Using Point-Free Equations

In this setoid model a closed type is a setoid: a type together with an equivalence relation;
a term is a function between the types which respects the relations. If the equivalence relation
is proof relevant (Ty-valued), then terms have to additionally include components about
respecting the reflexivity, symmetry and transitivity proofs, then when proving equalities
of terms (such as the β law), one has to show that the corresponding new components
are equal, which forces the introduction of new components, and so on. This problem
is usually referred to as coherence problem, see [15, Section 5.3] for a discussion in the
context of the setoid model, or [19] for a recent exposition of the general phenomenon.
Altenkirch’s solution [2] was to make the relation TyP-valued instead of Ty-valued: in this
case, terms automatically respect reflexivity proofs as there is only one proof of reflexivity,
up to definitional equality. We could avoid requiring TyP by using the internally definable
universe of homotopy propositions hProp [23]. If the relation is hProp-valued, terms respect
reflexivity proofs up to the internal identity type. However to show that the relation for Π
types is in hProp, we need that hProp is closed under Π. To prove this, we need function
extensionality, which defeats the purpose of the model bootstrapping function extensionality.

In this paper we show that in intensional type theory there is an alternative notion of
proposition that is closed under Π. A type A is an hProp if any two elements of A are equal.
We can also express this equation in a point-free way: the two functions “first” and “second”
both having type A Ñ A Ñ A are equal. We call this property isPfProp for point-free
propositions.

isHProp A ” pa a1 : Aq Ñ IdA a a1 isPfProp A ” IdpAÑAÑAq pλa a1.aq pλa a1.a1q

In the presence of function extensionality, isHProp A and isPfProp A are equivalent. However,
in intensional type theory without function extensionality, the latter is stronger. isPfProp
classifies definitionally proof irrelevant types in the empty context: from canonicity it follows
that if isPfProp A for a closed type A, then all elements of A are definitionally equal. For a
type family A : D Ñ Type over a closed type we use a dependent variant of isPfProp:

isPfPropd A ” Idppd:DqÑA dÑA dÑA dq pλd a a1.aq pλd a a1.a1q

In intensional type theory, unlike hProp, isPfPropd is closed under Π types. This essentially
relies on the η rule for Π types. Using η for Σ and J, we can prove that isPfPropd is closed
under these type formers too. isPfProp only includes K if it has a weak η rule saying that
any two elements of K are definitionally equal. This is usually not the case in intensional
type theory where K is defined as an inductive type.

With the help of point-free propositions, we give a partial positive answer to Martin-Löf’s
question: in intensional type theory without a sort of propositions, we define the setoid model
with K, J, Π, Σ, types, a sort TyP closed under J, Π, Σ and a TyP-valued identity type
with function extensionality. Our answer is partial because K is not in TyP, and the model
does not support inductive types, or a universe of propositions. We also define an external
version of this model as a model construction taking as input a model of intensional type
theory, and outputting a model with extensionality principles. This latter construction only
uses external point-free propositions which are the same as subobjects in category theory,
but we still haven’t encountered it in the literature.

Recently, there is a renewed interest in models of type theory with a sort TyP. Agda was
extended with a universe of strict propositions [13], this was used to formalise fully featured
variants of the setoid model [4, 3, 18], strict presheaf models were built using TyP [22], and
the metatheory of type theories with TyP was studied [1, 11]. One difference between TyP
and pfProp is that (as every sort) the former is static: it only includes types which are built



I. Donkó and A. Kaposi 6:3

into it. The latter is dynamic: any type is included for which all elements are definitionally
equal. Another difference is that proof irrelevance holds definitionally for assumed elements
of TyP, while we only know proof irrelevance up to propositional equality for members of
pfProp.

More generally, in intensional type theory, point-free equations can be used to describe
strict algebraic structures. One has to express the algebraic equations in a point-free way.
For example, in a strict monoid with carrier M and binary operation – b –, associativity is
expressed as IdMÑMÑMÑM

`

λx y z.px b yq b z
˘ `

λx y z.x b py b zq
˘

. Natural numbers with
addition are not a strict monoid because addition is only weakly associative. An example of
a strict monoid is the function space A Ñ A for any type A with composition as the binary
operation.

1.1 Structure of the paper
After describing related work, in Section 2 we explain our notation and the notion of model
of type theory we use (category with families). In Section 3 we define point-free propositions
and show that they are closed under J, Σ and Π. In Section 4, we show that any model
of type theory can be equipped with a sort of strict propositions. This can be seen as the
external version of Section 3. We compare the internal and external notions of propositions
in Section 5. Then we describe how point-free propositions can be applied to construct the
setoid model. As a warmup, we define the model construction externally (Section 6). Then
we turn to our main application of internal point-free propositions and define the setoid
model internally to a model of intensional type theory (Section 7). In Section 8 we give more
examples of strict algebraic structures. We conclude in Section 9.

Sections 3 and 7 were formalised in Agda [12], and can be understood without much
intuition about categories with families.

1.2 Related work
Hofmann defined two versions of the setoid model in an intensional metatheory [15], one
of them did not have dependent types, the other justified some computation rules (e.g. β

rules for Σ types) only up to propositional equality, and not definitionally. Altenkirch [2]
justified all the rules of type theory but relied on a definitionally proof-irrelevant universe
of propositions. He sketched a normalisation proof for a type theory with such a universe.
Coquand [9] defined a setoid model in intensional type theory which justifies a weak function
space: there is no substitution rule for λ and no η rule. Palmgren [21] formalised a set-
theoretic interpretation of extensional type theory in an intensional metatheory. He used
setoids for encoding sets as well-founded trees quotiented by bisimulation, hence it can also
be seen as a setoid model. Thus it is similar to our Construction 17 and it justifies more
types including inductive types and a universe. It is not clear whether one can obtain a
model construction analogous to Construction 15 from his interpretation.

Strict propositions were introduced in Agda and Coq in a way that is compatible with
univalence [13]. Issues with rewriting-style normalisation for a type theory with strict
propositions, a strict identity type and a strong transport were found by Abel and Coquand
[1]. Normalisation for type theory with strict propositions but without such an identity type
was proved by Coquand [11].

The setoid model as a model construction was described in [4] together with an Agda
formalisation using strict propositions in Agda. This was extended with an inductive-recursive
universe of setoids in [3].

TYPES 2021



6:4 Internal Strict Propositions Using Point-Free Equations

In [4], a variant of the setoid model was described in which transport has a definitional
computation rule. In the accompanying formalisation, a point-free equation was used to ensure
this property: instead of pa : Aq Ñ coeA refl a “ a, the equation pλa.coeA refl aq “ pλa.aq was
used. In his brilliant paper [16], Hugunin shows that function extensionality is not needed to
define natural numbers (and inductive types) from W-types in intensional type theory. He
constructs a predicate which selects the “canonical” elements in natural numbers defined by
W-types. His construction has a similar “point-free” flavour and also essentially relies on η

for function space.

2 Type theory

Our metatheory is extensional type theory and we use notations similar to Agda’s. We write
Type for the Russell universe (we don’t write levels explicitly, but we work in a predicative
setting), we write ” for definitional equality, we write px : Aq Ñ B for function space with
λpx : Aq.t or λx.t for abstraction, juxtaposition for application, px : AqˆB for Σ types with a, b

for pairing and π1 ab, π2 ab for projections. We use the lower case Simonyi naming convention,
e.g. ab is a name for a variable in px : Aq ˆ B. We use implicit arguments and implicit
quantifications which we sometimes specify explicitly in subscripts. We write J, tt for the
unit type and its constructor. Function space, dependent products and unit have η laws. We
write IdA a a1 or a “A a1 or simply a “ a1 for the identity type, it has constructor refl : IdA a a

and eliminator J :
`

P : pa1 : Aq Ñ a “ a1 Ñ Type
˘

Ñ P a refl Ñ pe : a “ a1q Ñ P a1 e with
definitional computation rules. We write transp : pP : A Ñ Typeq Ñ a “ a1 Ñ P a Ñ P a1,
e ‚ e1 : a “ a2 for e : a “ a1 and e1 : a1 “ a2, ap f e : f a “ f a1 for e : a “ a1, all defined via J.
The empty type is denoted K with eliminator elimK. We assume quotient inductive-inductive
types (QIITs), that is, we have syntaxes for type theories (see paragraph after the next one).

In some places (e.g. in sections 3 and 7), we work internally to a model of intensional
type theory, and use the same notations as for our metatheory. In these cases we specify
precisely what features our model has and we only use those features, for example we don’t
use equality reflection. In such cases we use the phrase “external” to refer to the metatheory.

The notion of model of type theory we use is category with families (CwF, [8]). Using this
presentation, type theory is a generalised algebraic theory and the syntax of a type theory is
the initial algebra which is a QIIT. In extensional type theory, it is enough to assume the
existence of a single QIIT to obtain syntaxes for all generalised algebraic theories [17]. We
assume the existence of this QIIT (called the theory of QIIT signatures in [17]).

We give some intuition for the description of type theory as a CwF here. A gentler
introduction is e.g. [5]. Figure 1 lists the components of a model of type theory with J, Σ, Π, K

and Id types. A model of type theory consists of a category with families (CwF, left hand side
of the figure), that is, a category of contexts and substitutions (Con, . . . , idr) with a terminal
object (the empty context ˛, the empty substitution ϵ, ˛η), a presheaf of types (Ty, . . . , rids)
and a locally representable dependent presheaf of terms over types (Tm, . . . ,▷η). Local
representability is also called comprehension, and consists of the context extension operation
– ▷ – together with the natural isomorphism Sub ∆ pΓ ▷ Aq – pγ : Sub ∆ Γq ˆ Tm ∆ pArγsq

witnessed by – , – , . . . ,▷η. Note that many operations have implicit arguments, for example
– ˝ – takes Γ, ∆, Θ implicitly. Also, some equations only typecheck because of previous
equations, for example, rids for terms depends on rids for types: the left hand side is in
Tm Γ pAridsq, the right hand side is in Tm Γ A. We don’t write the transports because we
work in extensional type theory.
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Con : Set J : Ty Γ
Sub : Con Ñ Con Ñ Set Jrs : Jrγs ” J

– ˝ – : Sub ∆ Γ Ñ Sub Θ ∆ Ñ Sub Θ Γ tt : Tm Γ J

ass : pγ ˝ δq ˝ θ ” γ ˝ pδ ˝ θq Jη : pt : Tm Γ Jq Ñ t ” tt
id : Sub Γ Γ Σ : pA : Ty Γq Ñ Ty pΓ ▷ Aq Ñ Ty Γ
idl : id ˝ γ ” γ Σrs : pΣ A Bqrγs ” Σ pArγsq pBrγ ˝ p, qsq

idr : γ ˝ id ” γ – , – : pa : Tm Γ Aq Ñ Tm Γ pBrid, asq Ñ

˛ : Con Tm Γ pΣ A Bq

ϵ : Sub Γ ˛ π1 : Tm Γ pΣ A Bq Ñ Tm Γ A

˛η : pσ : Sub Γ ˛q Ñ σ ” ϵ π2 : pab : Tm Γ pΣ A Bqq Ñ

Ty : Con Ñ Set Tm Γ pBrid, π1 absq

– r– s : Ty Γ Ñ Sub ∆ Γ Ñ Ty ∆ Σβ1 : π1 pa, bq ” a

r˝s : Arγ ˝ δs ” Arγsrδs Σβ1 : π2 pa, bq ” b

rids : Arids ” A Ση : pπ1 ab, π2 abq ” ab

Tm : pΓ : Conq Ñ Ty Γ Ñ Set ,rs : pa, bqrγs ” parγs, brγsq

– r– s : Tm Γ A Ñ pγ : Sub ∆ Γq Ñ Π : pA : Ty Γq Ñ Ty pΓ ▷ Aq Ñ Ty Γ
Tm ∆ pArγsq Πrs : pΠ A Bqrγs ” Π pArγsq pBrγ ˝ p, qsq

r˝s : arγ ˝ δs ” arγsrδs lam : Tm pΓ ▷ Aq B Ñ Tm Γ pΠ A Bq

rids : arids ” a app : Tm Γ pΠ A Bq Ñ Tm pΓ ▷ Aq B

– ▷ – : pΓ : Conq Ñ Ty Γ Ñ Con Πβ : app plam tq ” t

– , – : pγ : Sub ∆ Γq Ñ Tm ∆ pArγsq Ñ Πη : lam papp tq ” t

Sub ∆ pΓ ▷ Aq lamrs : plam tqrγs ” lam ptrγ ˝ p, qsq

pA : Sub pΓ ▷ Aq Γ K : Ty Γ
qA : Tm pΓ ▷ Aq pArpsq Krs : Krγs ” K

▷β1 : p ˝ pγ, aq ” γ elimK : Tm Γ K Ñ Tm Γ A

▷β2 : qrγ, as ” a elimKrs : pelimK tqrγs ” elimK ptrγsq

▷η : pp ˝ γa, qrγasq ” γa Id– : pA : Ty Γq Ñ Tm Γ A Ñ Tm Γ A Ñ

Ty Γ
Idrs : pIdA a a1

qrγs ” IdArγs parγsq pa1
rγsq

refl : Tm Γ pIdA a aq

reflrs : reflrγs ” refl
J : pP : Ty pΓ ▷ A ▷ IdArps parpsq qqq Ñ

Tm Γ pP rid, a, reflsq Ñ

pe : Tm Γ pIdA a a1
qq Ñ

Tm Γ pP rid, a1, esq

Jβ : J P w refl ” w

Jrs : pJ P w eqrγs ”

J pP rγ ˝ p ˝ p, qrps, qsq pwrγsq perγsq

Figure 1 A model of type theory with J, Σ, Π, K, Id. The left column is the definition of CwF,
the right column contains the rules for the type formers, one after the other, in the same order.

TYPES 2021



6:6 Internal Strict Propositions Using Point-Free Equations

, ˝ : pγ, aq ˝ δ ” pγ ˝ δ, arδsq

π1rs : pπ1 abqrγs ” π1 pabrγsq

π2rs : pπ2 abqrγs ” π2 pabrγsq

– ˆ – : Ty Γ Ñ Ty Γ Ñ Ty Γ
A ˆ B :” Σ A pBrpsq

apprs : papp tqrγ ˝ p, qs ” app ptrγsq

– $ – : Tm Γ pΠ A Bq Ñ pa : Tm Γ Aq Ñ Tm Γ pBrid, asq

t $ a :” papp tqrid, as

$β : lam t $ a ” trid, as

$rs : pt $ aqrγs ” trγs $ arγs

– ñ – : Ty Γ Ñ Ty Γ Ñ Ty Γ
A ñ B :” Π A pBrpsq

Figure 2 Provable equations and definable operations in a model of type theory with Σ, Π.

TyP : Con Ñ Set
–r–s : TyP Γ Ñ Sub ∆ Γ Ñ TyP ∆
r˝s : Arγ ˝ δs ” Arγsrδs

rids : Arids ” A

Ò : TyP Γ Ñ Ty Γ
Òrs : pÒAqrγs ” ÒpArγsq

irr : pu v : Tm Γ pÒAqq Ñ u ” v

JP : TyP Γ
JPrs : JPrγs ” JP
ttP : Tm Γ JP
ΣP : pA : TyP Γq Ñ TyP pΓ ▷ ÒAq Ñ TyP Γ
ΣPrs : pΣP A Bqrγs ” ΣP pArγsq pBrγ ˝ p, qsq

– ,P– : pa : Tm Γ pÒAqq Ñ Tm Γ pÒBrid, asq Ñ Tm Γ pÒΣP A Bq

π1P : Tm Γ pÒΣP A Bq Ñ Tm Γ A

π2P : pab : Tm Γ pÒΣP A Bqq Ñ Tm Γ pÒBrid, π1 absq

ΠP : pA : Ty Γq Ñ TyP pΓ ▷ Aq Ñ TyP Γ
ΠPrs : pΠP A Bqrγs ” ΠP pArγsq pBrγ ˝ p, qsq

lamP : Tm pΓ ▷ Aq pÒBq Ñ Tm Γ pÒΠP A Bq

appP : Tm Γ pÒΠP A Bq Ñ Tm pΓ ▷ Aq pÒBq

Figure 3 A model of type theory has a sort of proof-irrelevant propositions closed under J, Σ, Π.
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Variables are represented using typed De Bruijn indices. The zero De Bruijn index is
q : Tm pΓ ▷ Aq pArpsq, the one index is given by qrps : Tm pΓ ▷ A ▷ Bq pArpsrpsq, two is
qrpsrps : Tm pΓ▷A▷B ▷Cq pArpsrpsrpsq, and so on. Some provable equations and definable
operations are listed in Figure 2.

The right hand side of Figure 1 lists rules for J, Σ, Π, K and Id types, in this order. The
first three type formers have η laws, the latter two don’t (they are instances of inductive
types). Every operation comes with substitution laws (e.g. lamrs), some of them are not
listed as they are provable (see Figure 2). Non-dependent special cases of Π and Σ are also
listed there.

Figure 3 lists the operations and equations for a model having a sort of definitionally
proof-irrelevant propositions TyP which is closed under J, Σ and Π. Terms of propositional
types are expressed with the help of lifting Ò which converts a TyP into a Ty. Because of irr,
there is no need to state equations for terms of lifted types, all equations hold.

Two important properties of models that we sometimes assume are canonicity [10] and
normalisation [6, 10]. Canonicity for K says that there is no Tm ˛ K. Canonicity for Id says
that for any t : Tm ˛ pIdA a a1q, we have a ” a1 and t ” refl. Normalisation says that there
is a function from terms to normal forms norm : Tm Γ A Ñ Nf Γ A such that all terms are
equal to their normalised versions (x–y is the inclusion from Nf to Tm): for all a : Tm Γ A,
xnorm ay “ a. Normal forms for the theory of Figure 1 are defined mutually with variables
and neutral terms by the following three inductive types.

x ::“ q | xrps variables
n ::“ x | π1 n | π2 n | n $ v | elimK n | J A v n neutral terms
v :“ n˚ | tt | pv, vq | lam v | refl normal forms

These should be understood as typed rules and there is a restriction (n˚) that only neutral
terms at base types are included in normal forms. Base types are K and Id in our case.

Sometimes we just talk about intensional type theory when we don’t want to specify
precisely what type formers we have in a model.

3 Point-free propositions internally

In this section we show that (the dependent variant of) point-free propositions is closed
under J, Σ and Π. We work internally to a model of type theory with a universe Type closed
under type formers Id, J, Σ, Π. This section was formalised in Agda [12].

The η rule for J says that for any two t, t1 : J we have t ” t1, so we also have that
pλpt t1 : Jq.tq ” pλt t1.t1q, hence refl :

`

pλt t1.tq “ pλt t1.t1q
˘

” isPfProp J.
As a warmup for Σ, we prove closure under non-dependent products.

▶ Proposition 1. If isPfProp A and isPfProp B, then isPfProp pA ˆ Bq.

Proof. We assumed pA : isPfProp A ”
`

pλpa a1 : Aq.aq “ pλa a1.a1q
˘

and pB : isPfProp B ”
`

pλpb b1 : Bq.bq “ pλb b1.b1q
˘

and we want to obtain that A ˆ B is a point-free proposition.

pAˆB : isPfProp pA ˆ Bq ”
`

pλab ab1.abq “ pλab ab1.ab1
q
˘

”
`

pλab ab1.pπ1 ab, π2 abqq “ pλab ab1.pπ1 ab1, π2 ab1
qq

˘

TYPES 2021



6:8 Internal Strict Propositions Using Point-Free Equations

When rewriting the type of pAˆB, we applied the η rule for products which says that
ab ” pπ1 ab, π2 abq for any ab : A ˆ B. Then we prove the equality in two steps: first we use
pA to show that π1 ab “ π1 ab1 while we keep the π2 ab component constant

p1
AˆB :

`

λab ab1.pπ1 ab, π2 abq
˘

“
`

λab ab1.pπ1 ab1, π2 abq
˘

p1
AˆB :” ap

`

λz.λab ab1.pz pπ1 abq pπ1 ab1
q, π2 abq

˘

pA,

then we use pB to show that π2 ab “ π2 ab1 while we keep the π1 ab1 components constant. In
the middle we have the function returning the mixed pair pπ1 ab1, π2 abq.

p2
AˆB :

`

λab ab1.pπ1 ab1, π2 abq
˘

“
`

λab ab1.pπ1 ab1, π2 ab1
q
˘

p2
AˆB :” ap

`

λz.λab ab1.pπ1 ab1, z pπ2 abq pπ2 ab1
qq

˘

pB

We obtain the desired equality via transitivity:

pAˆB :” p1
AˆB

‚ p2
AˆB ◀

To show closure of point-free propositions under Σ types, we have A : Type, B : A Ñ Type,
isPfProp A, but assuming pa : Aq Ñ isPfProp pB aq is not enough. We express that B is a
family of propositions using a dependent version of isPfProp:

isPfPropd : pA Ñ Typeq Ñ Type
isPfPropd B :”

`

λpa : Aqpb b1 : B aq.b
˘

“ pλa b b1.b1q

The non-dependent version is a special case when there is an element of the indexing type
a0 : A, because given B : Type and pB : isPfPropd pλpa : Aq.Bq, we have ap pλz.z a0q pB :
isPfProp B.

We show the dependent version of closure under Σ types.

▶ Proposition 2. Given A : D Ñ Type and B : Σ D A Ñ Type, if isPfPropd A and
isPfPropd B, then isPfPropd pλd.Σ pA dq pλa.B pd, aqqq.

Proof. We have pA : isPfPropd A ” pλd a a1.aq “ pλd a a1.a1q and pB : isPfPropd B ”

pλda b b1.bq “ pλda b b1.b1q, our goal is to obtain

pΣAB : pλd ab ab1.abq “ pλd ab ab1.ab1
q ” pλd ab ab1.pπ1 ab, π2 abqq “ pλd ab ab1.pπ1 ab1, π2 ab1

qq.

We want to prove this in two steps as for non-dependent products, but because B depends
on A, the middle pair pπ1 ab1, π2 abq is not well-typed. We replace the second component
π2 ab : B pd, π1 abq with

transpλa.B pd,aq

´

ap
`

λz.z d pπ1 abq pπ1 ab1
q
˘

pA

¯

pπ2 abq : B pd, π1 ab1
q,

and we will use a more general version of this second component defined as

f ab ab1 e :“ transpλa.B pd,aq

´

ap
`

λz.z d pπ1 abq pπ1 ab1
q
˘

e
¯

pπ2 abq : B pd, h d pπ1 abq pπ1 ab1
qq

for any d, ab, ab1, h and e : pλd a a1.aq “ h. Now the first step has type

p1
ΣAB : pλd ab ab1.abq “

`

λd ab ab1.pπ1 ab1, f ab ab1 pAq
˘

and we prove it by induction on pA using J:

p1
ΣAB :” J

´

λh e.pλd ab ab1.abq “
`

λd ab ab1.ph d pπ1 abq pπ1 ab1
q, f ab ab1 eq

˘

¯

refl pA
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In the next step we simply use ap on pB and we conclude by transitivity:

p2
ΣAB :

`

λd ab ab1.pπ1 ab1, f ab ab1 pAq
˘

“ pλd ab ab1.ab1
q

p2
ΣAB :” ap

´

λz.λd ab ab1.
`

π1 ab1, z pd, π1 ab1
q pf ab ab1 pAq pπ2 ab1

q
˘

¯

pB

pΣAB :” p1
ΣAB

‚ p2
ΣAB ◀

▶ Corollary 3. For A : Type and B : A Ñ Type, if isPfProp A and isPfPropd B, then
isPfProp pΣ A Bq.

Finally, we show closure of isPfPropd under dependent function space.

▶ Proposition 4. Given A : D Ñ Type, B : Σ D A Ñ Type, if isPfPropd B, then
isPfPropd pλd.pa : A dq Ñ B pd, aqq.

Proof. Using pB : pλda b b1.bq “ pλda b b1.b1q, we define

pΠAB : pλd f f 1.fq “ pλd f f 1.f 1q ” pλd f f 1 a.f aq “ pλd f f 1 a.f 1 aq

pΠAB :” ap pλz d f f 1 a.z pd, aq pf aq pf 1 aqq pB . ◀

▶ Corollary 5. For A : Type and B : A Ñ Type, if isPfPropd B, then isPfProp ppa : Aq Ñ B aq.

4 Point-free propositions externally

In this section we show that any model of type theory with J, Σ, Π types has a sort TyP
closed under the same type formers. This can be seen as an externalisation of the previous
section.

Recall that a model of type theory (a CwF, see Section 2) has a sort of strict propositions
if there is a presheaf TyP together with a “lifting” natural transformation Ò into Ty, and
terms of a lifted type are equal.

First we define a predicate on types expressing externally that the type is a point-free
proposition.

▶ Definition 6. For a type A : Ty Γ in any CwF, let isExtPfProp A :” pqArpArpss ” qArpsq.

That is, in the context Γ ▷ A ▷ Arps, the terms qrps and q (1 and 0 De Bruijn indices, both
having type Arpsrps) are definitionally equal. We call this the external variant of pfProp
because it is clear that it is equivalent to saying lam plam pqrpsqq ” lam plam qq which is the
external statement of λx y.x “ λx y.y. In the next section, we will relate the external and
internal variants formally.

Elements of a type which isExtPfProp are equal in any context.

▶ Proposition 7. For a type A, isExtPfProp A is equivalent to

u ” v for all γ : Sub ∆ Γ and u, v : Tm ∆ pArγsq.

Proof. Left to right: we have qrpsrγ, u, vs ” qrγ, u, vs, hence u ” v. Right to left: we choose
u :” qrps, v :” q. ◀

In category theory, external point-free propositions over Γ are called subobjects of Γ.

▶ Proposition 8. For an A : Ty Γ, isExtPfProp A is equivalent to the morphism pA : Sub pΓ▷
Aq Γ being a monomorphism.
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Proof. Left to right: given pA ˝ pγ, aq ” pA ˝ pγ1, a1q, we need to show pγ, aq ” pγ1, a1q. Using
the assumption we have γ ” pA ˝ pγ, aq ” pA ˝ pγ1, a1q ” γ1, hence a and a1 are both in
Tm ∆ pArγsq. We get a ” a1 from Proposition 7.

Right to left: given two terms a, a1 : Tm Γ pArγsq, we have pA ˝ pγ, aq ” γ ” pA ˝ pγ, a1q,
hence by assumption pγ, aq ” pγ, a1q and applying qr–s to both sides we obtain a ” a1. ◀

▶ Construction 9. Every CwF with J, Σ, Π can be equipped with a sort of strict propositions
closed under the same type formers.

Construction. We have to define all components in Figure 3. We define

TyP Γ :” pA : Ty Γq ˆ isExtPfProp A.

Substitution is defined by ordinary type substitution of the first component and the equation
for substituted types holds by the following argument.

qArγsrpArγsrpss
” pr˝s,▷β1,▷β2q

qArpArpssrγ ˝ p ˝ p, qArγsrpArγsrpss, qArγsrpss
” (assumption)

qArpsrγ ˝ p ˝ p, qArγsrpArγsrpss, qArγsrpss
” p▷β2q

qArγsrpsq

The Ò operation is defined by ÒpA, pAq :” A. Irrelevance holds by Proposition 7. JP is
defined as J and isExtPfProp J holds by Jη. We define ΣP pA, pAq pB, pBq by pΣ A B, pΣABq

where pΣAB is proven using Proposition 7 for u, v : Tm ∆ pΣ A Brγsq by

u
Ση
” pπ1 u, π2 uq

pA,pB
” pπ1 v, π2 vq

Ση
” v.

We define ΠP A pB, pBq by pΠ A B, pΠABq where pΠAB is proven using Proposition 7 for
u, v : Tm ∆ pΠ A Brγsq by

u
Πη
” lam papp uq

pB
” lam papp vq

Πη
” v. ◀

5 Relationship of different notions of being a proposition

For a type family A : D Ñ Type, being a family of homotopy propositions and a family of
point-free propositions were defined internally as follows.

isHPropd A ” pd : Dqpa a1 : A dq Ñ IdpA dq a a1

isPfPropd A ” Idppd:DqÑA dÑA dÑA dq pλd a a1.aq pλd a a1.a1q

Externally, these can be seen as the following two elements of Ty ˛ for A : Ty p˛ ▷ Dq. We
also repeat the definition of isExtPfProp for comparison which is a metatheoretic equality.

isHPropd A ” Π D
´

Π A
`

Π pArpsq pIdArpsrps pqrpsq qq
˘

¯

isPfPropd A ” IdΠ D pAñAñAq

`

lam plam plam pqrpsqqq
˘ `

lam plam plam qqq
˘

isExtPfProp A ” pqrps ” qq (both sides in Tm p˛ ▷ D ▷ A ▷ Arpsq pArpsrpsq)

We first compare internal point-free propositions and external ones. They coincide for a type
where we collect all dependencies into a single closed type D.
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▶ Proposition 10. In a model of type theory with Π, Id and canonicity, given an A : Ty p˛▷Dq,
there is a Tm ˛ pisPfPropd Aq if and only if isExtPfProp A.

Proof. Right to left: if qrps ” q in Tm p˛ ▷ Dq A, then lam plam plam pqrpsqqq ”

lam plam plam qqq, hence refl : Tm ˛ pisPfPropd Aq.
Left to right: we have t :Tm ˛

´

IdΠ D pAñAñAq

`

lam plam plam pqrpsqqq
˘̀

lam plam plam qqq
˘

¯

.

Canonicity for Id implies that lam plam plam pqrpsqqq ” lam plam plam qqq, hence

app papp papp plam plam plam pqrpsqqqqqq ” app papp papp plam plam plam qqqqqq.

Now using Πβ three times on both sides we obtain qrps ” q where both sides are in
Tm p˛ ▷ D ▷ A ▷ Arpsq pArpsrpsq, and this is isExtPfProp A. ◀

▶ Corollary 11. In a model of type theory with Π, Id and canonicity, given a closed type A,
Tm ˛ pisPfProp Aq if and only if isExtPfProp A.

In an open context, external point-free propositions are stronger than internal ones.

▶ Proposition 12. In a model of type theory with Π, Id, a type U and a family over it El (a
possibly empty universe) and normalisation, we have A : Ty Γ such that Tm Γ pisPfProp Aq,
but not isExtPfProp A.

Proof. Pick Γ :” ˛ ▷ U ▷ IdEl qñEl qñEl q plam plam pqrpsqqq plam plam qqq and A :” El pqrpsq.
Now qrps and q both in Tm pΓ ▷ A ▷ Arpsq pArp ˝ psq have different normal forms. ◀

Next, we describe the relationship of homotopy and point-free propositions. Here we use the
non-dependent variants.

▶ Proposition 13.
(i) In a model of type theory with Π and Id, isPfProp A implies isHProp A.
(ii) In a model of type theory with Π, Id, an inductively defined K and normalisation,

(a) we have isHProp K, but not isPfProp K.
(b) we don’t have that for any type A, isPfProp pisPfProp Aq.

(iii) In a model of type theory with Π, Id and function extensionality, isHProp A implies
isPfProp A.

Proof.
(i) We work internally. Given pA : isPfProp A ” pλpa a1 : Aq.aq “ pλa a1.a1q, we define

λa a1.ap pλz.z a a1q pA : isHProp A.
(ii) (a) Internally, we have λb.elimK b : isHProp K. Let’s assume Tm ˛ pisPfProp Kq. From

Corollary 11 and Proposition 7, any two elements of K in any context are equal.
But from normalisation we have qrps ı q : Tm p˛ ▷ K ▷ Kq K as they have different
normal forms.

(b) Assuming isPfProp pisPfProp Kq, we obtain

qrps ” q : Tm p˛ ▷ isPfProp K ▷ isPfProp Kq pisPfProp Kq

the same way as in (a), but they have different normal forms.
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6:12 Internal Strict Propositions Using Point-Free Equations

(iii) We have to show that isHProp A implies isPfProp A. We work internally by the following
double application of function extensionality.

isHProp A
”

`

pa a1 : Aq Ñ a “ a1
˘

”
`

pa : Aqpa1 : Aq Ñ pλa1.aq a1 “ pλa1.a1q a1
˘

Ñ (function extensionality)
`

pa : Aq Ñ pλa1.aq “ pλa1.a1q
˘

”
`

pa : Aq Ñ pλa a1.aq a “ pλa a1.a1q a
˘

Ñ (function extensionality)
pλa a1.a1q “ pλa a1.a1q

”
isPfProp A ◀

From the previous section, we know that TyP can be defined using isExtPfProp. If we start
with a model that already has TyP, it is natural to ask about the relationship of TyP and
the other notions of being a proposition.

▶ Proposition 14.
(i) In a model of type theory with Π, Id and TyP, if A : TyP Γ, then Tm Γ pisHProp pÒAqq,

Tm Γ pisPfProp pÒAqq and isExtPfProp pÒAq.
(ii) In a model of type theory with Π, Σ and Id, if for every type A, isHProp A implies

isExtPfProp A, then the model has equality reflection.

Proof.
(i) Because any two terms of type ÒA are definitionally equal by irr, internally λa a1.refl :

isHProp A and refl : isPfProp A.
(ii) The proof is from [13]. Singleton types are in hProp, that is, internally isHProp ppa1 :

Aq ˆ IdA a a1q holds for any a, but if isExtPfProp ppa1 : Aq ˆ IdA a a1q, then for any
e : IdA a a1, we have pa, reflq ” pa1, eq, hence a ” π1 pa, reflq ” π1 pa1, eq ” a1.

◀

6 The setoid model externally

In this section, from a model of type theory with J, Σ and Π, we build another model of type
theory with the same type formers and a strict identity type, a strong transport rule and
function extensionality. Strictness of the identity type means that any two elements of the
identity type are definitionally equal (it is an external point-free proposition, isExtPfProp).
Strength of transport means that we can transport an element of any family of types, not
only families of strict propositions. In contrast, Agda and the method described in [13] only
support a strict identity type with a weak transport: the identity type is Prop-valued and we
can only transport along Prop-valued families.

In Section 7, we describe an internal version of this model construction where we define a
model internally to an intensional metatheory. Section 7 relates to this section as the section
on internal point-free propositions (Section 3) relates to the section on external point-free
propositions (Section 4). The model construction in this section follows those in [4, 3] with
some small improvements, but is defined in a more restricted setting: we do not assume that
the input model has a universe of strict propositions.

Note that even if our metatheory is extensional type theory, we do not rely on any
extensionality features in the input model. We only use an extensional metatheory for
convenience. Following Hofmann’s conservativity theorem [14], our arguments can be
replayed in an intensional metatheory with function extensionality and uniqueness of identity
proofs.
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▶ Construction 15. From an input model of type theory with J, Σ, Π, a sort TyP closed
under JP, ΣP and TyP (as in Figure 3), we construct a model of type theory with the
same type formers and a TyP-valued identity type with a strong transport rule and function
extensionality.

Construction. A context in the output model is a context in the input model together with
an hProp-valued equivalence relation on substitutions into that context. Note that as our
metatheory is extensional type theory, hProp and pfProp coincide.

Con :” p|Γ| : Conq

ˆpΓ„ : Sub Ξ |Γ| Ñ Sub Ξ |Γ| Ñ hPropq

ˆp–r–sΓ : Γ„ γ0 γ1 Ñ pξ : Sub Ξ1 Ξq Ñ Γ„ pγ0 ˝ ξq pγ1 ˝ ξqq

ˆpRΓ : pγ : Sub Ξ |Γ|q Ñ Γ„ γ γq

ˆpSΓ : Γ„ γ0 γ1 Ñ Γ„ γ1 γ0q

ˆpTΓ : Γ„ γ0 γ1 Ñ Γ„ γ1 γ2 Ñ Γ„ γ0 γ2q

In [4], the relation for contexts was TyP-valued, not metatheoretic proposition (hProp)-valued.
We chose to use hProp for reasons of modularity: now the category part of the output model
(Con, Sub) only refers to the category part of the input model. Note that the relation for
types is TyP-valued.

Substitutions are substitutions in the input model which respect the relation.

Sub ∆ Γ :” p|γ| : Sub |∆| |Γ|q ˆ pγ„ : ∆„ δ0 δ1 Ñ Γ„ p|γ| ˝ δ0q p|γ| ˝ δ1qq

Composition and identities are composition and identities from the input model where the „

components are defined by function composition and the identity function. In fact, up to Π
types, all the |– | components in the output model are the corresponding components of the
input model.

The empty context is defined as |˛| :” ˛ and ˛„ σ0 σ1 :” J which is trivially an equivalence
relation.

Types are displayed setoids with TyP-valued relations together with coercion and coherence
operations.

Ty Γ :”
p|A| : Ty |Γ|q

ˆpA„ : Γ„ γ0 γ1 Ñ Tm Ξ p|A|rγ0sq Ñ Tm Ξ p|A|rγ1sq Ñ TyP Ξq

ˆpA„
rs : pA„ γ01 a0 a1qrξs ” A„

pγ01rξsΓq pa0rξsq pa1rξsqq

ˆpRA : pa : Tm Ξ p|A|rγsqq Ñ Tm Ξ pÒA„
pRΓ γq a aqq

ˆpSA : Tm Ξ pÒA„ γ01 a0 a1q Ñ Tm Ξ pÒA„
pSΓ γ01q a1 a0qq

ˆpTA : Tm Ξ pÒA„ γ01 a0 a1q Ñ Tm Ξ pÒA„ γ12 a1 a2q Ñ Tm Ξ pÒA„
pTΓ γ01 γ12q a0 a2qq

ˆpcoeA : Tm Ξ pÒΓ„ γ0 γ1q Ñ Tm Ξ p|A|rγ0sq Ñ Tm Ξ p|A|rγ1sqq

ˆpcoeArs : coeA γ01 a0rξs ” coeA pγ01rξsΓq pa0rξsqq

ˆpcohA : pγ01 : Tm Ξ pÒΓ„ γ0 γ1qqpa0 : Tm Ξ p|A|rγ0sqq Ñ Tm Ξ pÒA„ γ01 a0 pcoeA γ01 a0qqq

Type substitution is given by type substitution in the input model and function composition
for the other components.

Terms are terms which respect the (displayed) equivalence relations.

Tm Γ A :” p|t| : Tm |Γ| |A|q ˆ pt„ : pγ01 : Γ„ γ0 γ1q Ñ Tm Ξ pÒA„ γ01 p|t|rγ0sq p|t|rγ1sqqq

Term substitution is given by term substitution in the input model and function composition
for the „ component.
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Context extension is context extension |Γ ▷ A| :” |Γ| ▷ |A|, the relation is given by
metatheoretic Σ types: pΓ ▷ Aq„ pγ0, a0q pγ1, a1q :” pγ01 : Γ„ γ0 γ1q ˆ Tm Ξ pÒA„ γ01 a0 a1q.
This is an equivalence relation because Γ„ is an equivalence relation and A„ is a displayed
equivalence relation. The „ components of – , –, p and q are given by pairing and projections
for metatheoretic Σ types. The equations ▷β1, ▷β2, ▷η follow from β, η for metatheoretic
Σ types. The unit type J is given by |J| :” J, J„ γ01 t0 t1 :” JP.

Σ types use ΣP for the relation: we define |Σ A B| :” Σ |A| |B| and

pΣ A Bq„ γ01 pa0, b0q pa1, b1q :” ΣP pA„ γ01 a0 a1q pB„ pγ01rps, qq pb0rpsq pb1rpsqq.

All the other components are pointwise, for example RΣ A B pa, bq :” pRA a ,P RB bq and

coeΣ A B γ01 pa0, b0q :” pcoeA γ01 a0, coeB pγ01, cohA γ01 a0q b0q.

Pairing, first and second projection and the computation rules are straightforward. Note that
to prove e.g. π1 pa, bq ” a, it is enough to compare the first components, i.e. |π1 pa, bq| ” |a|

as the second components are equal by irr.
For Π types, the |– | component includes „ components of the constituent types:

|Π A B| :”
Σ pΠ |A| |B|q

ˆ

ΠP p|A|rpsq

´

ΠP p|A|rp2sq
`

ΠP pÒA„ pRΓ p3q pqrpsq qq

pB„ pRΓ p4, qq pqrp3s $ qrp2sq pqrp3s $ qrpsqq
˘

¯

˙

Functions are given by functions which respect the relation: for any two elements of |A| that
are related by A„, the outputs of the function are related by B„. We wrote p2 for p ˝ p.
With variable names and without weakenings, the same definition is written

Σpf : Πpa : |A|q.|B|q.ΠPpa0 a1 : |A|, a01 : ÒA„ pRΓ idq a0 a1q.B„ pRΓ id, a01q pf $a0q pf $a1qq.

The relation for Π types says that two functions are related if they map related inputs to
related outputs:

pΠ A Bq
„ γ01 t0 t1 :”

ΠP p|A|rγ0sq

´

ΠP p|A|rγ1 ˝ psq
`

ΠP pÒA„
pγ01rp2

sΓq pqrpsq qq

pB„
pγ01rp3

sΓ, qq pt0rp3
s $ pqrp2

sqq pt1rp3
s $ pqrpsqqq

˘

¯

Reflexivity for Π types is second projection: RΠ A B t :” π2 t. The other components are
defined as in [4]. The definition of lam and app are straightforward. Just as for Π, the
definition of |lam t| involves both |t| and t„. When comparing two elements of |Π A B|

for equality, only the first components of the Σ types have to be compared, the second
components are equal by irr.

The sort TyP is defined by TyPs in the input model together with coercion.

TyP Γ :” p|A| : TyP |Γ|q ˆ pcoeA : Γ„ γ0 γ1 Ñ Tm Ξ pÒ|A|rγ0sq Ñ Tm Ξ pÒ|A|rγ1sqq

Compared to Ty which had nine components, TyP has only two. All the other components
that Ty had are irrelevant for propositional types. Lifting is given by lifting in the input
model, the relation is trivial and coercion comes from the coercion component in TyP:

|ÒA| :” Ò|A| pÒAq„ γ01 a0 a1 :” JP coeÒA γ01 a0 :” coeA γ01 a0
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TyP is closed under JP, ΣP and ΠP.
Thus we constructed a model of type theory with J, Π, Σ and a sort TyP closed under

the same type formers.
This model has an identity type IdA a a1 : TyP Γ for a, a1 : Tm Γ A.

|IdA a a1| :” A„ pRΓ idq a a1 pIdA a a1q„ γ01 e0 e1 :” JP
coeIdA a a1 γ01 e

loomoon

:A„ pRΓ γ0q parγ0sq pa1rγ0sq

:” TA pa„ pSΓ γ01qq
loooooomoooooon

:A„ pSΓ γ01q parγ1sq parγ0sq

`

TA e pa1„
γ01q

looomooon

:A„ γ01 pa1rγ0sq pa1rγ1sq

˘

loooooooooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooooooooon

:A„ pRΓ γ1q parγ1sq pa1rγ1sq

It has a constructor refl and an eliminator transp (J is a consequence of transport as equality
is proof-irrelevant).

refl : Tm Γ pÒIdA a aq

|refl| :” RA a

refl„ γ01 :” ttP
transp : pP : Ty pΓ ▷ Aqq Ñ Tm Γ pÒIdA a a1q Ñ Tm Γ pP rid, asq Ñ Tm Γ pP rid, a1sq

|transp P e u| :” coeP pRΓ id, |e|q |u|

The computation rule of transp only holds up to Id, but as described in [4], the model
can be refined to support a definitional computation rule. Note that transport works with
arbitrary Ty-motive, the motive does not have to be TyP (as opposed to the inductively
defined Prop-valued identity type in Agda). Function extensionality holds by definition of
the identity type. ◀

▶ Construction 16. From an input model of type theory with J, Σ, Π, we construct a
model of type theory with J, Σ, Π, a sort of propositions TyP closed under J, Σ, Π and a
TyP-valued identity type with a strong transport rule and function extensionality.

Construction. We take the input model, equip it with TyP using Construction 9, then invoke
Construction 15. ◀

The above construction can be extended with the empty type: if the input model has
K : Ty, the output model also supports K : Ty with its elimination rule, but we do not have
K : TyP (unless isExtPfProp K in the input model). Similarly, to justify booleans in the output
model, we need that the input model has booleans and a definitionally proof-irrelevant family
over booleans that we can use to define identity for booleans:

IdBool : Ty pΓ ▷ Bool ▷ Boolq
Idtrue : Tm Γ pIdBoolrid, true, truesq

Idfalse : Tm Γ pIdBoolrid, false, falsesq

Idirr : pe e1 : Tm pΓ ▷ Bool ▷ Boolq IdBoolq Ñ e ” e1

But then we might as well require TyP in the input model with closure under inductive types.
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7 The setoid model internally

In the previous section we showed how a setoid model can be constructed without requiring
a sort TyP in the input model. Can we redo the same internally to intensional type theory
using point-free propositions? That is, can we define a setoid model in Agda (which can
be viewed as the initial model of intensional type theory) without using strict propositions
(Prop, TyP)?

Compared to Construction 15 of the previous section, the role of the input model is taken
by our metatheory (Agda), the role of the output model is the model we construct. The
equations of our model are given by the identity type of the metatheory. If all the equations
can be proven by refl, it means that the model is strict. In such a case an external model
construction can be obtained from the internal model (see [4, Section 3] for an exposition of
model constructions vs. internal models through the example of the graph model). Model
constructions are also called syntactic translations, see [7] for such a presentation.

The notion of model we construct is described in Figures 1, 2, 3 in extensional type
theory. As some operations and equations typecheck only because of previous equations (e.g.
lamrs depends on Πrs), the complete intensional description of the notion of model has many
transports compared to this (see [5] for an exposition using explicit transports). However if
an equation is proved by refl in the model, then transports over it disappear, so concrete
strict models can be defined in Agda without using any transports.

External model constructions where the definitions of types (and substitutions and terms)
don’t involve equations can be internalised immediately as strict models. This is the case for
the setoid model using TyP, see [4]. In our case however, there is an equation expressing
that the equivalence relation is a proposition. This makes the construction more involved as
we have to prove that the witnesses of propositionality are equal.

The answer to the above question is yes. This section was formalised in Agda [12].

▶ Construction 17. We construct a model of type theory with K, J, Σ, Π, a sort of
propositions TyP closed under J, Σ, Π, a TyP-valued identity type with a strong transport
rule and function extensionality. All equations of our model hold definitionally, with the
exceptions irr, Σrs, ,rs, Πη, Πrs, lamrs.

Construction. We explain the main components, for details consult the formalisation.
We define contexts as setoids where the equivalence relation is a point-free proposition.

Compare it with how contexts were defined in the external Construction 15.

Con :” p|Γ| : Typeq

ˆ pΓ„ : |Γ| ˆ |Γ| Ñ Typeq

ˆ pΓp : isPfPropd Γ„q

ˆ pRΓ : pγx : |Γ|q Ñ Γ„ pγx, γxqq

ˆ pSΓ : Γ„ pγ0, γ1q Ñ Γ„ pγ1, γ0qq

ˆ pTΓ : Γ„ pγ0, γ1q Ñ Γ„ pγ1, γ2q Ñ Γ„ pγ0, γ2qq

We don’t have equations on contexts, so it is not an issue that there is an equation (Γp) as
one of the components. There will be an issue for types, see below.

Substitutions are functions that respect the relations.

Sub ∆ Γ :” p|γ| : |∆| Ñ |Γ|q ˆ pγ„ : ∆„ pδ0, δ1q Ñ Γ„ p|γ| δ0, |γ| δ1qq
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They form a category with function composition (for both |– | and –„ components) and the
identity function. The categorical laws are definitional. The empty context is given by J

with the constant J relation.
Types are displayed setoids with coercion and coherence (note that later we will replace

types by their strictified variants).

Ty Γ :”
p|A| : |Γ| Ñ Typeq

ˆpA„ : pγ0 : |Γ|q ˆ pγ1 : |Γ|q ˆ Γ„ γ0 γ1 ˆ |A| γ0 ˆ |A| γ1 Ñ Typeq

ˆpAp : isPfPropd A„
q

ˆpRA : pax : |A| γxq Ñ A„
pγx, γx, RΓ γx, ax, axqq

ˆpSA : A„
pγ0, γ1, γ01, a0, a1q Ñ A„

pγ1, γ0, SΓ γ01, a1, a0qq

ˆpTA : A„
pγ0, γ1, γ01, a0, a1q Ñ A„

pγ1, γ2, γ12, a1, a2q Ñ A„
pγ0, γ2, TΓ γ01 γ12, a0, a2qq

ˆpcoeA : Γ„
pγ0, γ1q Ñ |A| γ0 Ñ |A| γ1q

ˆpcohA : pγ01 : Γ„
pγ0, γ1qqpa0 : |A| γ0q Ñ A„

pγ0, γ1, γ01, a0, coeA γ01 a0qq

Compared to the external version, we don’t need substitution laws (A„rs and coeArs) and
instead of making the relation Prop-valued we add an element of the identity type saying
that A„ is a point-free proposition. We can prove that two types are equal if their |– |, –„,
–p, coe components are equal. The other components will be equal by –p. Unfortunately,
due to Proposition 13 part (ii) (b), we have to show that the proofs of propositionalities –p

coincide.
Substitution of types is given by function composition for the |– | and –„ components, for

the –p component we use the fact that dependent point-free propositions are closed under
reindexing. The reflexivity, symmetry and transitivity components of Arγs are constructed
using transport and the corresponding components of A. The exact way they are constructed
does not matter as they are proof irrelevant by Ap. We prove the substitution laws r˝s and
rids up to the identity type using J.

Terms are like substitutions, but with dependent functions.

Tm Γ A :” p|t| : pγx : |Γ|q Ñ |A| γxqˆpt„ : pγ01 : Γ„ pγ0, γ1qq Ñ A„ pγ0, γ1, γ01, |t| γ0, , |t| γ1qq

The |– | and –„ components of context extension are given by Σ types, the propositionality
component is using the fact that point-free propositions are closed under Σ.

Analogously to the model in the previous section, we can show that we have K, J, Σ
and Π types. The β rules are definitional for both Σ and Π, however for Π the η rule only
holds up to the metatheoretic identity type. The reason is that |Π A B| is defined as a Σ
type consisting of a function from |A| to |B| and a proof that it respects the relation.

|Π A B| γx :”
`

f : pax : |A| γxq Ñ |B| pγx, axq
˘

ˆ

pa01 : A„ pγx, γx, RΓ γx, a0, a1qq Ñ B„ ppγx, a0q, pγx, a1q, pRΓ γx, a01q, f a0, f a1q

Two functions are related by pΠ A Bq„ if they map related inputs to related outputs. Hence
there are two (definitionally) different ways of proving that a t : Tm Γ pΠ A Bq respects a
(homogeneous) relation a01 : A„ pγx, γx, RΓ γx, a0, a1q. One is π2 p|t| γxq a01, the other is
t„ pRΓ γxq a01. Because B„ is a proposition, these are equal, but only up to the identity type.
And the eta rule computes to the usage of the two different versions on the two sides of the
equation. We do not prove the substitution laws Krs, Jrs, Σrs, ,rs, Πrs, lamrs yet. There is
no need to worry, we will prove them after replacing Ty with its strictified variant.
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If an equation is not definitional and there are later components in the model that depend
on it (as lamrs depends on Πrs), it makes the model construction extremely tedious. The
situation one ends up in is also known as “transport hell”. As the functor laws r˝s, rids for
types and terms are not definitional, almost every operation that mentions substitutions
involves transports. Instead of fighting in transport hell and proving the transported versions
of the laws Krs, . . . , lamrs, we follow the local universes approach [20]. We wrap Ty into Ty1

which contains a base context, a substitution into this context and a Ty in this base context.

Ty1 Γ :” pconA : Conq ˆ psubA : Sub Γ conAq ˆ ptyA : Ty conAq

Substitution for Ty1 is defined as composition in the sub component, and as composition in
the category is definitional, the laws r˝s, rids become definitional. Terms Tm1 and context
extension – ▷1 – can be defined, and all the CwF equations are definitional. The type formers
can be redefined as their primed versions K1, Σ1 and Π1. K1rs and J1rs hold definitionally,
but Σ1rs and Π1rs rely on definitional β and η for Σ and Π (the ones defined for Ty), and we
are missing an η for Π. Hence Σrs, ,rs, Πη, Πrs, lamrs only hold up to the identity type.

We define TyP Γ as those families over |Γ| that are (point-free) propositional and which
have coercion.

TyP Γ :” p|A| : |Γ| Ñ Typeq ˆ pAp : isPfPropd |A|q ˆ pcoeA : Γ„ pγ0, γ1q Ñ |A| γ0 Ñ |A| γ1q

Ò is given by letting the relation be constant J, and showing closure under J, Σ and Π is
straightforward. Proof irrelevance irr comes from the assumed equation Ap, hence it is not
definitional. Definition of the TyP-valued identity type is analogous to the construction in
the previous section. Strictification of TyP is analogous to that of Ty. ◀

We conjecture that without strictification (the replacement of Ty by Ty1) we can still
prove all the equations, however this seems to be very difficult due to “transport hell”.

8 Examples of strict algebraic structures

Point-free equations can be used to define strict variants of algebraic structures. For example,
internally to a model of type theory with a universe Type closed under Π, Σ, Id, a strict
monoid is defined as follows.

M : Type
– b – : M Ñ M Ñ M
ass : IdMÑMÑMÑM pλx y z.px b yq b zq pλx y z.x b py b zqq

o : M
idl : IdMÑM pλx.o b xq pλx.xq

idr : IdMÑM pλx.x b oq pλx.xq

Compare it with the usual definition of monoid where the laws are stated using universal
quantification:

ass : px y z : Mq Ñ IdM ppx b yq b zq px b py b zqq

idl : px : Mq Ñ IdM po b xq x

idr : px : Mq Ñ IdM px b oq x
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If our model has canonicity, then in the empty context, for any strict monoid, the laws
hold definitionally. For example, booleans where conjunction is defined as a ^ b :”
if a then b else false do not form a strict monoid. We do have idl : true ^ b ” b, but we
don’t have idr or associativity definitionally, only propositionally. So booleans with –^–
form a usual monoid, but not a strict monoid. Similarly, natural numbers with addition form
a usual monoid, but not a strict monoid.

In contrast, for any type A, the function space A Ñ A forms a monoid with f b g :”
λx.f pg xq and o :” λx.x. We have associativity as λf g h.pf b gq b g ” λf g h x.f pg ph xqq ”

λf g h.f b pg b hq and the identity laws hold as e.g. λf.o b f ” λf x.f x ” λf.f .
Strict monoids are closed under finite products following the η rule for ˆ. We can define

displayed strict monoids over a strict monoid, and dependent product of strict monoids.
Strict monoids are also closed by A-ary products for any type A. That is, given a strict
monoid with carrier M , A Ñ M is also a strict monoid.

Point-free propositions are another strict algebraic structure with no operations and
only one equation: any two elements are equal. Closure under J and Σ give closure under
(dependent) finite products, closure under Π is the same as having A-ary (dependent) products
for any type A.

We conjecture that for any (generalised) algebraic structure, we have a CwF with J, Σ
and extensional Id of strict algebras internally to any model of intensional type theory. The
category part of the CwF is the category of algebras and homomorphisms, terms and types
are displayed algebras and sections, context extension is dependent product of algebras, and
so on. This semantics was called finite limit CwF in [17].

The term “strict” algebraic structure is only correct in intensional type theory. In a
model with function extensionality, strict and usual monoids coincide.

There is a stronger sense in which algebraic structures can be “strict”. Obviously, to
define a strict monoid in the empty context, all laws have to hold definitionally. However
when assuming a strict monoid and using it in a construction in this open context, the laws
only hold up to propositional equality. It would be convenient to have implementations of
type theory with strict algebraic structures in this stronger sense. Currently, Agda only
supports one algebraic structure which is strict in this stronger sense: propositions.

9 Summary

In this paper we attempted to push the limits of what can be done in intensional type
theory without function extensionality or uniqueness of identity proofs. We exploited the fact
that in intensional type theory, in the empty context propositional and definitional equality
coincide. We used this to define a dynamic universe of strict propositions internally. We
expect that other strict algebraic structures with the expected properties can be defined
along the same lines. In a strict algebraic structure, all equations are definitional. As we
cannot assume definitional equalities in type theory, when we assume a member of a strict
algebraic structure, the equations only hold propositionally. This makes it difficult to use such
algebraic structures in practice. However we think that model constructions of type theory
can be formalised as functions between strict models. We conjecture that the canonicity
and normalisation displayed models from the corresponding proofs for type theory [10, 6]
can be formalised in pure intensional type theory. These would be displayed over a strict
model defined as a point-free algebraic structure. There are other inherent limitations of
point-free propositions, e.g. the fact that we cannot prove that being a point-free proposition
is a point-free proposition.
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Internal strict models can be externalised directly. We would like to understand in
which circumstances internal non-strict models can be externalised into model constructions.
Another open problem is whether isHProp pisPfProp Aq is provable in intensional type theory.

A strict proposition-valued identity type with a strong transport rule was used to define
presheaves [22] and a universe of setoids closed under dependent function space [3]. It is not
clear whether such a type theory has normalisation [1]. Currently the only justification that
we know for this strong transport rule is the setoid model construction. We showed that such
an identity type can be derived in intensional type theory using point-free propositions. It
seems that our construction is limited, the model we constructed does not include a universe
of propositions or inductive types. In the future, we would like to circumscribe the exact
conditions that the input model has to satisfy in order to obtain inductive types and universes
from the setoid model construction.
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