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1 Fraunhofer Project Center for Production Management and Informatics,

Institute for Computer Science and Control, Hungarian Academy of Sciences
2 Department of Manufacturing Science and Technology,

Budapest University of Technology and Economics, Hungary

{egri,tamas.kis,andras.kovacs,vancza}@sztaki.mta.hu

June 20, 2013

Abstract

Recent literature on supply chain coordination offers a wide range of
game theoretic and optimization approaches that ensure efficient planning
in the supply chain, but assume that the involved parties have complete
information about each other. However, in reality, complete information
is rarely available, and those models alone do not present any incentives
for the parties to reveal their private information, e.g., the cost parameters
that they use when solving their planning problems.

This paper proposes an inverse lot-sizing model for eliciting the cost
parameters of a supplier from historic demand vs. optimal delivery lot-
size pairs, gathered during repeated earlier encounters. It is assumed that
the supplier solves a single-item, multi-period, uncapacitated lot-sizing
problem with backlogs to optimality to calculate its lot-sizes, and the
buyer is aware of this fact. The inverse lot-sizing problem is reformulated
to an inverse shortest path problem, which is, in turn, solved as a linear
program. This model is used to compute the ratios of the supplier’s cost
parameters, i.e., the setup, the holding, and the backlog cost parameters
consistent with all the historic samples.

The elicited cost parameters can be used as input for various game
theoretic or bilevel optimization models for supply chain coordination.
Computational experiments on randomly generated problem instances in-
dicate that the approach is very efficient in predicting future supplier
actions from the historic records.
Keywords: Economic lot-sizing, inverse combinatorial optimization, elic-
iting cost parameters.

∗Corresponding author
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1 Introduction

Planning inventories in a supply chain necessarily calls for the interaction of
autonomous partners operating with distinct, potentially conflicting objectives,
different decision mechanism and asymmetric information. Satisfying external
demand requires the interaction of these partners in the supply chain. The
literature offers a wide spectrum of coordination mechanisms [2, 28] based on
game theoretic and optimization approaches, which make different assumptions
on the information available to the different partners. Nevertheless, there is
a considerable gap between the incomplete information models, which usually
assume a single encounter of the buyer and the supplier with some well-defined
asymmetric information situation, and the complete information models, which
consider that the companies are mutually aware of their partners’ decision sit-
uation. Namely, in case of repeated encounters, a significant amount of infor-
mation is hidden in historic records of earlier interactions. These records can
contain earlier orders, delivery lot-sizes, or delivery lead times. Furthermore, by
the widespread application of tracking and tracing systems [17, 18], the buyer
can observe even the production lot-sizes and the manufacturing parameters
applied by the supplier. Exploiting this information enables a company to use
well-informed, e.g., Stackelberg or bilevel optimization approaches for planning
its production and logistics, providing a considerable competitive advantage
compared to using models with restricted information.

In this paper, we tackle the issue of how the historic records of earlier encoun-
ters between a buyer and a supplier can be utilized in decision making. We take
the stance of the buyer and aim at eliciting the cost parameters of the rational
supplier’s decision problem. It is assumed that the buyer possesses a historic
record of demand vs. delivery lot-size pairs. It is noted that the same approach
could be used for eliciting the supplier’s cost parameters in its production lot-
sizing problem, given that the production lot-sizes are observed. We introduce
an inverse combinatorial approach to eliciting the cost parameters of a supplier
who determines its delivery periods and quantities by solving a single-item,
multi-period, uncapacitated lot-sizing problem with backlogs (ULSB). Specifi-
cally, the proposed model computes the ratios of the supplier’s setup, holding,
and backlog cost parameters. It is noted that eliciting the absolute values of the
cost parameters from the above input data is impossible, since the optimal de-
livery lot-sizes according to the ULSB model are invariant to the multiplication
of the cost parameters by a common constant. To the best of our knowledge,
this is the first inverse lot-sizing model investigated in the literature.

The elicited cost parameters can be useful in various scenarios involving
a buyer-supplier relationship. A specific application is the utilization of the
elicited cost parameters as inputs to one of the recent Stackelberg or bilevel ap-
proaches to lot-sizing in supply chains [20]. Such models require the knowledge
of the supplier’s cost parameters, but the coordination mechanisms themselves
do not present any incentives for the supplier to reveal their true values. It is
emphasized that in the above applications, eliciting the ratios of the cost pa-
rameters is sufficient, since, likewise the ULSB problem, the rational actions
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of the parties are insensible to the multiplication of the cost parameters by a
common constant. Hence, our method can be a precious complement of those
supply chain coordination approaches. On the other hand, a shortcoming of
the approach is that it cannot compute the absolute values of the cost param-
eters, which can be an important limitation in other applications, e.g., in price
negotiations.

In what follows, the related literature is surveyed first (Section 2). Then,
the problem is defined formally and the inverse optimization solution method
is introduced (Section 3). Next, the results of computational experiments are
presented (Section 4), and finally, the paper is concluded with a discussion of
the application opportunities and the directions for future research (Section 5).

2 Literature review

2.1 Lot-sizing

Fundamental results on dynamic lot-sizing models have been published in [30,
37]. These papers consider uncapacitated lot-sizing models where the determin-
istic, time varying demand is known in advance over a finite planning horizon.
Over the past decades the basic models have been extended by production ca-
pacities and various side constraints, for an overview see, e.g., [3, 24, 25]. The
modeling of various features in lot-sizing by mixed-integer programs (MIP) are
investigated, e.g., in [4, 10].

The need for studying the interacting lot-sizing decisions of multiple au-
tonomous parties in a supply chain is widely recognized. One of the possible
approaches is integration, when the different parties jointly solve the interre-
lated planning problems, see, e.g., [21]. A drawback of integration is the mutual
sharing of all the planning relevant information, which is sometimes unrealistic.
A game theoretic approach alleviates this burden by using coordination mech-
anisms between the parties to drive the supply chain towards a system-wide
optimal performance [2, 6]. Four different computational approaches (decen-
tralized planning, integration, coordination, and bilevel optimization) to the
same lot-sizing problem in a two-player supply chain are compared in [20].

2.2 Game theory

Most papers in supply chain research assume complete information, i.e., that
the game structure is common knowledge for the players [33]. In realistic situa-
tions however, there is an information gap between them—typically concerning
either the cost structure or the demand forecast—which justifies the application
of incomplete information (also called asymmetric information) models. Such
approaches usually necessitate Bayesian setting, where the players have some
common belief about the private information of the others. The inverse lot-
sizing model presented in this paper provides a similar sort of information to
the underinformed player by characterizing the feasible cost parameters. The
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key difference between the two approaches is that we determine only the range
of the feasible values, in contrast to the probability distribution computed by
the Bayesian models. For further details on game theoretic models and their
applications in inventory management problems, we refer to [33].

In two-player games with incomplete information, the process of learning
the private information of the other player is called screening. Such models are
widespread in the supply chain management literature, for a recent overview
see [29]. For instance, Corbett [9] considers the case where either the setup cost
or the backorder cost of the supplier is a private information. Xu et al. [34]
present a model where the supplier’s cost—which is inversely proportional to
the required delivery time—is only known by the supplier, which is an obstacle
for the buyer in optimizing its purchasing. Wang et al. [31] investigate situations
where it is beneficial for the supplier to share its production cost information
with the buyer truthfully. The two-player setting is more exhaustively inves-
tigated in [15], which also assumes that the price- and marketing-dependent
demand rate is a private information of the buyer. We have studied an ex-
tended newsvendor type model in [14], where the buyer has private information
about the uncertain demand forecast, while the supplier knows the various cost
factors. The suggested coordination protocol and payment scheme provide both
partners the right incentive for minimizing the total cost: the buyer is interested
in sharing its unbiased information on the demand forecast and its uncertainty,
while the supplier’s rational decision concurs with the overall optimum.

A different approach to mitigating the effects of information asymmetry and
ensuring a win-win situation for the players is called collaborative planning. In
this case the goal is not eliciting the missing information, but the coopera-
tive iterative improvement of the supply chain plan by non-hierarchical players.
For uncapacitated dynamic lot-sizing in assembly networks Chu and Leon [8]
present an iterative planning procedure. For the finite capacity case Dudek
and Stadtler [13] developed a solution. A general overview of the collaborative
planning problem can be found in [27].

2.3 Inverse combinatorial optimization

Inverse combinatorial optimization is a relatively new field of operations re-
search. A comprehensive survey of this topic, including the studied problem
models and algorithms has been given in [16]. Most of the previous work in the
field focused on graph theoretical problems, such as the inverse shortest path
problem [5] or the inverse center location problem [7]. A generic optimization
model for a class of inverse problems has been introduced in [38], together with a
Newton-type algorithm that runs in strongly polynomial time under mild condi-
tions. In [1], it is shown that the inverse of a linear programming problem (LP)
under the L1 or the L∞ norm is also an LP, and polynomial-time algorithms
are derived for the inverse problems of various classes of polynomially solvable
combinatorial problems. On the other hand, extensions of these narrow-sense
inverse optimization problems can easily become NP-hard, as it is shown in [36]
for problems where only a partial solution is given in the input.
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To the best of our knowledge, this paper is the first to propose an inverse lot-
sizing model. However, there are a few earlier contributions that can be regarded
as applications of inverse lot-sizing to very specific cases. For instance, various
earlier papers present necessary or sufficient conditions for the optimality of the
lot-for-lot policy for different lot-sizing models, see, e.g., [22, 32].

A closely related field of operations research is bilevel programming. It ad-
dresses decision and optimization problems whose outcome is determined by
the interplay of two self-interested decision makers who decide sequentially, and
whose pay-off functions mutually depend on the decision of the other party.
The basic modeling and solution techniques in bilevel programming are pre-
sented in [12], while results in bilevel inventory control include [11, 26, 35].

The inverse lot-sizing problem model introduced in this paper is partly mo-
tivated by our bilevel lot-sizing model presented in [19]. The current inverse
model and the follower’s optimality condition in the bilevel model are based on
a common idea, and an upfront application of the inverse model is to compute
the supplier’s cost parameters for the bilevel problem.

3 An inverse optimization approach to cost elic-
itation

3.1 Problem definition

A problem of cost elicitation in a dyadic supply chain, consisting of a single
buyer and a single supplier is investigated. The buyer aims at eliciting the cost
parameters of its supplier from historic records of earlier encounters between the
two parties. The historic records consist of a set of M samples. Each sample
contains a vector of demand values, dmi , over a horizon of T time periods, and
a vector of corresponding delivery lot-sizes, xmi , m = 1...M, i = 1...T . The
following assumptions are made:

• The supplier determines the delivery lot-sizes xmi by solving a single-item
uncapacitated lot-sizing problem with backlogs (ULSB) to optimality over
the demand dmi submitted by the buyer.

• The supplier uses the same combination of cost parameters, i.e., the setup
cost f0, the holding cost h0, and the backlog cost g0, to determine its
lot-sizes in all samples.

• In case the ULSB problem has multiple optimal solutions for a given de-
mand dmi , the supplier may choose an arbitrary optimal solution.

• The buyer is aware of the ULSB decision framework of the supplier. How-
ever, the cost parameters of the supplier, i.e., f0, h0, and g0, are unknown
to the buyer.

• The delivery lot-sizes applied by the supplier are observed by the buyer.

Possible relaxations of these assumptions are discussed in Section 5.
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3.1.1 The direct ULSB problem

Before presenting the inverse lot-sizing problem investigated in the paper, let
us recapitulate the direct ULSB problem. The input of ULSB consists of the
demand values, di, over a horizon of T time periods, and three cost parameters,
namely the setup cost, f , a per period and per unit holding cost, h, and a per
period and per unit backlog cost, g. It is assumed that all cost parameters are
non-negative real numbers. The objective is to determine the delivery lot-sizes,
xi, i = 1...T in such a way that all demand is satisfied over the time horizon and
the total cost is minimized. Using the auxiliary, implied variables si for stock
quantities, ri for backlogs, and yi for setup events, the (direct) ULSB problem
can be stated as follows:

ULSB(d, f, h, g):

Minimize
T∑
i=1

(fyi + hsi + gri) (1)

subject to

xi + (ri − ri−1) = di + (si − si−1) i = 1, ..., T (2)
xi ≤ Dyi i = 1, ..., T (3)
s0 = sT = r0 = rT = 0 (4)
xi, ri, si ≥ 0 i = 1, ..., T (5)
yi ∈ {0, 1} i = 1, ..., T (6)

The objective (1) is minimizing the total cost, composed of the setup, the
holding, and the backlog costs. Constraints (2) ensure the inventory balance,
while inequality (3) states that the item can be produced in a given period only
if a setup is performed in that period. Constant D is the total demand, i.e.,
D =

∑T
i=1 di. Constraints (4) set the initial/final stock/backlog to zero, which

implies that the total demand will be met throughout the planning horizon.
In the sequel, the combination of cost parameters (f, h, g) used by the sup-

plier to solve its direct ULSB problem will be denoted by (f0, h0, g0).

3.1.2 The inverse ULSB problem

The focus of the current paper is the inverse ULSB problem, where the objective
is eliciting the values of f , h, and g from a set of M corresponding demand
vs. optimal delivery lot-size pairs, X = {(dm, xm), m = 1, ...,M}. As stated
above, it is assumed that each lot-size vector xm = (xm1 , ..., x

m
T ) is an optimal

solution of the corresponding direct ULSB problem with demand vector dm =
(dm1 , ..., d

m
T ). First, it should be observed that, in general, the samples do not

determine the values of (f, h, g) unambiguously. Therefore, the solution of the
inverse ULSB problem is a range of feasible combinations of the cost parameters
(f, h, g), denoted as S(X ):

S(X ) = {(f, h, g) | xm ∈ Opt(ULSB(dm, f, h, g)) ∀m = 1, ...,M}, (7)
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where Opt(ULSB(.)) stands for the set of optimal solutions of the direct ULSB
problem with the given input parameters. However, the set Opt(ULSB(.)) is
invariant to the multiplication of the cost parameters, i.e., for a given demand
vector dmi and cost parameters (f, h, g), it holds that Opt(ULSB(dm, f, g, h)) =
Opt(ULSB(dm, cf, ch, cg)), where c is an arbitrary positive constant. This im-
plies that the approach is unsuitable for finding the absolute values of (f, h, g);
only their ratios can be determined. Accordingly, in the sequel we investigate an
equivalent problem in which f is fixed to a positive constant. To avoid scaling
problems, the setup cost value used by the supplier, f0, will be applied:

S(X ) = {(h, g) | xm ∈ Opt(ULSB(dm, f = f0, h, g)) ∀m = 1, ...,M}. (8)

Note that the range S(X ) is a region of the two dimensional (h, g) plane. How-
ever, for reasons of computational efficiency, instead of characterizing S(X )
exactly, we resort to determining its bounding box, B(X ), which is defined by
the four values hmin, hmax, gmin, and gmax:

B(X ) = {(h, g) | hmin ≤ h ≤ hmax ∧ gmin ≤ g ≤ gmax}, (9)

where

hmin = min{h | ∃g∀m : xm ∈ Opt(ULSB(m, f = f0, h, g))},
hmax = max{h | ∃g∀m : xm ∈ Opt(ULSB(m, f = f0, h, g))},
gmin = min{g | ∃h∀m : xm ∈ Opt(ULSB(m, f = f0, h, g))},
gmax = max{g | ∃h∀m : xm ∈ Opt(ULSB(m, f = f0, h, g))}

The range of feasible values, S(X ), and it bounding box, B(X ), is displayed
in the (h, g) plane for two different problem instances in Figure 1. The left
hand side of the figure presents a case where S(X ) is bounded by finite hmax

and gmax values. The original values of the cost parameters, used for generating
the samples, were h0 = 82 and g0 = 133, while the proposed approach elicited
the bounding box defined by h ∈ [71.43, 96.15], g ∈ [112.90, 136.99] from the
5 samples included in the input. Detailed data for this problem instance is
presented in Appendix A. In the right had side of the figure, S(X ) is displayed
for a set of samples that does not contain any backlogging action. Hence, the
samples do not imply any finite bound gmax; they may even belong to a problem
where backlogging is not allowed (equivalent to g =∞). It is noted that while
no finite hmax or gmax may exist, S(X ) is always bounded from below by finite
values hmin ≥ 0 and gmin ≥ 0 .

3.2 A linear programming formulation

The reformulation of the inverse optimization problem to a linear program (LP)
is based on the idea of regeneration intervals [37] and a standard shortest path
representation of the ULSB problem [19, 23]. Namely, any instance of the ULSB
problem admits an optimal solution in which the time horizon can be subdivided
into a series of regeneration intervals [i, k], such that all demand in the interval
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Figure 1: The feasible range S(X ) and its bounding box B(X ) for two problem
instances, each containing 5 samples. The range on the left is bounded by finite
hmax and gmax values (the supplier’s original cost parameters were h0 = 82
and g0 = 133). The range on the right is unbounded (gmax = ∞), since the
corresponding samples did not contain any backlogging action (h0 = 25 and
g0 = 187).

[i, k] is met by production in a single period j with i ≤ j ≤ k, i.e., xmj =∑k
`=i d

m
` . Therefore, dm and xm uniquely determine the series of regeneration

intervals in sample m (apart from time periods with d` = 0, which can be
assigned to the previous or the subsequent regeneration interval arbitrarily).

Then, the graph representation of our inverse problem consists of M disjoint
components for the M samples. Let us denote the component corresponding
to sample m by Gm. There are T + 1 nodes in Gm, standing for time periods
0, 1, ..., T . Between any pair of nodes i, k of Gm with i < k, there are k − i
parallel directed edges pointing from node i to node k, which correspond to a
possible regeneration interval [i+1, k] and the k−i possible positions of the single
production period in the interval. The length of edge (m, i, j, k) is denoted by
cmijk, and it is the sum of the setup cost plus the total holding and backlogging
cost incurred if production occurs in period j to meet all the demand in the
regeneration interval [i+ 1, k], where i < j ≤ k.

Hence,

cmijk = f +
j−1∑
u=i+1

(j − u)gdmu +
k∑

u=j+1

(u− j)hdmu .

In order to maintain the distance of a node from the first node of the correspond-
ing component, potential values πmj are assigned to each node. The potential
values are consistent with the edge lengths if and only if cmijk ≥ πmk − πmi holds
for each edge, and cmijk = πmk − πmi for the edges of the shortest path. This
graph representation is illustrated in Figure 2.

Then, the optimal solution of the ULSB corresponding to sample m is en-
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Figure 2: Graph representation of the ULSB problem. The figure displays the
T + 1 nodes of Gm, the graph component corresponding to sample m. The
k − i parallel edges between nodes i and k, with the displayed edge weights,
stand for the possible locations of the single production period in the candidate
regeneration interval [i+ 1, k].

coded in the shortest path between the first and last nodes of Gm. Notice that
the optimal ULSB solutions, and therefore the set of all edges along the cor-
responding shortest paths are now given in the input of our inverse problem.
Let us denote this set of edges by SP . Now, we are ready to define our LP
formulation of the problem:

Minimize or maximize h or g (10)

subject to

cmijk − πmk + πmi = 0 ∀(m, i, j, k) ∈ SP (11)

cmijk − πmk + πmi ≥ 0 ∀(m, i, j, k) 6∈ SP (12)

cmijk = f +
j−1∑
u=i

(j − u)gdmu +
k∑

u=j+1

(u− j)hdmu ∀m, i, j, k (13)

πm0 = 0 ∀m (14)
cmijk, π

m
k , h, g ≥ 0 ∀m, i, j, k (15)

In this LP formulation, the variables are the cost parameters h and g, as
well as the edge lengths cmijk and potential values πmi . Constraints (11) and (12)
ensure the consistency of the edge lengths and node potentials with the shortest
paths encoded in SP . Constraint (13) defines the edge lengths, while lines (14)
and (15) set the ranges of the variables.

Lemma 1 S(X ) is the projection of the feasible region of (11)-(15) onto the
variables (h, g).

Proof: For all m = 1, ...,M , the values xm constitute an optimal solution of
the supplier with parameters h and g if and only if the path encoded by SP ,
corresponding to xm, is a shortest path in Gm. On the other hand, the well-
known linear programming formulation of the shortest path problem (11)-(15)
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ensures the latter property [23]. Hence, (h, g, c, π) is a feasible solution of (11)-
(15) if and only if SP is a shortest path for h and g. 2

From the above lemma it follows that, in order to solve the inverse ULSB
problem (9), the LP model (10)-(15) must be solved four times with four different
criteria:

• with the criterion of minimizing h for determining hmin;

• maximizing h for computing hmax;

• minimizing g for determining gmin;

• and maximizing g for calculating gmax.

3.3 Key characteristics

Below we present key properties of the proposed approach to solving the inverse
ULSB problem.

Property 1 The feasible range, S(X ), is non-empty, since the supplier’s true
cost parameter combination is a feasible solution, i.e., (h0, g0) ∈ S(X ).

Property 2 The feasible range, S(X ), is a (bounded or unbounded) convex
polygon in the (h, g) plane.

Proof: Lemma 1 states that S(X ) is the projection of the feasible region of
the LP (11)-(15) onto variables (h, g). The projection of a convex polytope on
some of the coordinates is a convex polygon, from which the above property
follows directly. The polygon is bounded from below by hmin ≥ 0 and gmin ≥ 0.
On the other hand, it may or may not be bounded from above by a finite hmax

and gmax. More specifically, hmax is finite if and only if at least one sample m
contains a period i where a positive amount stock smi is kept. Similarly, gmax

is finite if and only if there exists m and i such that rmi > 0. Otherwise, the
polygon is unbounded (see Figure 1 for illustrations). 2

Property 3 If hmax = ∞ and gmax = ∞, then for any h′ ≥ h0 and g′ ≥ g0,
(h′, g′) ∈ S(X ).

Proof: Let xm denote the lot-size vector in sample m, xm′ an arbitrary ULSB
solution for the same demand vector, h′ ≥ h0, and g′ ≥ g0. Furthermore, let
C(xm′, h′, g′) denote the cost of xm′ with cost parameters h′ and g′. Now,
assume that hmax = ∞ and gmax = ∞. Then, smi = rmi = 0, ∀i,m. We will
show that

C(xm, h′, g′) = C(xm, h0, g0) ≤ C(xm′, h0, g0) ≤ C(xm′, h′, g′).
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The first equality holds because C(xm, h′, g′) is composed of the setup costs
f0 for periods i with xmi > 0 only, which is independent of h′ and g′. The
inequality in the middle encodes the optimality of xm with (h0, g0). The last
inequality holds because increasing the cost parameters h′ or g′ cannot decrease
the monotonous objective function for a fixed xm′. From the above series of
inequalities it follows that C(xm, h′, g′) ≤ C(xm′, h′, g′), which proves the opti-
mality of xm for h′ and g′, i.e., (h′, g′) ∈ S(X ). 2

The above property characterizes the shape of unbounded feasible regions.
It expresses that if S(X ) is unbounded from the upper left diagonal direction,
then it is unbounded from above and from the left as well. It is noted that an
analogous proof can be given based on the LP (11)-(15). The proof consists
of a construction scheme for the variables of the LP that allows increasing h
arbitrarily, while keeping g fixed (or vice versa) and maintaining the feasibility
of the LP.

Property 4 The feasible range, S(X ), does not necessary contain any of the
corners of its bounding box B(X ). This property has been proven by computing
the polygon defined by S(X ) on a sample instance, displayed in Figure 1.

Property 5 The following combination of cost parameters is a feasible solution
of the inverse lot-sizing problem, i.e., (h′, g′) ∈ S(X ):

h′ =


∞ if hmax =∞
hmin + hmax

2
otherwise

g′ =

∞ if gmax =∞
gmin + gmax

2
otherwise

With finite hmax and gmax, the property can be justified by a simple geometrical
proof, since any convex shape contains the mid-point of its bounding box. On
the other hand, hmax =∞ (respectively, gmax =∞) if and only if holding stocks
(resp., backlogging) never occurs in the samples, which is again consistent with
the above h′ and g′. As a special case, hmax = ∞ and gmax = ∞ at the same
time means that the supplier delivered on a lot-for-lot basis in the samples. The
significance of this property is given by applications where a specific, feasible
combination of cost parameters is required, instead of the range or the bounding
box.

Property 6 The bounding box B(X ) can be computed in polynomial time in
the number of samples and in the length of the time horizon. This follows from
the fact that the problem can be formulated as a series of four LP problems, with
sizes bounded by a polynomial function of those two parameters.
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Property 7 If, for a given combination of parameters, the direct ULSB(dm, f, h, g)
problem has multiple optimal lot-size vectors, then S(X ) and B(X ) depend on
which optimal lot-size vector xm is included in X . However, for any choice
of optimal lot-size vector, it is guaranteed that (h0, g0) ∈ S(X ). This property
follows directly from Property 1.

4 Experiments

4.1 Accuracy of the parameter licitation

The first set of computational experiments addressed the accuracy of the elicited
cost parameters, including the dependence of the accuracy on various factors,
such as the number of samples, M , the length of the time horizon, T , or the
characteristics of the instances. Two types of problem instances have been gen-
erated: in the independent samples instances, the samples were generated using
independent random demand, dmi ← U [1, 10], where U [a, b] denotes the integer
uniform random distribution over the interval [a, b]. In the rolling horizon in-
stances, the demand in the first sample, x1

i was generated in a similar fashion,
whereas subsequent demand vectors were generated by shifting the previous de-
mand earlier by one period, and perturbing the demand value by at most 10%,
i.e., dm+1

i = dmi+1(U [90, 110]/100). The supplier’s original setup cost parameter
was fixed to f0 = 1000, while the holding and backlogging costs were random-
ized, h0 ← U [10, 100] and g0 ← U [20, 200]. Obviously, these cost parameters
were only used for generating the samples, and were not included in the input of
the inverse problem. The lot-sizes in the samples were generated by solving the
standard MIP formulation of the ULSB problem presented above. Two different
values were considered for the length of the time horizon, T = 10 and T = 25.
100 instances were generated for each combination of the instance type and the
length of the time horizon, with 50 historic samples in each instance.

The experiments were performed on an implementation of the LP formula-
tion in FICO Xpress 7.2 using the Mosel programming language. All instances
could be solved to optimality in less than one second, i.e., the exact values of
hmin, hmax, gmin, and gmax could be computed. For this reason, the solution
times are not displayed below. We recall that the proposed approach elicits the
ratios of the cost parameters, i.e., h/f and g/f . Nevertheless, to facilitate the
evaluation of the results in terms of h and g, below we use the f0 = 1000 for
scaling them.

Figure 3 shows the results achieved for an independent samples instance,
with T = 10, originally generated with h = 36 and g = 89. The diagram on
the left displays the computed bounds of the holding cost parameter, while the
diagram on the right refers to the backlog cost parameter. The horizontal axis
shows the number of samples, M , applied for the parameter elicitation. The
maximum and minimum cost parameter curves indicate that the accuracy of the
elicitation improved gradually, in multiple steps, until the end of the elicitation
process. Finally, after 50 samples, the bounds 35.71-36.52 were computed for
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Figure 3: The elicited bounds of the holding cost h (left) and the backlog cost
g (right) as a function of the number of samples, M , used for the elicitation on
a selected problem instance.

h (corresponding to a gap of 2.27%) and the bounds 86.76-90.91 for g (4.78%).
Expectably, the gaps would reduce further if more samples were considered.

The summary of the experimental results on the 200 sample instances with
T = 10 is presented in Table 1. The sub-tables on the left display the results
for the elicitation of the holding cost parameter, h, for the independent sam-
ples and the rolling horizon instances, respectively. The rows of the sub-tables
correspond to different ranges of h (the value used when generating the sam-
ples). The ranges were determined in such a way that each row contains data
for 25 instances. The columns of the tables stand for the different values of
M ∈ {10, 25, 50}. Each cell contains the average gap measured on the 25 corre-
sponding instances, where the gap was computed as hmax−hmin

hmin
· 100% for each

individual instance.
The sub-tables on the right display the results for the backlog cost parameter,

g. The table design is similar to the one above, except that the rows correspond
to different ranges of g. The gap associated to the elicited g was calculated as
gmax−gmin

gmin
· 100%. The numbers in parentheses indicate the number of instances

where this gap was infinitely large. This occurred when the samples used for
the elicitation did not contain any backlogging action, and therefore, no finite
gmax could be computed.

The results show that the average gap decreased continuously with increasing
M , and in the end it reached 4.70-8.64% for parameter h and 5.90-15.73% for
parameter g. We note that h and g have symmetric roles in the model, but
the different random distributions used for generating the instances caused a
difference in the accuracy for h and g. The best accuracy for h was achieved
when h was relatively low, but not extremely low. This occurs because for
high values of h, stocking actions appear too rarely in the ULSB solution to
determine hmax precisely. On the contrary, for extremely low h, a stocking
action is taken in almost all time units, which implies that few data is available
for bounding hmin. The case is similar for g. Furthermore, the elicitation is
somewhat more accurate on independent samples than on the rolling horizon
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instances, since the samples in the latter case are interrelated, and therefore
contain fewer information.

The results with T = 25 are displayed in Table 2, in a table structure
similar to the one above. The different values of the M ∈ {4, 10, 20} were
determined in such a way that the total volume of input data matches the
data volume of the corresponding instances with T = 10 (e.g., 4 samples with
T = 25 versus 10 samples with T = 10). These results suggest the same general
conclusions as those with T = 10; independent samples lead to significantly
better accuracy than rolling horizon samples, and increasing M improves the
accuracy drastically, reaching 4.17-13.31% for h and 5.64-41.47% for g with
M = 20. Nevertheless, a detailed comparison of the figures with T = 10 and
those with T = 25 shows a substantial difference of the achieved accuracy on
the same amount of data, depending on the length of the time horizon. Eliciting
h from the independent samples instances with T = 25 and M = M0 resulted
in slightly better accuracy than with T = 10 and M = 2.5M0 (10.93% versus
11.98% on average). This supports the natural conclusion that, for a given
volume of historic data, better accuracy can be achieved with higher T and
lower M than with lower T and higher M .

However, the case of rolling horizon instances is substantially different. Here,
T = 25 and M = M0 leads to significantly worse accuracy than T = 10 and
M = 2.5M0 (22.44% versus 16.27% on average). This can be attributed to the
fact that the historic data in a rolling horizon instance is highly redundant. It
encodes the behavior of the supply channel on an interval of T + M − 1 time
units, which determines the value of information in the overall data volume of
O(TM). In our case, this leads to more information in the instances with T = 10
than with T = 25, especially with higher values of M . Similar observations can
be made for the elicitation of parameter g.

It is noted that the two types of problem instances, the independent samples
and the rolling horizon instances model the two extremities of the interrelation
among the samples, i.e., independent and tightly related samples. For a degree
of correlation between these two extremities, e.g., for rolling horizon instances
with a perturbation above 10%, the accuracy can be expected to be in between
the accuracies achieved with the two sets of instances investigated here.

4.2 Prediction of future supplier actions

The second set of experiments investigated the possibility of using the inverse
optimization approach to predict the future actions of the supplier. For this
purpose, the proposed method was used to elicit cost parameters from M sam-
ples (with M = 10, 25, 50), resulting in cost parameters h′ and g′, as defined
by Property 5. The elicited cost parameters were used, in turn, to predict the
delivery lot-sizes for the demand vector in a subsequent, (M + 1)th test sample.
Then, the predicted lot-sizes (i.e., the optimal ULSB solutions with the elicited
parameters, h′ and g′) were compared to the actual lot-sizes (i.e., optimal ULSB
solutions with the supplier’s original parameters, h0 and g0). Whenever multiple
optimal ULSB solutions existed, one was chosen randomly. The prediction was
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T = 10, independent samples, h
No. of samples

h 10 25 50
12-32 28.67 11.97 5.85
33-54 17.84 8.47 4.70
60-80 18.82 10.26 6.21

81-100 14.42 9.38 7.16

T = 10, rolling horizon, h
No. of samples

h 10 25 50
10-33 30.33 12.93 6.69
35-56 21.71 8.58 6.26
57-83 31.24 12.56 7.84
85-99 33.00 15.47 8.64

T = 10, independent samples, g
No. of samples

g 10 25 50
21-62 25.42 10.93 6.04

65-102 24.66 11.60 5.90
107-148 44.03 15.70 7.71
153-196 83.10 (3) 46.72 14.38

T = 10, rolling horizon, g
No. of samples

g 10 25 50
23-65 26.19 12.76 7.19

70-116 38.82 16.14 8.82
117-155 41.01 (1) 17.96 10.01
159-200 122.09 42.52 15.73

Table 1: Accuracy of the elicitation with T = 10, in percent. The tables display
the average accuracy for h (left) and g (right), for different cost parameters
and numbers of samples. The numbers in parentheses indicate the number of
instances where the gap between the lower and upper bounds was infinitely
large.

accepted to be correct if the predicted and the actual lot-sizes matched perfectly.
Three different types of problem instances were used for the experiment:

• independent samples for elicitation and for testing;

• a series of rolling horizon samples for elicitation, plus an independent
sample for testing; and

• rolling horizon samples for elicitation and testing, where the test sample is
the last member of the series of samples generated by the rolling horizon
generation scheme presented above.

It is noted that since a rolling horizon test sample is reasonable only with rolling
horizon samples for elicitation, no further combinations are possible. All other
parameters of the instances were the same as for the previous set of experiments.

The experimental results are displayed in Table 3, which shows the percent-
age of correctly predicted lot-sizes for the three sets of instances and for different
values of M , with T = 10. The results show that the approach could give cor-
rect predictions in up to 98% of the cases (using 50 samples and rolling horizon
samples for elicitation and testing). However, the performance of the approach
depends both on M and on the type of the instances. The predictions were
correct for 93-98% of the instances when 50 samples were available for elicita-
tion, but only for 85-93% when just 10 samples could be used. Furthermore, the
prediction is better when the elicitation is performed on independent samples
(93-97%, depending on M), rather than on rolling horizon samples (85-93%). It
should be emphasized that the difference diminishes gradually as M increases
(difference of 8% for 10 samples, and 4% for 50 samples). On the contrary,
better results can be achieved when the test sample is correlated to the samples
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T = 25, independent samples, h
No. of samples

h 4 10 20
10-38 18.51 7.17 4.17
38-54 16.87 7.69 5.33
55-80 17.76 9.45 7.28

80-100 19.27 10.86 6.82

T = 25, rolling horizon, h
No. of samples

h 4 10 20
11-29 33.97 15.85 9.95
29-48 32.97 17.22 9.87
48-74 38.1 23.79 12.1

74-100 39.55 22.62 13.31

T = 25, independent samples, g
No. of samples

g 4 10 20
20-71 22.99 9.31 5.64

74-119 27.26 12.85 7.58
120-155 25.28 (3) 14.21 7.41
158-200 46.94 (3) 27.93 (2) 20.64

T = 25, rolling horizon, g
No. of samples

g 4 10 20
23-66 34.85 18.42 11.04

68-103 46.65 (1) 30.88 17.09
106-147 72.67 (2) 42.37 24.21
149-199 84.59 (6) 63.58 41.47

Table 2: Accuracy of the elicitation with T = 25, in percent. The tables display
the average accuracy for h (left) and g (right), for different cost parameters
and numbers of samples. The numbers in parentheses indicate the number of
instances where the gap between the lower and upper bounds was infinitely
large.

No. of samples 10 25 50
Samples for elicitation Test sample
Independent Independent 93% 94% 97%
Rolling horizon Independent 85% 90% 93%
Rolling horizon Rolling horizon 91% 96% 98%

Table 3: Percentage of correctly predicted supplier actions for different numbers
of samples.

used for elicitation due to the rolling horizon generation scheme (correct predic-
tion for 91-98% of the instances, depending on M) than when the test sample
is independent (85-93%). However, the difference in this case does not decrease
rapidly with the increase of M (difference of 6% and 5% for 10 and 50 samples).

5 Conclusions and future work

This paper proposed a novel technique for eliciting a supplier’s cost parame-
ters from earlier records of supply request vs. delivery lot-size pairs by using
an inverse optimization approach. An inverse ULSB lot-sizing model, and its
reformulation to a linear program was introduced. The approach was evaluated
in computational experiments, where the cost parameters could be elicited with
an accuracy of 5-16%, whereas future supplier actions could be predicted with
a success rate up to 98% from 50 samples, with a planning horizon of 10 time
units. We consider that the achieved precision is sufficient in most supply chain
applications.

The above model can be useful in various scenarios involving a buyer-supplier
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relationship. Beyond the obvious and general benefit of knowing the partner’s
cost parameters, the approach enables the use of complete information models
to supply chain coordination even when a part of the required information is not
explicitly available, but it is encoded in historic records about earlier encounters
of the parties. A specific application derives from the numerous recent coop-
eration mechanism for lot-sizing in supply chains based on Stackelberg games.
Such models assume that the buyer knows the cost parameters of the supplier,
but the coordination mechanisms themselves do not present any incentives for
the supplier to reveal the true values of its cost parameters. Hence, the proposed
approach can be regarded as a precious complement of recent game theoretic
and bilevel approaches to coordinating supply chains. On the other hand, the
approach elicits only the ratios of the different cost parameters, not their abso-
lute values, which can be an important limitation in some applications, e.g., for
price negotiations.

The most important direction for future work is extending the approach
to handle noisy samples, i.e., allowing the supplier to slightly deviate from its
optimal ULSB solutions. Another interesting direction is the extension of the
model towards richer lot-sizing models. Some extensions, e.g., costs varying
over time, can be easily added to the mathematical model, but the resulting
high number of free decision variables, and in turn, different feasible solutions,
make it complicated to achieve useful results. Other extensions, such as finite
capacities, require changing the core mathematical model as well. Our long-
term objective is the composition of a portfolio of inverse lot-sizing models,
which is applicable to eliciting also the lot-sizing model applied by the supplier.
The key idea is performing the elicitation using each model in the portfolio, on
samples regarded as noisy. The model that fits with the least noise is accepted
as the model applied by the supplier.
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Appendix A: A sample problem

Below we present the detailed data of the sample problem related to the left
hand side of Figure 1. The length of the time horizon was T = 10 periods, and
only M = 5 samples were considered. The cost parameters used by the supplier
to solved the direct ULSB problem were as follows:

f0 = 1000 h0 = 82 g0 = 133

The demand values dmi , generated randomly by the method presented in Sec-
tion 4, and the delivery lot-sizes xmi that were computed by solving the direct
ULSB problem (1)-(6) are presented in Table 4. The data contained in the table
constitutes the input for the inverse ULSB problem.

Given this input data, the proposed approach to the inverse ULSB problem
consists of solving four copies of the LP formulation (10)-(15), with the four
different optimization criteria. Solving the LP with the criterion of minimizing
h results in h = 71.43 (which defines hmin) and g = 119.05. The values for the
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i 1 2 3 4 5 6 7 8 9 10
d1

i 7 8 0 9 10 6 9 6 5 3
x1

i 15 0 0 9 16 0 15 0 8 0
d2

i 5 4 10 6 0 10 8 3 2 3
x2

i 9 0 16 0 0 18 0 0 8 0
d3

i 4 2 1 9 6 9 5 8 1 10
x3

i 6 0 0 16 0 14 0 9 0 10
d4

i 6 7 1 7 10 1 10 5 6 4
x4

i 13 0 0 18 0 0 16 0 10 0
d5

i 5 4 6 3 8 7 0 9 3 8
x5

i 0 15 0 0 18 0 0 12 0 8

Table 4: The set of historic samples X used as the input for the inverse ULSB
problem: demand vectors dmi and lot-sizes xmi . The shading of the rows reflects
the regeneration intervals.

auxiliary variables πmi and cmijk are presented in Table 5. Note that displaying
the complete matrix cmijk would require excessive space, therefore only the values
cmijk that denote edge lengths along the shortest path, i.e., (m, i, j, k) ∈ SP , are
presented. The values of both πmi and cmijk are different when the LP is solved
with a different optimization criterion.

i 1 2 3 4 5 6 7 8 9 10

π1
i 1000.00 1571.43 1571.43 2571.43 3285.71 4000.00 4857.14 5428.57 5642.86 6642.86
π2

i 1000.00 1285.71 2285.71 2714.29 2714.29 3714.29 4285.71 4642.86 4857.14 5857.14
π3

i 1000.00 1142.86 1261.90 1976.19 2690.48 3452.38 4047.62 5023.81 5119.05 6119.05
π4

i 1000.00 1500.00 1619.05 2404.76 3333.33 3476.19 4214.29 4809.52 5095.24 6095.24
π5

i 1000.00 1285.71 2023.81 2380.95 2880.95 3880.95 3880.95 4738.10 5095.24 6095.24

c1 c10,1,3 = 1571.43 c13,4,4 = 1000.00 c14,5,6 = 1428.57 c16,7,8 = 1428.57 c18,9,10 = 1214.29

c2 c20,1,2 = 1285.71 c22,3,5 = 1428.57 c25,6,7 = 1571.43 c27,9,10 = 1571.43

c3 c30,1,2 = 1142.86 c32,4,5 = 1547.62 c35,6,7 = 1357.14 c37,8,9 = 1071.43 c39,10,10 = 1000.00

c4 c40,1,2 = 1500.00 c42,4,5 = 1833.33 c45,7,8 = 1476.19 c48,9,10 = 1285.71

c5 c50,2,3 = 2023.81 c53,5,7 = 1857.14 c57,8,9 = 1214.29 c59,10,10 = 1000.00

Table 5: Values of variables πmi and cmijk in the solution of the LP for minimizing
h. Only the values cmijk that denote edge lengths along the shortest path, i.e.,
(m, i, j, k) ∈ SP are presented. It can be observed that cmijk − πmk + πmi = 0
holds for all the displayed values, as requested by constraint (11).

Solving the LP with all the four possible optimization criteria results in the
following bounding box, B(X ), for the feasible combinations of cost parameters
(scaled with f0 = 1000):

hmin = 71.43 hmax = 96.15
gmin = 112.90 gmax = 136.99

Note that the feasible range of cost parameter combinations, S(X ), for this
problem instance has been displayed earlier in Figure 1.
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According to Lemma 1, S(X ) is the projection of the feasible region of
the LP (11)-(15) onto the variables (h, g). Since the projection of a linear
program onto a subset of variables is computationally expensive (the Fourier-
Motzkin elimination is of exponential running time in the length of the LP), the
displayed range has been computed using an approximation method. Namely,
a tangent of the convex polygon S(X ) has been determined from each possible
direction, with a resolution of 1 degree. This has been performed by solving the
LP (11)-(15) with the objective function of minimizing cosϕ · h + sinϕ · g for
ϕ = 1◦, 2◦, ..., 360◦.

The following observations can be made. The elicited bounds of the cost
parameters are correct, since the original cost parameters h0 and g0 fall into
these intervals. The corresponding gaps are 34.6% (h) and 21.3% (g), which are
rather wide. On the other hand, when solving the same problem (i.e., using the
same f0, h0, and g0) with M = 50 independent random samples, the accuracy
of the elicitation improved drastically, leading to gaps 4.5% (h) and 3.4% (g).
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