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Abstract

We consider the numerical solution of elliptic problems in 3D with boundary nonlinear-

ity, such as arising in stationary heat conduction models. We allow general non-orthotropic

materials where the matrix of heat conductivities is a non-diagonal full matrix. The so-

lution approach involves the finite element method (FEM) and Newton type iterations.

We develop a quasi-Newton method for this problem, using spectral equivalence to ap-

proximate the derivatives. We derive the convergence of the method, and numerical

experiments illustrate the robustness and the reduced computational cost.

1 Introduction

In this paper we consider the numerical solution of elliptic problems in bounded domains in R3

involving boundary nonlinearity. Such problems can describe stationary heat conduction with

radiation boundary conditions. The studied problems have the form

−div
(
A∇u

)
= f in Ω, (1.1)

u|∂Ω = u on ΓD, (1.2)

ν>A∇u+ s(x, u) = g on ΓN , (1.3)

where Ω is a bounded domain in R3 with Lipschitz continuous boundary ∂Ω = ΓD ∪ΓN , where

ΓD and ΓN have positive 2-dimensional (surface) measure, and ν is the outward unit normal to

ΓN . The 3 × 3 matrix A is symmetric and uniformly positive definite, further, f , ū and s are

given functions with properties specified later. A central issue is the growth rate of s, since its

treatment requires a careful choice of function space.

An important problem of the form (1.1)–(1.3), arising in heat radiation, involves a 4th power

in the nonlinearity, detailed in Section 2. Nonlinear heat radiation problems have been widely

studied in several situations owing to their importance, see, e.g., [1, 2, 5, 9, 11, 12, 13, 14],

including problem (2.1)–(2.2) on 2D domains and axially symmetric 3D domains. The general

3D case was then mathematically clarified in the motivating paper [10], where the proper

function space was set up, and the convergence of the finite element approximation and of

Newton’s method was derived. However, their results only cover the case of diagonal matrix

A (orthotropic materials), further, they only consider the exact Newton method. On the other

hand, most often it is much useful from practical aspect to involve quasi-Newton type methods

where the Jacobians are approximated, and hence one can spare a significant computational

work.

In this paper we first discuss the background of the problem. The nonnegativity of the

solution enables one to use a rewritten form of the problem, which allows the use of a proper
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operator formulation. Then we develop a quasi-Newton method for this problem in the form

of variable preconditioning using spectral equivalence, based on our earlier results on other

elliptic problems [3, 6, 7]. We prove the convergence of the quasi-Newton method using proper

preconditioning operators allowing very simple updating, and finally, numerical experiments

illustrate the theoretical results. We observe robustness of the methods, that is, a convergence

speed bounded independently of the mesh size, and a reduced computational cost thanks to

the quasi-Newton method.

2 The heat radiation problem

2.1 The problem and its properties

As mentioned before, an important problem with the structure (1.1)–(1.3) arises in heat radi-

ation with 4th power boundary nonlinearity. We are motivated by the paper [10], where this

problem was treated carefully. The problem consists of the elliptic heat conduction equation

with mixed Stefan-Boltzmann radiation boundary conditions:

−div
(
A∇u

)
= f in Ω , (2.1)

u|∂Ω = u on ΓD, αu+ ν>A∇u+ βu4 = g on ΓN , (2.2)

with the conditions given for (1.1)–(1.3). In particular, A is the matrix of heat conductivities,

f ≥ 0 is the density of body heat sources, ū ≥ 0 is the prescribed temperature. The heat

transfer coefficient is denoted by α ≥ 0, and β = σfem with the Stefan-Boltzmann constant

σ = 5.669 · 10−8 Wm−2K−4 and the relative emissivity function 0 ≤ fem ≤ 1. We look for the

absolute temperature u ≥ 0.

2.2 Formulation and nonnegativity of the solution

A proper approach to study a nonlinear elliptic problem is to write its weak form as an operator

equation in a Banach or Hilbert space [6, 15], often related to the minimization of a potential.

This approach is taken in [10] as well. However, problem (2.1)–(2.2) in its original form does

not allow to involve a convex potential, since the term u 7→ u4 is not monotone. Consider now

the problem where this term is replaced with |u|3u. If the solution of the modified form of the

problem is nonnegative, then |u|3u and u4 coincide, hence the original and the modified BVPs

are equivalent. The paper [10] proves the desired nonnegativity under the restriction that A is

a diagonal matrix.

We give a simple proof for nonnegativity for the full matrix case, adapting the idea of the

proof of [8, Theorem 5]. See [1, 14] for related investigations. Some generalizations, allowed by

our proof, are mentioned in Subsection 2.4 and Remark 3.7.

The modified form of BVP (2.1)–(2.2) is the following:

−div
(
A∇u

)
= f in Ω, (2.3)

u|ΓD
= u on ΓD, αu+ ν>A∇u+ β|u|3u = g on ΓN . (2.4)

For the proper formulation of the problem, besides the sign conditions posed for (2.1)–(2.2),
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we assume that the entries aij of the function-valued matrix A are in L∞(Ω), further, f ∈ L2(Ω),

g ∈ L2(Γ2), ū ∈ H1(Ω), ū|ΓN
∈ L5(ΓN), α, β ∈ L∞(ΓN), and there exists β0 > 0 such that

β ≥ β0 a. e. Furthermore, A(x) is not only symmetric and positive definite for any x ∈ Ω, but

we assume that there exists constants µ0, µ1 > 0 such that, for all x ∈ Ω and vector v ∈ R3,

µ0|v|2 ≤ A(x)v · v ≤ µ1|v|2 . (2.5)

The weak solution is looked for within the space H1(Ω), and the test functions within the

space

H1
D(Ω) := {v ∈ H1(Ω) : v|ΓD

= 0 in trace sense} ,

which has the natural norm

‖v‖H1
D

:= ‖∇v‖L2(Ω).

However, as pointed out in [10], the traces of the variational solution should belong to the

Lebesgue space L5(ΓN), which is true in 2D but no longer true in 3D for a general function

in H1(Ω). (The need for 5th power integrals on ΓN will be seen in (2.8).) Hence, the proper

function space for problem (2.3)–(2.4) in 3D is

V :=
{
v ∈ H1(Ω) : v|ΓN

∈ L5(ΓN)
}
, (2.6)

which is a Banach space equipped with the norm

‖v‖V := ‖v‖H1(Ω) + ‖v‖L5(ΓN ).

Moreover, we will use the Banach space

VD := V ∩H1
D(Ω)

with the norm

‖v‖VD := ‖v‖H1
D(Ω) + ‖v‖L5(ΓN ), (2.7)

to serve as the proper space for the test functions and the solution of the homogenized problem,

which vanish on ΓD.

Then the weak form of problem (2.3)–(2.4) can be written as follows: we look for u ∈ V ,

satisfying u− ū ∈ VD, such that∫
Ω

A∇u · ∇v +

∫
ΓN

(α + β|u|3)uv =

∫
Ω

fv +

∫
ΓN

gv (∀v ∈ VD). (2.8)

Theorem 2.1. If u is the weak solution of (2.3)–(2.4), then u is a.e. nonnegative.

Proof. Let u satisfy (2.8), and let us use the specific test function

v := min{u, 0}. (2.9)

We must check that v ∈ VD. Indeed, u ∈ H1(Ω) implies v ∈ H1(Ω), see [10], and obviously

u|ΓN
∈ L5(ΓN) implies v|ΓN

∈ L5(ΓN); finally, v|ΓD
= min{ū, 0} = 0. Throughout the proof,

(in)equalities are understood almost everywhere (a.e.).

By definition, we have v ≤ 0. In order to prove that u ≥ 0, we must show that v = 0 on Ω.
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Let us substitute this v in (2.8), and rewrite the latter with the following decomposition of

Ω:

Ω+ := {x ∈ Ω : u(x) > 0} and Ω− := {x ∈ Ω : u(x) ≤ 0}.

Since v = 0 and ∇v = 0 in Ω+, thus the integrals used in (2.8) are zero on the subdomain

Ω+, that is, it suffices to integrate on Ω−, and, similarly, on ΓN− := {x ∈ ΓN : u(x) ≤ 0},
respectively. In turn, u = v on Ω− ∪ ΓN− and ∇u = ∇v in Ω−, hence we obtain∫

Ω−

A∇v · ∇v +

∫
ΓN−

(α + β|v|3)v2 =

∫
Ω−

fv +

∫
ΓN−

gv . (2.10)

Now we can add zero (the integrals on Ω+ and on Γ+) to both sides, thus we again integrate

on the whole domain Ω and ΓN :∫
Ω

A∇v · ∇v +

∫
ΓN

(α + β|v|3)v2 =

∫
Ω

fv +

∫
ΓN

gv. (2.11)

Here, owing to the positive definiteness of A and the sign conditions α, β ≥ 0, we have∫
Ω

A∇v · ∇v ≥ 0,

∫
ΓN

(α + β|v|3)v2 ≥ 0, (2.12)

which implies that the l. h. s. of (2.11) is nonnegative. On the other hand, the r. h. s. of

(2.11) is nonpositive due to v ≤ 0 and the sign conditions f, g ≥ 0. Therefore, both sides of

(2.11) are zero, and in particular, ∫
Ω

A∇v · ∇v = 0.

Then the positive definiteness of A yields that ∇v = 0, so v = c is constant. Moreover, we

know that v|ΓD
= 0, hence c = 0, that is, v = 0, which we wanted to prove.

2.3 Well-posedness, finite element approximation and Newton iter-

ation

In this section we collect those results of [10] which are directly applicable here to (2.3)–(2.4),

and, knowing now the nonnegativity property, to the original problem (2.1)–(2.2) as well. The

main point is that [10] does not explicitly exploit the diagonality assumption, the latter is only

used therein to obtain the nonnegativity property. The following theorems of [10] only use the

property

a(v, v) :=

∫
Ω

A∇v · ∇v +

∫
ΓN

αv2 ≥ c‖v‖2
H1(Ω) (∀v ∈ VD)

for some constant c > 0. This ellipticity property remains naturally valid in our full matrix

case, owing to the uniformly positivity condition (2.5):

a(v, v) ≥ µ0

∫
Ω

|∇v|2 = µ0‖v‖2
H1

D(Ω) ≥ µ0cD‖v‖2
H1(Ω) , (2.13)

where cD > 0 is a suitable constant, using that ‖v‖H1
D(Ω) and ‖v‖H1(Ω) are equivalent norms,

thanks to the property that ΓD has positive surface measure.
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Altogether, the four theorems below follow from (2.13) and [10, Theorems 2.1, 3.1, 3.2, 3.3],

respectively.

Theorem 2.2. Problem (2.3)–(2.4) has a unique weak solution.

The family of finite element spaces Vh ⊂ VD (h > 0) is chosen to satisfy the standard approxi-

mation property:

for any v ∈ VD, dist(v, Vh)→ 0 as h→ 0. (2.14)

Theorem 2.3. Assume that subspaces {Vh}h→0 satisfy hypothesis (2.14). Let u and uh be the

exact and the FEM solutions, respectively. Then

‖u− uh‖V → 0 as h→ 0.

The convergence order can be estimated under the following condition on the interpolant Ihu:

for some s ∈ [1, 7/6], c > 0 and integer k ≥ 2, ‖u− Ihu‖s ≤ chk−s. (2.15)

Theorem 2.4. Assume that ū ∈ H1(Ω) and ū|ΓN
∈ L6(ΓN). Let u and uh be the exact and

the FEM solutions, respectively. If u ∈ Hk(Ω), and (2.15) holds, then there exists a positive

constant c independent of h such that

‖u− uh‖V ≤ ch2(k−1)/5 as h→ 0. (2.16)

Finally, the convergence of the Newton iteration (uh,n)n∈N+ ⊂ Vh to the FEM solution uh
is formulated with the error en := ‖uh,n − uh‖V :

Theorem 2.5. The Newton iteration is well-defined, and there exist positive constants δ and

c independent of n such that for every e0 < δ, we have

en+1 ≤ ce2
n.

2.4 Some possible generalizations

The above-mentioned results can be extended to some more general equations, the main point

being the nonnegativity in Theorem 2.1.

Firstly, we can consider problem (1.1)–(1.3) with a continuous boundary nonlinearity s,

satisfying the following properties: there exist constants c1, c2 ≥ 0 and q > 1 such that

s(x, ξ)ξ ≥ 0, |s(x, ξ)| ≤ c1 + c2|ξ|q−1 (∀x ∈ ΓN , ξ ∈ R). (2.17)

Then the problem can be posed in the Banach space with modified exponent w.r.t. (2.6):

V :=
{
v ∈ H1(Ω) : v|ΓN

∈ Lq(ΓN)
}
,

since the corresponding integral on ΓN in the weak form remains finite:∫
ΓN

∣∣s(x, u)v
∣∣ ≤ ∫

ΓN

(
c1 + c2|u|q−1

)
|v| ≤ c1‖v‖L1(ΓN ) + c2‖u‖q−1

Lq(ΓN )‖v‖Lq(ΓN ) .
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Furthermore, one can repeat the proof of Theorem 2.1 such that the integral on ΓN is modified,

but in (2.12) we obtain ∫
ΓN

s(x, v)v ≥ 0

due to the assumption, hence the nonnegativity result remains true.

The consequences mentioned in Subsection 2.3 also remain true in the above case, since the

used ellipticity (2.13) is not modified.

Secondly, one may also involve convection in the equation, replacing (1.1) by

−div
(
A∇u

)
+ w · ∇u = f in Ω

for a given vector field w ∈ C1(Ω, R3). Following the usual assumptions, the field is assumed

to be divergence-free and the inflow boundary is part of the Dirichlet boundary:

div w = 0 on Ω, w · ν ≥ 0 on ΓN .

Then for any v ∈ VD∫
Ω

(w · ∇v) v =
1

2

∫
Ω

div (w v2) =
1

2

∫
ΓN

(w · ν) v2 ≥ 0 ,

hence the modified integral on Ω in (2.12) satisfies∫
Ω

(
A∇v · ∇v + (w · ∇v) v

)
≥ 0

and thus the nonnegativity proof of Theorem 2.1 can be repeated again.

3 The quasi-Newton method (variable preconditioning)

In this section we formulate our quasi-Newton method where the Jacobians are approximated

based on spectral equivalence in the function space, that is, we define a kind of variable pre-

conditioning using proper preconditioning operators. Such an approach has been used in our

earlier papers [3, 4, 7] in other situations, now we adapt it to the case of boundary nonlinearity

in the given function space. The quasi-Newton method allows to spare computational cost, and

the setting of spectral equivalence in the function space enables a straightforward definition of

the approximate Jacobians.

3.1 Background in Banach space

We will use an abstract result based on our papers [3, 4]. The theorem is presented in a

form that will fit the situation of the studied radiation problem. The formulation involves the

“energy ∗-norm” ‖v‖∗ := 〈v, F ′(z∗)−1v〉1/2, which is equivalent to the original one.

Theorem 3.1. Let X be a real Banach space, F : X → X ′ a nonlinear operator, and let us

consider the operator equation

F (z) = 0. (3.1)
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Let F have a bihemicontinuous Gâteaux derivative that satisfies the following properties:

(i) For any z ∈ X the operator F ′(z) is symmetric.

(ii) There exists a constant λ > 0 such that

λ‖h‖2 ≤ 〈F ′(z)h, h〉 (∀z, h ∈ X). (3.2)

(iii) There exists a continuous nondecreasing function Λ : R+
0 → R+ such that

〈F ′(z)h, h〉 ≤ Λ(‖z‖)‖h‖2 (∀z, h ∈ X). (3.3)

(iv) There exists a continuous nondecreasing function L : R+
0 → R+ such that

‖F ′(z)− F ′(w)‖ ≤ L(max{‖z‖, ‖w‖}) ‖z − w‖ (∀z, w ∈ X). (3.4)

Denote by z∗ ∈ X the unique solution of (3.1). Let z0 be in a sufficiently small neighbourhood

of z∗, and let the sequence (zn) be defined by

zn+1 := zn −
2

Mn +mn

B−1
n F (zn) (n ∈ N), (3.5)

where 0 < mn ≤ Mn and for any n ∈ N the bounded symmetric linear operator Bn : X → X ′

is chosen such that

mn〈Bnh, h〉 ≤ 〈F ′(zn)h, h〉 ≤Mn〈Bnh, h〉 (∀h ∈ X). (3.6)

We require (mn) to be positively bounded from below and (Mn) bounded from above. Then (zn)

converges to z∗, that is,

‖zn − z∗‖ ≤
1

λ
‖F (zn)‖ → 0,

moreover,

lim sup
‖F (zn+1)‖∗
‖F (zn)‖∗

≤ lim sup
Mn −mn

Mn +mn

< 1. (3.7)

This theorem is a special case of [3, Theorem 2.5], where a non-uniform lower bound was

allowed and damping was used to extend the convergence domain. The latter might be applied

here as well, but is not included in the theorem for simplicity. Some more remarks:

• The Hilbert space predecessor of Theorem 3.1 in just the same form is found in [4,

Theorem 2.3].

• Condition (iii) is redundant since the existence of Λ is actually a consequence of condition

(iv), however, in practice a direct estimation will give sharper values of Λ.

• The convergence is linear if the lim sup in (3.7) is positive and superlinear if this lim sup

is 0. The arising estimates are inherited by the original norm since it is equivalent to the

energy ∗-norm. The superlinear estimates can be refined up to second order by assuming

stricter bounds on Mn/mn, see also [3, Theorem 2.5].

7



3.2 Convergence of the quasi-Newton method for the radiation

problem

The application of Theorem 3.1 to our elliptic problem will require the solution and the test

functions to be in the same Banach space, hence we homogenize BVP (2.3)–(2.4) by letting

z := u− ū. This yields the following problem:

−div
(
A∇z

)
= f̃ in Ω, (3.8)

z|∂Ω = 0 on ΓD, (3.9)

α(z + ū) + ν>A∇z + β|z + ū|3(z + ū) = g̃ on ΓN , (3.10)

where formally f̃ := f + div
(
A∇u

)
, g̃ := g − ν>A∇u. In weak form, we then look for z ∈ VD

such that∫
Ω

A∇z ·∇v+

∫
ΓN

(α+β|z+ ū|3)(z+ ū)v =

∫
Ω

(
fv−A∇ū ·∇v

)
+

∫
ΓN

gv (∀v ∈ VD). (3.11)

In what follows, we apply the finite element method (FEM) for (3.11) in some FEM subspace

Vh ⊂ VD, endowed with the same norm ‖.‖VD as in (2.7). (The sole restriction is that, when

refining the mesh, property (2.14) should hold for the family, then Theorem 2.3 ensures the

convergence of the FEM.) In a given FEM subspace Vh ⊂ VD, the problem to solve is obtained

by replacing VD by Vh in (3.11).

Our goal is to solve the FEM problem with a quasi-Newton iteration, that is, we must show

the applicability of Theorem 3.1 where X = Vh and the corresponding operator F : Vh → V ′h is

defined via the weak form:

〈F (z), v〉 =

∫
Ω

A∇z ·∇v+

∫
ΓN

(α+β|z+ ū|3)(z+ ū)v−
∫

Ω

f̃v−
∫

ΓN

g̃v (∀z, v ∈ Vh). (3.12)

We note that elements of Vh might be denoted in a usual way by zh, vh etc., but we can omit

such subscripts for simplicity, since from now on we only work in Vh.

Theorem 3.2. Assumptions (i)-(iv) of Theorem 3.1 hold for the operator defined by (3.12).

Proof. The derivative of the real function t 7→ (α+ β|t+ ū|3)(t+ ū) is t 7→ α+ 4β|t+ ū|3.

Then, following standard techniques (see [6]), we can differentiate in the integral and obtain

〈F ′(z)h, v〉 =

∫
Ω

A∇h · ∇v +

∫
ΓN

(α + 4β|z + ū|3)hv (∀z, h, v ∈ Vh). (3.13)

This shows that condition (i) holds trivially. To check conditions (ii)-(iii), set v = h:

〈F ′(z)h, h〉 =

∫
Ω

A∇h · ∇h+

∫
ΓN

(α + 4β|z + ū|3)h2. (3.14)

Owing to (2.5) and α, β ≥ 0, we have

〈F ′(z)h, h〉 ≥
∫

Ω

A∇h · ∇h ≥ µ0‖∇h‖2
L2(Ω) = µ0‖h‖2

H1
D
.
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Since Vh ⊂ H1(Ω) is a finite dimensional subspace, we have ‖h‖H1
D
≥ c1‖h‖VD for some constant

c1 > 0, which yields

〈F ′(z)h, h〉 ≥ µ0c
2
1‖h‖2

VD
, (3.15)

this yields condition (ii). Now let

α∞ := ‖α‖L∞(ΓN )(meas(ΓN))3/5, β∞ := 4‖β‖L∞(ΓN ).

We will use the following form of Hölder’s inequality: with 3
5

+ 2
5

= 1,∫
ΓN

|v|3h2 ≤ ‖v3‖L5/3(ΓN ) ‖h2‖L5/2(ΓN ) = ‖v‖3
L5(ΓN ) ‖h‖2

L5(ΓN ) (∀v, h ∈ L5(ΓN)).

Applying this to the second term of (3.14) yields∫
ΓN

(α + 4β|z + ū|3)h2 ≤ ‖α‖L∞(ΓN )

∫
ΓN

13h2 + 4‖β‖L∞(ΓN )

∫
ΓN

|z + ū|3h2

≤
(
α∞ + β∞‖z + ū‖3

L5(ΓN )

)
‖h‖2

L5(ΓN ) ≤
(
α∞ + β∞

(
‖z‖L5(ΓN ) + ‖ū‖L5(ΓN )

)3
)
‖h‖2

L5(ΓN ).

Using this together with (2.5) and (2.7), we can estimate (3.14) as

〈F ′(z)h, h〉 ≤ µ1‖h‖2
H1

D(Ω) +
(
α∞ + β∞

(
‖z‖L5(ΓN ) + ‖ū‖L5(ΓN )

)3
)
‖h‖2

L5(ΓN ) ≤ Λ(‖z‖VD)‖h‖2
VD
,

where

Λ(t) := max
{
µ1, α∞ + β∞

(
t+ ‖ū‖L5(ΓN )

)3
}

(t ≥ 0). (3.16)

This establishes condition (iii). Finally, to obtain condition (iv), first observe that for each

z, w ∈ H1(Ω) the symmetry of F ′(z) − F ′(w) makes it possible to obtain its norm using the

quadratic form:

‖F ′(z)− F ′(w)‖ = sup
‖h‖VD=1

|〈(F ′(z)− F ′(w))h, h〉|.

Applying (3.14) yields

‖F ′(z)−F ′(w)‖ = 4 sup
‖h‖VD=1

∣∣∣∣∫
ΓN

β(|z + ū|3 − |w + ū|3)h2

∣∣∣∣ ≤ β∞ sup
‖h‖VD=1

∫
ΓN

∣∣|z + ū|3 − |w + ū|3
∣∣h2 .

Here we have∣∣|z + ū|3 − |w + ū|3
∣∣ =

∣∣|(z + ū)3| − |(w + ū)3|
∣∣ ≤ |(z + ū)3 − (w + ū)3|,

therefore,

‖F ′(z)− F ′(w)‖ ≤ β∞ sup
‖h‖VD=1

∫
ΓN

|z − w|
∣∣(z + ū)2 + (z + ū)(w + ū) + (w + ū)2

∣∣h2.
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Using the same form of general Hölder inequality as above implies

‖F ′(z)− F ′(w)‖ ≤ β∞‖z − w‖L5(ΓN )

(
‖z + ū‖2

L5(ΓN )

+‖z + ū‖L5(ΓN )‖w + ū‖L5(ΓN ) + ‖w + ū‖2
L5(ΓN )

)
sup

‖h‖VD=1

‖h‖2
L5(ΓN ).

Using ‖ · ‖L5(ΓN ) ≤ ‖ · ‖VD , this yields

‖F ′(z)− F ′(w)‖ ≤ L(max{‖z‖VD , ‖w‖VD})‖z − w‖VD ,

where

L(t) := 3β∞(t+ ‖ū‖L5(ΓN ))
2 (t ≥ 0), (3.17)

hence (iv) is satisfied.

From the obtained properties we can draw the general conclusion:

Corollary 3.3. If bounded symmetric linear operators Bn : Vh → V ′h satisfy condition (3.6),

then the quasi-Newton iteration (3.5) for the weak nonlinear elliptic operator (3.12) converges

according to (3.7).

Clearly, the application of the result needs a suitable definition of the operators Bn. We

give a reasonable choice in the next section.

3.3 Preconditioning operators

In this section we propose choices for the auxiliary operators Bn. We must fulfil a double goal:

Bn should be a good approximation of F ′(zn), but essentially simpler to realize.

The general idea is to compose Bn from precomputed parts, so that the stepwise updating

needs a minimal computational task. In general, we can approximate the principal part using

an arbitrary but spectrally equivalent matrix coefficient: let G be a function-valued matrix

with entries gij ∈ L∞(Ω), such that there exists constants λ0, λ1 > 0 for which

λ0 G(x)v · v ≤ A(x)v · v ≤ λ1 G(x)v · v (3.18)

for all x ∈ Ω and vector v ∈ R3. For given n ∈ N, using the already computed iterate zn, let

Bn be defined via the weak form

〈Bnh, v〉 :=

∫
Ω

G(x) ∇h · ∇v + (α0 + wn)

∫
ΓN

hv (∀v, h ∈ Vh), (3.19)

where, for some fixed 0 < %, τ ≤ 1, using that zn ∈ Vh,

α0 := % maxα, wn := 4τ max{β|zn + ū|3}.

Then the discretization matrix corresponding to Bn has the form

Bn = G + (α0 + wn)M,

10



where G is the stiffness matrix weighted with G and M is the boundary mass matrix on ΓN ,

both precomputable.

We will make use of the following Sobolev embedding estimate: there exists a constant

C2 > 0 such that

‖v‖L2(ΓN ) ≤ C2‖∇v‖L2(Ω) (∀v ∈ H1
D(Ω)). (3.20)

This is due to the property v|ΓD
= 0. Since Vh ⊂ VD ⊂ H1

D(Ω), we can apply (3.20) in our

FEM subspace.

Now we verify that the Bn satisfy the corresponding condition in Theorem 3.1.

Theorem 3.4. The spectral equivalence (3.6) holds for operators (3.13) and (3.19) with con-

stants

mn = 1
/( 1

λ0

+
(α0 + wn)C2

2

µ0

)
and Mn ≡M := max

{
λ1,

1

%
,

1

τ

}
(n ∈ N)

(that is, Mn has a fixed value independently of n).

Proof. We have

〈Bnh, h〉 :=

∫
Ω

G(x) ∇h · ∇h + (α0 + wn)

∫
ΓN

h2 (∀h ∈ Vh). (3.21)

We can use (2.5) with (3.14) and get

〈F ′(z)h, h〉 =

∫
Ω

A∇h · ∇h+

∫
ΓN

(α + 4β|z + ū|3)h2

≤ λ1

∫
Ω

G(x) ∇h · ∇h+
(
maxα + 4 max{β|zn + ū|3}

) ∫
ΓN

h2

≤ max
{
λ1,

1

%
,

1

τ

}(∫
Ω

G(x) ∇h · ∇h + (α0 + wn)

∫
ΓN

h2
)

= M〈Bnh, h〉,

(3.22)

where

M := max
{
λ1,

1

%
,

1

τ

}
.

Note that now Mn ≡M is independent of n.

For the other direction, we first note that from (3.18),∫
Ω

G(x) ∇h · ∇h ≤ 1

λ0

∫
Ω

A(x) ∇h · ∇h , (3.23)

further, the Sobolev estimate (3.20) and (2.5) yield

(α0 + wn)

∫
ΓN

h2 = (α0 + wn) ‖h‖2
L2(ΓN ) ≤ (α0+wn)C2

2 ‖∇h‖2
L2(Ω) ≤

(α0 + wn)C2
2

µ0

∫
Ω

A(x)∇h·∇h .

(3.24)

Adding these up, we obtain

〈Bnh, h〉 ≤
( 1

λ0

+
(α0 + wn)C2

2

µ0

)∫
Ω

A(x) ∇h · ∇h (3.25)

11



≤
( 1

λ0

+
(α0 + wn)C2

2

µ0

) (∫
Ω

A∇h·∇h+

∫
ΓN

(α+4β|z+ū|3)h2
)

=
( 1

λ0

+
(α0 + wn)C2

2

µ0

)
〈F ′(z)h, h〉

since, from α, β ≥ 0, the integral on ΓN is nonnegative. That is, we have

mn〈Bnh, h〉 ≤ 〈F ′(z)h, h〉,

where

mn := 1
/( 1

λ0

+
(α0 + wn)C2

2

µ0

)
.

Theorem 3.5. Using the operators (3.19), the quasi-Newton iteration (3.5) for the weak non-

linear elliptic operator (3.12) converges according to (3.7).

Proof. The linear operators Bn in (3.19) are bounded and symmetric, and they satisfy

condition (3.6) by Theorem 3.4. Hence, Corollary 3.3 yields that the iteration (3.5) converges

according to (3.7).

Remark 3.6. (Special cases.)

(i) If the matrix A has a simple structure, then there is no need to replace it, hence we can

let G := A. In this case

λ0 = λ1 = 1 .

(ii) If the matrix A has a large variation, and/or the domain has symmetries, then one

may approximate the operator with a constant times Laplacian. In this case we can let

G := µ̃ I, where, using (2.5), µ̃ := µ0+µ1
2

, and I is the identity matrix. This suggestion

replaces the coefficients in F ′(zn) by constant scalars. Then Bn corresponds to the FEM

discretization of linear elliptic Poisson problems with mixed boundary conditions:

−µ̃∆h = r in Ω

h|∂Ω = 0 on ΓD,
∂h
∂ν

+ (α0 + wn)h = γ on ΓN .
(3.26)

Remark 3.7. (Generalizations.) The above results can be extended to problem (1.1)–(1.3) for

some s ∈ C1 if, besides conditions (2.17), the function ξ 7→ ∂ξs(x, ξ) is nonnegative and satisfies

proper local Lipschitz continuity. The boundary integrals in (3.13) and (3.19) are replaced by∫
ΓN

∂ξs(x, z + ū)hv and τ max ∂ξs(x, zn + ū)

∫
ΓN

hv ,

respectively.

Remark 3.8. (2D analogues.) In this paper we focus on the practically realistic 3D situation.

The 2D case may also be of interest, e.g. on thin domains or on cross-sections. We note that

our proposed method and Theorem 3.5 is valid in 2D as well, moreover, then the situation is

simpler, since we can just use H1
D(Ω) as underlying function space.
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4 Numerical experiments

In this section we present the results of numerical experiments. Our goal is to reinforce the

robust convergence provided by the theoretical results, and to compare the performance of the

quasi-Newton method with the exact Newton method.

Following [10], we solve BVP (2.1)-(2.2) on the unit cube Ω = (0, 1)3 with boundary portions

ΓN := {(x, y, z) ∈ Ω : z = 1}, ΓD = ∂Ω \ ΓN

and using the data of [10, Section 4]. However, to address the setting of the present paper, we

include nondiagonal coefficients in the heat conductivity matrix, and let

A := 60 ·

1 µ 0

µ 1 µ

0 µ 1

 ,

where 0 < µ < 1/
√

2 (the upper bound is required for uniform positivity). The parameters are

α = 90, β = 0.75 · 5.669 · 10−8. The heat sources in Ω and on ΓN are

f(x, y, z) = 36000π2z sin πx sin πy

and

g(x, y, z) = 27000 + 45000 sin πx sin πy + 344.39175(1 + sin πx sin πy)4,

respectively, while ū(x, y, z) = ū constant on ΓD. (These data in [10] give rise to an exact

solution, which we reproduced for µ = 0 and ū = 300. However, we are now interested in

the more general case.) We wish to study the numerical behaviour with varying µ and ū,

that is, how sensitive the method is to the measure of non-diagonality and to the prescribed

temperature. The latter is important since higher temperatures yield an overall greater role of

the nonlinear term, due to the used fourth power.

We applied trilinear finite elements. Matlab 2021a was used for the simulation. To obtain

the mesh, we defined values ki and then applied a uniform mesh with mesh parameters hi = 1
ki+1

,

thus the number of degrees of freedom (DOF) can be calculated as k2
i (ki + 1). We chose four

different meshes, corresponding to ki values 14, 20, 30 and 40, resulting in DOF 2940, 8400,

27900 and, 65600, respectively. The integration was done with the midpoint rule, and the

auxiliary equation was solved by a direct solver. The stopping criterion was the standard

Sobolev norm going below 10−6. The initial condition was the constant 0 function.

For each iteration step n, the preconditioner used for the quasi-Newton method is the

following:

〈Bnh, v〉 =

∫
Ω

A∇h · ∇v + α

∫
ΓN

hv + max{3β|zn + ū|3}
∫

ΓN

hv (4.1)

(that is, G = A, % = 1 and τ = 3/4). Here the first two terms and the integral in the third

term do not depend on n. Thus, for every n, the stiffness matrix can be assembled from 2

precomputed matrices just using a linear combination.

The iteration numbers of (the exact) Newton method and the quasi-Newton method can be

seen in Tables 1 and 2, respectively, for certain values of µ and ū and for different mesh sizes.

Apparently both methods are robust w.r.t. the mesh size, and slightly sensitive to the other

13



parameters.

µ = 0.2 µ = 0.4
DOF ū = 300 ū = 600 ū = 1500 ū = 300 ū = 600 ū = 1500
2940 3 3 4 3 3 4
8400 3 3 4 3 3 4
27900 3 3 4 3 3 4
65600 3 3 4 3 3 4

Table 1: Number of iterations using Newton’s method.

µ = 0.2 µ = 0.4
DOF ū = 300 ū = 600 ū = 1500 ū = 300 ū = 600 ū = 1500
2940 3 4 4 3 4 4
8400 3 3 4 3 3 4
27900 3 3 4 3 3 4
65600 3 3 4 3 3 4

Table 2: Number of iterations using the quasi-Newton method.

The ratios of the total runtimes (that is, not for just an individual iteration step but for

the whole iteration) can be seen in Table 3. In particular, ratios of runtimes of assembling the

stiffness matrix are shown in Table 4. We may observe that in most cases the quasi-Newton

method consumed less overall runtime, and this is mostly due to the significantly cheaper

assembly of stiffness matrices, thanks to their simplified structure.

µ = 0.2 µ = 0.4
DOF ū = 300 ū = 600 ū = 1500 ū = 300 ū = 600 ū = 1500
2940 0.9009 1.1895 0.8843 0.8884 1.1850 0.8881
8400 0.8863 0.8819 0.8855 0.8923 0.8728 0.8830
27900 0.9095 0.9082 0.9056 0.9048 0.9199 0.9029
65600 0.9086 0.9083 0.9103 0.9068 0.9126 0.9108

Table 3: Ratio of total runtimes: tqN/tN.

Finally, the obtained numerical solutions allow us to examine the effects of some features

of the problem. First, Table 5 reflects the effect of the nonlinearity in the Stefan–Boltzmann

condition. Here (for the same parameters µ and ū as above) we give the maximal and minimal

values of the homogenized solution zn for the “linear” problem, in which the 4th power term

is neglected (that is, we set β = 0) and for the “nonlinear” problem, which is the same as

throughout this section (that is, we set β = 0.75·5.669·10−8). The function zn here corresponds

to our finest mesh with DOF 65600.

Further, Figures 1 and 2 show colourmaps of the numerical solution. On Figure 1 we

visualize the solution obtained for some specific parameters, whereas Figure 2 illustrates how the

solution varies on the radiating upper subsurface as we modify the non-orthotropic parameter

µ.
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µ = 0.2 µ = 0.4
DOF ū = 300 ū = 600 ū = 1500 ū = 300 ū = 600 ū = 1500
2940 0.0272 0.0268 0.0268 0.0273 0.0272 0.0295
8400 0.0126 0.0123 0.0127 0.0131 0.0127 0.0129
27900 0.0049 0.0048 0.0047 0.0045 0.0045 0.0046
65600 0.0023 0.0022 0.0024 0.0023 0.0023 0.0024

Table 4: Ratio of average runtimes of assembling the stiffness matrix for an individual iteration
step: tas,qN/tas,N.

µ = 0.2 µ = 0.4
ū = 300 ū = 600 ū = 1500 ū = 300 ū = 600 ū = 1500

nonlinmax zn 253.57 147.89 58.94 196.44 107.85 49.83
linmax zn 262.38 178.61 82.25 201.35 130.32 61.83

nonlinmin zn 0 -24.38 -360.02 0 -25.02 -357.75
linmin zn 0 -19.13 -152.66 0 -19.98 -158.26

Table 5: Maximal and minimal values of the homogenized solution zn for linear/nonlinear
problems for DoF = 65600.

Figure 1: Heat colourmap of the numerical solution un = zn + ū on the whole cube and on the
subsurface ΓN , respectively, for DoF = 65600, ū = 300, and µ = 0.4.

Figure 2: Heat colourmap of the numerical solution un = zn + ū on the subsurface ΓN for
DoF = 65600, ū = 300, for varied values of µ: respectively, µ = 0, µ = 0.2, µ = 0.4.
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Altogether, compared to the full Newton’s method, we observe that (besides simpler coding)

our quasi-Newton method leads to a reduced computational cost, which is a significant aspect

for 3D problems. The main source of reducing the cost is that the stiffness matrices of the

preconditioning operators can be assembled from two precomputed matrices just using a linear

combination in each step of the quasi-Newton iteration. We also note that the gain in cost

may be even higher for domains with irregular geometry, whose boundary (where the quasi-

Newton provides the simplifications) contains a higher relative number of DOFs than for our

test problem. The study of such models might be the subject of further research.
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