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Abstract

The principal challenge of inventory control in supply chains is that the
interacting autonomous enterprises have to plan their production and lo-
gistics under information asymmetry, driven by different, often conflict-
ing objectives. In this paper, four different computational approaches are
investigated to cope with this challenge: decomposition, integration, co-
ordination, and bilevel programming. The four approaches are applied
to solving the same two-stage economic lot-sizing problem, and compared
in computational experiments. The prerequisites of the approaches are
analyzed, and it is shown that the profits realized and the costs incurred
at the different parties largely depend on the solution approach applied.
This research also resulted in a novel coordination mechanism, as well as
a new algorithm for the bilevel optimization approach to the investigated
lot-sizing problem. A specific goal of this study is to highlight the so far
less recognized application potential of the coordination and the bilevel
optimization approaches for controlling inventories in a supply chain.

Keywords: Supply chain, inventory control, integration, coordination,
bilevel programming.

1 Introduction

The principal challenge of inventory control in supply chains is that the au-
tonomous enterprises have to plan their production and logistics under infor-
mation asymmetry, driven by different, often conflicting objectives. Moreover,
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the individual enterprises typically make decisions that affect the entire sup-
ply chain, and for this purpose they also exploit private information that is
inaccessible to the other parties.

This paper investigates four different approaches to cope with this challenge.
According to the classical decomposition approach, each party optimizes its own
production and logistic decisions without explicitly considering the consequences
on the supply chain level. The integrated approach optimizes the overall per-
formance of the supply chain by centralized planning, however, this requires a
tight integration of the parties. By lifting the latter requirement, the coordi-
nated approach seeks for mechanisms that motivate the autonomous enterprises
to cooperate in finding mutually beneficial plans by negotiation and benefit
sharing. Finally, the bilevel approach enables an individual party, in possession
of sufficient information about its partners, to optimize its production taking
into account the actions that it can expect from the partners.

The goal of this study is to provide a clear-cut comparison of the above
fundamental approaches by applying them to a common problem model. The
main modeling, computational, and managerial implications are investigated
with a focus on the prerequisites of each approach, such as the availability
of information, the contractual requirements, or the assumptions on the type
of cooperation. Furthermore, the potential gains for the different parties of
adopting a given approach are examined, and the resulting solutions, profits
and costs are compared. To the best of our knowledge, this is the first study
that provides a self-contained comparison of these approaches, applied to the
same inventory control problem in different settings. A specific goal of the paper
is to highlight the benefits of the two less recognized approaches, coordination
and bilevel optimization, for the different parties in the supply chain. A new
coordination mechanism (Section 5) and a new algorithm for solving the bilevel
version of the investigated lot-sizing problem (Section 6) are also presented.

The investigated problem corresponds to an uncapacitated economic lot-
sizing problem in a two-echelon supply chain. In a dyadic situation where a
buyer-supplier chain meets external demand, this problem involves both the
production related decisions of the supplier, as well as the logistic decisions of the
buyer. Although for the sake of analytical clarity some simplifying assumptions
have to be taken, the basic problem has direct application relevance. Primarily, a
retailer may assume the role of the buyer, connecting exogenous market demand
and the service of the supplier. Further on, a similar buyer-supplier relationship
may hold between multiple divisions of a large enterprise.

For a review of inventory control problems, both as faced by a single decision
maker and in a supply chain, the reader is referred to [3]. The potential gain by
integrated versus decentralized decision making in supply chains is investigated
in [12], where the difference of the induced costs is defined as the price of
anarchy. The coordination of supply chains consisting of autonomous enterprises
is studied in detail in [2], while a comprehensive taxonomic survey of coordinated
buyer-vendor models in a deterministic, time invariant setting is provided in [15].
The fundamental ideas of bilevel programming are presented in [7], and the
application of this approach to the management of multi-divisional organizations
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is studied by Bard [4]. Further, more specific references are provided later in
Sections 3 to 6, each of which investigate one of the four possible computational
approaches to the studied lot-sizing problem.

2 Problem definition

2.1 A two-stage lot sizing problem

The different computational approaches are studied on a two-stage single-item
uncapacitated lot-sizing problem as follows. Let us consider a supply chain
that provides a single item to its customers. The supply chain consists of two
independent companies, a buyer and a supplier. The buyer (and hence, the
supply chain) faces dynamic, deterministic external demand dt, t = 1, ..., T ,
over a discrete time horizon of T time periods.

Departing from the known demand, the buyer computes its supply requests,
i.e., the amount x1

t of the item that should be delivered from the supplier to the
buyer in each time period t. The buyer may use the delivered amount partly
to satisfy the demand in the same period t, partly to keep it on stock to cover
future demand in periods t′ > t, and partly to satisfy backlogged demand from
previous periods t′′ < t. Delivering a positive amount in period t incurs a fixed
cost of f1

t plus a per unit cost of p1
t . Holding inventory and backlogging at the

buyer take h1
t and g1

t per unit and per period cost, respectively. These delivery,
holding, and backlogging costs are paid by the buyer to an external party.

The income of the buyer consists of the per unit purchase price q1t . Sym-
metrically, the buyer pays a per unit purchase price q2t for the ordered goods.
This purchase price is independent of the above logistic costs.

To cover the demand set by the buyer’s supply requests, the supplier gener-
ates a production plan that specifies the amount x2

t of the item to be produced
in period t over the planning horizon. In each period t where a positive amount
x2

t > 0 is produced, production cost is incurred: a fixed setup cost of f2
t plus a

per unit cost of p2
t . Just as the buyer, the supplier can hold stock or backlog

demand, for a cost of h2
t and g2

t per unit and per period, respectively. Moreover,
it is assumed that the production and holding costs that occur at the supplier
are paid by the supplier to an external party, whereas the backlogging cost is
paid by the supplier to the buyer as a penalty for the delay caused.

Furthermore, it is assumed that all demand must be satisfied by the end of
the horizon and no item remains in stock, i.e.,

∑T
t=1 dt =

∑T
t=1 x

1
t =

∑T
t=1 x

2
t .

The production and delivery lead times are zero. The objective of both parties
is to maximize their profits.

In all models studied in the sequel the decision variables of the buyer are
the x1

t supply, s1t inventory and r1t backlog quantities for each time period t =
1, ..., T of the planning horizon. The supplier has a decision problem of identical
structure, with x2

t production, s2t inventory and r2t backlog quantities. Whenever
appropriate, we distinguish the two parties with an upper index k, where k =
1 stands for the buyer’s and k = 2 for the supplier’s decision variables and
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parameters. Auxiliary binary variables y1
t and y2

t are introduced to capture
events of delivery and production, respectively. The notation is summarized in
Table 1.

Dimensions
T Number of time periods
Upper indices
21 Parameters/variables related to the buyer (planned values)
21R Parameters/variables related to the buyer (realized values)
22 Parameters/variables related to the supplier (plans match realization)
Parameters
dt External demand in period t
fk

t Fixed delivery (k = 1)/production (k = 2) cost in period t
pk

t Per unit delivery (k = 1)/production (k = 2) cost in period t
hk

t Per unit and per period holding cost at party k in period t
gk

t Per unit and per period backlog cost at party k in period t
qk
t Per unit purchase price at party k in period t

Variables

xk
t Amount of goods requested by the buyer (k = 1)/produced by the supplier (k = 2) in

period t
yk

t Binary variable indicating whether a positive amount is produced/delivered in period t
sk
t Stock at party k at the end of period t

rk
t Backlog at party k at the end of period t

Performance measures

Ck Total production and logistic cost incurred at party k
P k Profit realized by party k

Table 1: The notation used in the paper.

2.2 Plans and realization

Since the above model allows the supplier to backlog, according to some of
the investigated approaches, the buyer may not be able to anticipate situations
where the realized deliveries from the supplier deviate from the supply requests.
Therefore, the executed scenario may differ from the plan, and the rules of the
execution must be established. The following rules are applied.

If the supplier produces the goods on time, then the buyer must call off the
amount indicated in the supply requests. Otherwise, i.e., if the supplier backlogs
demand, then the buyer calls off the ordered goods as soon as they are available.
Formally, in each period t, the buyer must call off the amount that has been
ordered and actually produced, which is calculated as:

x1R
t = min

(
t∑

t′=1

x1
t′ ,

t∑
t′=1

x2
t′

)
−

t−1∑
t′=1

x1R
t′ . (1)

Likewise, external demand is served as soon as possible:

dR
t = min

(
t∑

t′=1

dt′ ,

t∑
t′=1

x1R
t′

)
−

t−1∑
t′=1

dR
t′ . (2)
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The realized setup, inventory, and backlog at the buyer are also differenti-
ated from the planned values by using an upper index 1R. Note that with all
the approaches investigated here, the supplier is able to execute its plans, and
therefore it is not required to differentiate its production plan and the realiza-
tion.

Hence, the total logistic cost, C1, incurred at the buyer and the profit, P 1,
realized by the buyer can be computed by the following formulas, where the
last component, g2

t r
2
t , stands for the backlog compensation received from the

supplier:

C1 =
T∑

t=1

(
f1

t y
1R
t + p1

tx
1R
t + h1

t s
1R
t + g1

t r
1R
t − g2

t r
2
t

)
(3)

P 1 =
T∑

t=1

q1t dt −
T∑

t=1

q2t x
1
t −

T∑
t=1

(
f1

t y
1R
t + p1

tx
1R
t + h1

t s
1R
t + g1

t r
1R
t − g2

t r
2
t

)
(4)

Similarly, the supplier’s total cost and profit is defined by the following
formulas:

C2 =
T∑

t=1

(
f2

t y
2
t + p2

tx
2
t + h2

t s
2
t + g2

t r
2
t

)
(5)

P 2 =
T∑

t=1

q2t x
1
t −

T∑
t=1

(
f2

t y
2
t + p2

tx
2
t + h2

t s
2
t + g2

t r
2
t

)
(6)

Finally, the complete flow of financial assets in the problem is displayed
graphically in Figure 1.
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Figure 1: Flow of financial assets in the problem.

2.3 Sample problem

Each of the investigated approaches will be illustrated on the following sample
problem instance. In this simplified example, all cost parameters are time-
invariant.

q1 = $14/unit f1 = $100 p1 = $1/unit h1 = $6/unit/week g1 = $18/unit/week

q2 = $8/unit f2 = $492 p2 = $1/unit h2 = $5/unit/week g2 = $6/unit/week
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T = 10 weeks d = [71, 84, 43, 21, 4, 81, 59, 44, 32, 46] units

3 Decomposition approach

When parties have no access to private data of the others, each party can but
optimize its own production and logistics based on information locally available.
This leads to the decomposition approach where, so as to satisfy external de-
mand, decentralized decisions have to be coordinated. Typically, local planning
problems are solved in a sequence, where the solution of one problem sets target
for the next one. The most common procedure is upstream planning [8, 13], a
hierarchical sequential decision scheme starting at the downstream party (e.g.,
retailer) who, after solving its own planning problem, generates demand to its
supplier. In a longer chain, this protocol is repeated upstream.

In the decentralized approach the parties necessarily make, often implicitly,
assumptions on the actions of the other related parties (e.g., the buyer may
assume that its supplier always delivers on time). Whenever the above assump-
tions fail (e.g., the supplier delivers late), the realizations may deviate from the
plans.

Information asymmetry and local autonomy cause together inefficiencies like
acute shortage situations or excess inventories. Recently, Albrecht analyzed and
classified a number of drivers that lead to sub-optimality in decentralized plan-
ning [2]. In any case, satisfying the target set by one partner incurs some extra
costs (by, e.g., too large quantities or too frequent deliveries required) at another
one, thus increasing the system-wide costs. To compensate for this deficiency,
the key practical advantages of the decomposition approach are its moderate
information requirements and compliance with the usual business conditions, as
well as the well established theoretical and computational background.

3.1 Computational model

In the decomposed model of our sample problem, the buyer makes the assump-
tion that the supplier will deliver on time (and therefore it does not hold any
buffer stock), though there is no guarantee that this assumption will be satis-
fied in the realized scenario. Since the external demand is known by the buyer,
the upstream planning approach is taken: (1) the buyer decides about its sup-
ply, inventory and backlog quantities; (2) the supply requests, x1

t , are passed
to the supplier as target; (3) the supplier regards these quantities as incoming
demand, and computes the corresponding production plan; (4) knowing the x2

t

production quantities, the delivery from the supplier to the buyer, and from the
buyer to the external customer are realized according to the rules of the plan
execution.

The decomposition method involves solving two identically structured single-
stage lot-sizing problems, as defined by the following mixed-integer linear pro-
gram (MIP). The buyer’s (supplier’s) model can be received by substituting
k = 1 (k = 2).
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Maximize

T∑
t=1

qk
t d

k
t −

T∑
t=1

qk+1
t x1

t −
T∑

t=1

(
fk

t y
k
t + pk

t x
k
t + hk

t s
k
t + gk

t r
k
t

)
. (7)

subject to

xk
t + (rk

t − rk
t−1) = dk

t + (sk
t − sk

t−1) t = 1, ..., T (8)

xk
t ≤ Dyk

t t = 1, ..., T (9)

sk
0 = sk

T = rk
0 = rk

T = 0 (10)

xk
t , r

k
t , s

k
t ≥ 0 t = 1, ..., T (11)

yk
t ∈ {0, 1} t = 1, ..., T (12)

The MIP model maximizes the profit of the corresponding party, with d1
t =

dt, d2
t = x1

t (7). The supplier (k = 2) does not pay any purchase price, hence
qk+1
t = q3t = 0 must be considered in the objective function. Equation (8)

describes the inventory balance constraint, while inequality (9) states that a
positive amount can be delivered/produced in a given time period only if a setup
is performed in that period. Constant D is the total demand, i.e., D =

∑T
t=1 dt.

Constraints (10) set the initial and final stock and backlog to zero, which also
implies that the total demand will be satisfied throughout the planning horizon.
This lot-sizing problem can be solved in polynomial time, see, e.g., [18]. The
buyer directly faces the external demand, i.e., d1

t = dt (t = 1, ..., T ). Given that
decisions on the supply requests at the buyer have already been made, the two
serial decision problems are coupled: d2

t = x1
t for each period over the horizon.

After solving the supplier’s problem, from values of x2
t the realized delivery

x1R
t and the served demand dR

t can be determined according to the rules of plan
execution (see (1) and (2)). The realization will incur profits P 1

Dec and P 2
Dec, as

well as costs C1
Dec and C2

Dec at the buyer and the supplier, respectively.

3.2 Sample problem

The solution of the sample problem computed according to the decomposition
approach is displayed in Table 2. The buyer plans to satisfy demand from just-
in-time supply always except for week 5, where it wishes to use the quantity
on stock from week 4. However, the supplier, who has much higher setup cost,
produces only in weeks 2, 6, and 9, which causes backlogs in weeks 1 and 8 in
both the supplier-buyer and the buyer-external customer relations. This causes
excess cost for the buyer compared to its plan.

4 Integrated approach

The inevitable sub-optimality of the decomposition approach motivated research
in integrated approaches to planning in the supply chain [1, 11]. In any case, the
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t 1 2 3 4 5 6 7 8 9 10

External demand dt 71 84 43 21 4 81 59 44 32 46

Supply request x1
t 71 84 43 25 81 59 44 32 46

Production plan x2
t 223 140 122

Delivery to buyer x1R
t 155 43 25 81 59 76 46

External demand served dR
t 155 43 21 4 81 59 76 46

P 1
Dec = 321 P 2

Dec = 239 P
∑
Dec = 560 C1

Dec = 2589 C2
Dec = 3641 C

∑
Dec = 6230

Table 2: Solution of the sample problem according to the decomposition ap-
proach. All quantities are measured in units, while profits and costs in dollars.

integrated approach presumes a central agency that knows all the parameters
and whose decisions are adopted by all partners. It maximizes the total profit
on the supply chain level, while, at the same time, may increase or decrease the
profits of the individual parties. Compared to the decomposition approach, now
the supplier is usually better off, since its parameters are also considered right
at the outset of planning. To guarantee that integrated planning is beneficial
for both parties, its practical implementation often involves some settlement on
the sharing of profits, which may range from the reduced unit purchase prices
to complex pricing schemes.

4.1 Computational model

Integrated planning implies that the demand set by the buyer equals the demand
and the output of the supplier, i.e., d2

t = x1
t , and the supplier’s backlog r2t is

zero. Consequently, the MIP model of the integrated approach corresponds to
the duplication of the single-level MIP model:

Maximize

T∑
t=1

q1t dt −
T∑

t=1

(
f1

t y
1
t + p1

tx
1
t + h1

t s
1
t + g1

t r
1
t + f2

t y
2
t + p2

tx
2
t + h2

t s
2
t

)
(13)

subject to
(8) to (12) for k ∈ {1, 2}

The objective function contains the purchase price received from the external
party, minus the total production and logistic cost in the supply chain (13). Note
that the optimal solution does not contain supplier backlog, and therefore all
occurrences of variables r2t can be dropped. The constraints can be derived by
substituting both k = 1 and k = 2 into constraints (8-12), and unifying d2

t and
x1

t .
We investigate the integrated approach with two different benefit sharing

mechanisms. In the first case, each party bears its own costs, and hence, the
profits P 1

Int and P 2
Int, as well as costs C1

Int and C2
Int can be calculated according
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to formulas (3-6). In the second case, it is assumed that the parties share the
gain over the decomposition approach, G = P 1

Int + P 2
Int − P 1

Dec − P 2
Dec, on a

50%–50% basis. Note that the assumptions allow the parties to compute P 1
Dec

and P 2
Dec. Finally, the shared profits are computed as P 1

Int
∗ = P 1

Dec + G
2 and

P 2
Int
∗ = P 2

Dec + G
2 .

4.2 Sample problem

The integrated solution for the sample problem of Section 2.3 is displayed in
Table 3. The solution is structurally different from the decomposed solution.
Since the difference between the holding costs h1 and h2 is marginal, the items
produced at the supplier (in weeks 1, 2, 6, and 8) are immediately delivered
to the buyer. According to this plan, the external demand will be satisfied on
time, except for week 5, where it will be backlogged. The profits realized by the
individual parties increase by 7.5% (buyer) and 497.1% (supplier), which means
a 216.4% improvement for the overall supply chain.

t 1 2 3 4 5 6 7 8 9 10

External demand dt 71 84 43 21 4 81 59 44 32 46

Supply request x1
t 71 148 144 122

Production plan x2
t 71 148 144 122

Delivery to buyer x1R
t 71 148 144 122

External demand served dR
t 71 84 43 21 85 59 44 32 46

P 1
Int = 345 P 2

Int = 1427 P
∑
Int = 1772 C1

Int = 2565 C2
Int = 2453 C

∑
Int = 5018

P 1
Int

∗
= 927 P 2

Int
∗

= 845 P
∑
Int

∗
= 1772 C1

Int
∗

= 1983 C2
Int

∗
= 3035 C

∑
Int

∗
= 5018

Table 3: Solution of the sample problem according to the integrated approach.
All quantities are measured in units, while profits and costs in dollars.

5 Coordinated approach

Coordinated planning is aimed at circumventing the deficiencies of the decompo-
sition approach when there is no opportunity for integrated planning. It strives
to improve the overall performance of the supply chain while maintaining the in-
formation asymmetry and local decision authority of the partners [2, 11, 16]. A
supply chain is strongly coordinated if and only if the partners’ optimal local de-
cisions lead to optimal system-wide performance. This problem can be captured
in a game theoretic setting: how to find a set of optimal supply chain actions
(i.e., production and delivery) that result in such an equilibrium from which
no partner has an interest to deviate? The game theoretic perspective leads
to theoretical contract models that coordinate a supply channel under rigorous
simplifying assumptions (e.g., typically, one-period models are handled) [5, 10].
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In this paper, we take a weaker, albeit widely accepted concept: the supply
chain is coordinated if the local, selfish production and delivery actions result
in an overall performance at least as good as the decomposition approach. This
definition allows for a wide spectrum of coordination mechanisms that have
though some generic requirements in common: (1) while keeping the privacy
of sensitive cost and profit factors, there is a need for sharing the intentions–
specifically, plans–of the partners; (2) alternative planning scenarios have to be
generated, exchanged and evaluated; (3) an incentive scheme is required that–
against their local interests–drives the partners towards coordinated solutions.
Hence, potential benefits of coordination should be shared.

5.1 Computational model

Our model for coordinated planning builds on the elements of the decomposed
model. Instead of a single production plan, the supplier responds to the demand
of the buyer with a set of alternative scenarios from among which the buyer
will finally select a single one to be executed. However, compared to its optimal
production plan, the supplier can only have a loss on each of the alternative
scenarios, hence, it assigns a compensation request to each of them. The al-
ternative planning scenarios are distinguished by index n = 0, ..., N , and the
costs and profits of a particular scenario from the perspective of the buyer and
the supplier are expressed by C1,n, C2,n, P 1,n and P 2,n, respectively. Locally
optimal solutions of the decomposed approach are indexed by n = 0.

The coordinated planning protocol proceeds in the following steps: (1) The
buyer solves its problem as formulated in equations (7)-(12), facing directly the
external demand, i.e., d1

t = dt, (t = 1, ..., T ). (2) The supply requests x1
t are

communicated to the supplier who in return generates a baseline production
plan x2,0

t , incurring profit P 2,0. With some policy (discussed later) the supplier
generates a series of alternative production plans, x2,n

t . The supplier’s potential
loss on each scenario is calculated as L2,n = P 2,0 − P 2,n. (3) The alternative
scenarios are offered to the buyer, together with a compensation requirement
Z2,n. Obviously, the self-interested supplier will ask for a compensation that
covers its loss, i.e., Z2,n ≥ L2,n. (4) The buyer simulates the execution of
each x2,n

t scenario received, and calculates the profit P 1,n as the realized profit
given in (4) minus the compensation Z2,n. (5) Finally, the buyer selects the
scenario with the maximal profit P 1,n and the chain as a whole will be operated
accordingly.

Since Z2,n ≥ L2,n, the partners deviate from the baseline solution of the
decomposition approach only if there is a scenario n where P 1,n +P 2,n > P 1,0 +
P 2,0. In the last resort, the baseline solution is executed. Hence, the above
protocol coordinates the chain in the weak sense.

The policy for scenario generation is based on the idea that not only the
buyer, but also the chain as a whole could be better off if the buyer did not have
to face backlog. Hence, the supplier generates a series of alternative scenarios
with less and less backlog, ending up with a production plan scenario N without
any backlog at the supplier (i.e., in every period t, r2,N

t = 0). Such a series
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can be generated by using forged, increased backlog cost parameters g2,n
t for

computing the plans. We have used parameters g2,n+1
t = 1.1g2,n

t with g2,0
t = g2

t .
Since the supply requests are generated a priori, the proposed alternatives may
not contain the optimal solution of the integrated approach.

In our model the benefit of eventual cooperation can be shared through the
compensation required by the supplier for a sub-optimal scenario. A supplier
with a fully cooperative but rational attitude does not require more than its
eventual loss, i.e., Z2,n = L2,n. Though, in addition to this the supplier may
want to realize some gain, too. The gain ratio % is given as the percentage of the
cost in the baseline solution, resulting in a compensation of Z2,n = L2,n +%C2,0.
If the supplier has a greedy attitude and requires more compensation than its
potential loss, then the chances of arriving at a coordinated solution are getting
worse.

Finally, it must be noted that in contrast to the previous approaches, the
solution computed by the coordination approach is characteristic to the defined
coordination mechanism; different mechanisms may result in different solutions.
A shortfall of this coordination mechanism is that the supplier, if it has informa-
tion about the buyer’s parameters, can abuse the mechanism: it can deliberately
generate a baseline plan that is unacceptable to the buyer, and assign massive
compensation costs to any other alternatives.

5.2 Sample problem

Using the above mechanism with % = 0, a series of production plan alternatives
have been generated for the sample problem. These contained the baseline
decomposed solution and additional four alternative production plans for the
supplier. The last alternative, with modified backlog cost g2,4 = 9.663, resulted
in no backlog in either relation. This alternative incurs a higher cost of 3833 for
the supplier (cf. the default C2

Dec = 3641). However, it is worth for the buyer to
compensate the supplier for eliminating the costly backlog, and hence, this plan
alternative is selected. This solution increases the profit of the overall supply
chain by 176.4% compared to the decomposition approach, but is still inferior
to the integrated solution, because the supply requests of the buyer, computed
a priori, did not enable the partners to find a more efficient solution.

6 Bilevel approach

The bilevel optimization approach captures the decision situation of a well-
informed buyer (leader in the terminology of bilevel optimization), who knows
the decision problem of the supplier (follower), i.e., the parameters f2

t , p
2
t , h

2
t

and g2
t , and wants to take into account the optimal decision of the supplier

when computing its supply requests. We adopt the optimistic assumption, i.e.,
consider that in case of multiple optimal solutions for the supplier, it chooses
the optimal solution which is the most favorable for the buyer. Notice that in

11



t 1 2 3 4 5 6 7 8 9 10

External demand dt 71 84 43 21 4 81 59 44 32 46

Supply request x1
t 71 84 43 25 81 59 44 32 46

Production plan x2
t 71 152 140 122

Delivery to buyer x1R
t 71 84 43 25 81 59 44 32 46

External demand served dR
t 71 84 43 21 4 81 59 44 32 46

P 1
Crd = 1309 P 2

Crd = 239 P
∑
Crd = 1548 C1

Crd = 1601 C2
Crd = 3641 C

∑
Crd = 5242

Table 4: Solution of the sample problem according to the coordinated approach,
assuming a fully cooperative supplier, i.e., the gain ratio set to zero. All quan-
tities are measured in units, while profits and costs in dollars.

the pessimistic case the supplier would always choose an optimal solution which
yields the least favorable outcome for the buyer.

The basic modeling and solution techniques in bilevel programming are pre-
sented in [7]. However, the literature of bilevel approaches to inventory problems
is rather scarce. The most relevant references include [6] and [14], where two dif-
ferent production and delivery planning problems are investigated in extended
supply chain, with the goal of constructing plans that are locally optimal for
the individual parties as well. In [17], the problem of coordinated planning in
a supply chain under hard service time requirements is investigated, where a
central coordinating agency allocates desired response times to the individual
parties.

6.1 Computational model

In the following mathematical program we model the decision problem of the
leader. The decision variables and parameters are similar to the ones in the
previous approaches.

Maximize

T∑
t=1

q1t dt −
T∑

t=1

q2t x
1
t −

T∑
t=1

(
f1

t y
1
t + p1

t (x1
t + r2t−1 − r2t ) + h1

t s
1
t + g1

t r
1
t − g2

t r
2
t

)
(14)

subject to

x1
t + r2t−1 − r2t + (r1t − r1t−1) = d1

t + (s1t − s1t−1) t = 1, ..., T (15)

x1
t + r2t−1 − r2t ≤ Dy1

t t = 1, ..., T (16)
(10) to (12) with k = 1 (17)
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y2

t

x2
t

s2t

r2t

 ∈ arg max

{
T∑

t=1

q2t x
1
t −

T∑
t=1

(
f2

t y
2
t + p2

tx
2
t + h2

t s
2
t + g2

t r
2
t

)
| (8) to (12) with k = 2

}

(18)
The objective (14) is maximizing the leader’s profit, considering purchase

prices received and paid, all logistic costs, as well as the compensation received
from the supplier for late deliveries. The constraints of the model are similar to
those in the previous approaches, except that the leader must calculate with the
realized supply x1R

t = x1
t + r2t−1 − r2t , which may differ from the supply request

submitted, x1
t . Otherwise, the constraints of both the buyer and the supplier are

identical to those in the decomposed model. The supplier’s optimality condition
(18) expresses that the supplier chooses its optimal production plan for the given
supply requests received from the buyer. Again, d2

t must be substituted with
x1

t .
It must be noted that there exists no generic solution method for mixed

discrete-continuous bilevel optimization problems such as the bilevel lot-sizing
problem under consideration. Instead, we developed a customized solution algo-
rithm, motivated by the dynamic program (DP) of Zangwill [18] for the single-
stage uncapacitated lot-sizing problem with backlogs. The DP exploits that the
single-level problem (and hence, the supplier’s subproblem in our bilevel set-
ting) always admits an optimal solution that consists of so-called regeneration
intervals. The ensemble of such regeneration intervals is called a configuration.
The algorithm decomposes the problem according to the possible configurations
of the supplier’s production plan. For each configuration, it solves a single-level
MIP with added constraints that a production plan with the given configuration
must be optimal for the supplier. The detailed presentation of the algorithm
can be found in Appendix A.

6.2 Sample problem

The solution of the sample problem according to the bilevel approach is shown
in Table 5. It demonstrates the various ways how the buyer can manipulate
the supply requests submitted to the supplier so as to minimize its own cost.
Namely, in week 1, the buyer asks for a larger lot than its actual needs (82
units instead of 71). This is necessary in order to prevent the supplier from
backlogging this lot to week 2 (cf. the decomposed solution in Table 2), which
would cause an extensive backlog cost for the buyer as well. On the other hand,
the buyer anticipates some demand from week 6 to week 5. The supply request
for week 5 is then the maximum amount that does not trigger production at the
supplier. While this kind of demand anticipation does not affect the material
flow, it incurs a backlog compensation paid by the supplier to the buyer for the
late satisfaction of the anticipated demand. Certainly, this can be regarded as
an abuse of the contract between parties, but this is a rational action from a
profit maximizing buyer.
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Compared to the decomposition approach, the buyer could increase its profit
by 384.8%, but this also led to a moderate, 6.9% increase of the costs of the
supplier; finally, in this problem instance, the supplier’s profit turned negative.
The overall profit in the supply chain increased by 175.5%. Note that in general
there is no guarantee that the bilevel approach increases the total profit.

t 1 2 3 4 5 6 7 8 9 10

External demand dt 71 84 43 21 4 81 59 44 32 46

Supply request x1
t 82 73 68 42.72 39.77 57.51 55.46 21.93 44.61

Production plan x2
t 82 141 140 122

Delivery to buyer x1R
t 82 73 68 82.49 57.51 55.46 21.93 44.61

External demand served dR
t 71 84 43 21 4 81 59 44 32 46

P 1
Bl = 1555.36 P 2

Bl = −12.69 P
∑
Bl = 1542.67 C1

Bl = 1354.64 C2
Bl = 3892.69 C

∑
Bl = 5247.33

Table 5: Solution of the sample problem according to the bilevel approach. All
quantities are measured in units, while profits and costs in dollars.

7 Comparison of the approaches

7.1 Comparison of requirements

After the detailed presentation of the individual approaches, we compare their
requirements and applicability to various scenarios in the supply chain analyti-
cally in Table 6. The aspects of the comparison are defined below.

• Information requirements: what information has to be shared among the
different parties?

• Cooperation: what kind of cooperation is required among the parties?

• Extra contractual requirements: what aspects of the cooperation have to
be laid down in contracts, in addition to the common costs, dates, and
conditions?

• Applicability to multi-level: is the approach applicable to multi-level sup-
ply chains? What are the limitations of this extension?

• Optimization: what optimization criterion does the approach address?

• Computational tractability: what computational challenges does the ap-
proach pose in a typical application?
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Decomposition Integrated Coordinated Bilevel
Information
requirements

Buyer commu-
nicates demand
only

Planner has full in-
formation on all
parties

Demand, alterna-
tive plans, compen-
sation costs com-
municated

Buyer has full in-
formation on the
supplier; supplier
receives demand

Cooperation Selfish parties Full cooperation Selfish parties Selfish parties
Extra con-
tractual req.

- Rules of informa-
tion and benefit
sharing

Rules of informa-
tion and benefit
sharing

-

Applicability
to multi-level

Yes Yes, with limita-
tions (data accessi-
bility, sensitivity to
disturbances).

Yes, with limita-
tions on the appli-
cable coordination
mechanisms

Impracticable

Optimization - Supply chain total
profit

Supply chain total
profit (with restric-
tions by the mech-
anism applied)

Buyer’s profit

Computational
tractability

Local problems
solved (often
tractable)

Integrated prob-
lems solved
(tractable cases
exist)

Series of local prob-
lems solved (often
tractable)

Embedded op-
timization (ex-
tremely challeng-
ing)

Table 6: Analytical comparison of the different approaches.

7.2 Comparison of solutions, profits, and costs

The solutions delivered by the different approaches have been compared quanti-
tatively in computational experiments on a set of randomly generated problem
instances. For that purpose, the presented models and algorithms have been
implemented in FICO XPress-MP [9], using the Mosel programming language.
In the numerical study, 100 problem instances were generated with the follow-
ing parameters. The number of time periods was fixed to T = 10, and all cost
parameters were assumed to be constant over time. Furthermore, fixed param-
eters f1 = 100 and p1

t = p2
t = 0 were considered in all instances, while the other

cost parameters were randomized. In the sequel, U [a, b] stands for the uniform
distribution over the integers in interval [a, b]. Hence, we let h1 ← U [2, 10],
g1 ← U [4, 20], f2 ← U [250, 500], h2 ← U [1, h1], and g2 ← U [2, g1]. The per
unit purchase prices, q1t and q2t , were chosen to ensure a reasonable profit for
the parties, by using an Economic Order Quantity (EOQ) formula to estimate
the costs and applying a 10% profit margin.

We recall that for the decomposed, integrated, and bilevel approaches, op-
timal solutions of formal mathematical models were computed (in case of the
decomposed approach, the typical upstream planning method was considered).
In contrast, the solution found by the coordinated approach was characteristic
to the developed coordination mechanism; different mechanisms may lead to
different solutions. Finding the optimal solutions required a few minutes per
instance for the bilevel solver, while running times were negligible for the other
three solvers.

The results are displayed in Figures 2 to 4, which compare the profits and
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costs incurred according to the integrated, coordination, and bilevel approaches,
respectively, to the values computed according to the baseline decomposition
approach. Each spot in a diagram corresponds to one problem instance, and
its horizontal (vertical) position shows the difference of the buyer’s (supplier’s)
profit or cost according to the two compared approaches. More precisely, in the
figures presenting profits, the coordinates of a point correspond to the improve-
ment of the profit margins, i.e.,[

100
(
P 1

X

R
− P 1

Dec

R

)
, 100

(
P 2

X

R
− P 2

Dec

R

)]
,

where P k
X stands for the profit realized by party k according to approach X, and

R =
∑T

t=1 q
1
t dt is the revenue of overall supply chain. The upper right quar-

ter of the diagrams contains the solutions that are beneficial for both parties,
whereas the lower right quarter contains solutions advantageous for the buyer,
but disadvantageous for the supplier, etc. A spot above the diagonal denotes an
instance where the investigated approach could increase the overall profit of the
supply chain compared to the decomposition approach. In figures comparing
costs, the coordinates of the spots are[

100

(
C1

X

C
∑
Dec

− C1
Dec

C
∑
Dec

)
, 100

(
C2

X

C
∑
Dec

− C2
Dec

C
∑
Dec

)]
,

i.e., the improvement is measured in percent of the overall total cost of the
decomposed solution. Hence, a spot with coordinates (−25,−15) denotes that
the total cost was decreased by 40%. Here, the lower left quarter of the diagrams
contain the solutions that are beneficial for both parties. A solution below the
diagonal decreases the cost of the overall supply chain.

It is emphasized that the benefits are higher compared to the profit or the
cost of the individual party, by a factor of 2 on average. For example, in the
solution corresponding to the above spot, (−25,−15), if C1

Dec = C2
Dec, then the

buyer’s and the supplier’s costs have decreased by 50% and 30%, respectively,
in the percent of the cost of the individual party. Still, the reason for applying
the above measures was that in this way, the solutions neutral for the overall
supply chain fall on the diagonal.

Figure 2 shows the profits and costs obtained by the integrated approach.
As expected, integration increases the profit and decreases the cost of the over-
all supply chain for most instances (86 out of 100), by 16.54% (profit) 8.67%
(cost) on average. For the remaining instances, the overall profit and cost is un-
changed. Without benefit balancing, this approach is advantageous especially
for the supplier, whose profit increased in 80 out of the 100 problem instances.
The reason for this is that the decomposition approach completely ignores the
supplier’s objective in the first round of decision making. Integration can be
beneficial for the buyer when centralized planning eliminates its backlog orig-
inating from the difference of the requested supply and the realized deliveries
(25 instances).
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Figure 2: Comparison of the realized profits (left) and the incurred costs (right)
according to the integrated and the decomposition approaches. The light (or-
ange) diamonds correspond to solutions without benefit sharing, whereas the
dark (blue) triangles stand for solutions with benefit sharing on a 50–50 basis.

The results of the coordinated approach are displayed in Figure 3. If the
supplier is fully cooperative, it realizes the same profits and costs as with the
decomposition approach, but the overall performance is improved for 36 out of
the 100 instances, by 10.53% (profit) and 5.01% (cost) on average. With 30%
supplier gain ratio, the overall performance improved for only 15 instances, by
8.05% (profit) and 3.62% (cost), but this gain is shared between the parties. A
fundamental difference between the integration and the coordination approaches
can be easily observed on the above diagrams: integration pursues the benefit
of the overall chain, which corresponds to spots on one side of the diagonal. On
the other hand, the self-interested attitude of the parties in the coordination
approach leads to spots in the appropriate quarter plane in each of the diagrams.

Finally, Figure 4 contains the results of the bilevel approach. The informed
buyer could increase its profit and reduce its costs in all cases, by 20.03% (profit)
and 10.91% (cost) on average, compared to the unaware buyer of the decompo-
sition case. Notably, this is a 33.89% increase of profit and a 33.54% reduction
of cost, if we take the decomposed buyer’s profit and cost as the basis. Bilevel
planning is generally not beneficial for the supplier, whose profit decreased and
costs increased for 72 instances, by 9.78% (profit) and 5.94% (cost) on average.
Although there is no guarantee that bilevel optimization improves the perfor-
mance of the overall supply chain, a 10.25% increase of profit and a 4.98%
reduction of costs could be observed for the given set of instances. Surprisingly,
this is better result than the one achieved by coordination with the supplier’s
gain ratio set to 30%. A possible interpretation of this result is that (even
asymmetric) information can reduce the overall cost more efficiently than the
incentive to cooperate without sufficient information.
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Figure 3: Comparison of the realized profits (left) and the incurred costs (right)
according to the coordinated and the decomposition approaches. The light
(orange) diamonds represent the case with a fully cooperative supplier (gain
ratio set to zero), while the dark (blue) triangles correspond to the case with
the gain ratio of 30%.
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Figure 4: Comparison of the realized profits (left) and the incurred costs (right)
according to the bilevel and the decomposition approaches.

8 Conclusions

This paper investigated four different computational approaches to solving the
same lot-sizing problem in a supply chain consisting of two parties. The com-
parison focused on how each of the approaches handles the aspects of auton-
omy, information asymmetry, and conflicting objectives. Moreover, to compare
the incurred profits and costs for the different parties, algorithms have been
implemented for solving the analyzed problem according to each of the four ap-
proaches. This also required the development of a new coordination mechanism
for the coordinated approach, as well as a new exact algorithm for the bilevel
approach.

Certain findings of this study are relevant beyond the scope of the specific
lot-sizing problem as well. Especially, it has been demonstrated that for a given
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inventory control problem, the profits incurred for the different parties extraor-
dinarily depend on the applied solution approach: e.g., the buyer could increase
its profit by ca. 34% on average, if in the possession of sufficient information,
it switched from a decomposition strategy to bilevel optimization. Also, it has
been emphasized that such novel approaches as coordination or bilevel opti-
mization are applicable to lot-sizing problems, and they can provide additional
benefits for the parties in the supply chain. In particular, the applicability of the
classical integrated approach is limited to cases where the business objectives
of the parties are completely aligned and they are ready to share all relevant
data with each other. In case of autonomous parties with disparate objectives,
a coordination approach may bring comparable savings, if the dynamics of the
chain (both in terms of stable network design and non-critical response times)
allow for appropriate contracts and communication mechanisms. On the other
hand, an individual party, having access to sufficiently precise data about its up-
stream partners, may optimize its own production or logistics by implementing
a bilevel optimization approach.
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A Algorithm for the bilevel approach

Below we give an exact algorithm for solving the bilevel inventory control prob-
lem defined in Section 6. The algorithm is motivated by the dynamic program
(DP) of Zangwill [18] for the single-stage uncapacitated lot-sizing problem with
backlogs (ULSB). This DP, with its parameters taken from the supplier’s prob-
lem, is exploited to characterize the production plans that are optimal for the
supplier for some specific supply request defined by the buyer. It is noted that
the original formulation of the DP addresses the minimization of the (supplier’s)
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total cost, which, in the investigated bilevel setting, is equivalent to maximizing
its profit, since the supplier’s revenue is independent of the supplier’s decisions.

Recall that the single-stage ULSB problem always admits an optimal solution
of the following structure [18]: there exists an integer K ≥ 1 and a sequence of
2K integers 1 = `1 ≤ i1 < `2 ≤ i2 < · · · < `K ≤ iK ≤ T such that xj 6= 0 only if
j ∈ {i1, i2, . . . , iK} from which periods `j , . . . , ij−1 are satisfied by backlogging,
while periods ij + 1, . . . , `j − 1 from stock, and s`j−1 = r`j−1 = 0. We call these
2K integers a configuration.

In order to solve the bilevel optimization problem, we will search over all
possible configurations that may be implemented by the supplier. For each
configuration, we derive the conditions under which the configuration may be
optimal for the supplier for the demand x1

t , based on the DP of Zangwill. The
conditions will take the form of linear inequalities in x1

t and some extra variables.
We will add them to the buyer’s constraints (15)-(17), and solve the resulting
MIP. Repeating this for each configuration, and taking the minimum value of
the optimal solutions of the MIPs, we obtain the optimal solution of the bilevel
optimization problem. It remains to derive the conditions for a demand vector
d2

t = x1
t such that a configuration is optimal for the supplier.

The dynamic program of Zangwill, formulated with the demand and costs of
the supplier, is as follows. Let φ(u, v) denote the optimal solution value of the
supplier provided the demand in period v is satisfied from period u. Further-
more, let G(v) denote the optimal solution value of the problem restricted to the
periods v, . . . , T , i.e., G(v) = minu≥v φ(u, v). Finally, let h2′

t = h2
t + p2

t − p2
t+1

(p2
T+1 = 0) and g2′

t = g2
t − p2

t + p2
t+1. Now we can define φ(u, v) formally:

φ(u, v) =


(∑v−1

tu
h2′

t

)
d2

v + min{G(v + 1), φ(u, v + 1)} when u < v,(∑u−1
t=v g

2′

t

)
d2

v + φ(u, v + 1) when u > v,

f2
u + min{G(u+ 1), φ(u, u+ 1)} when u = v.

The optimal supplier solution value is G(1) which can be computed by de-
creasing u from T down to 1 and for each u in turn, iterating v from T down to
1. Now, all we need is to use this dynamic program to express conditions un-
der which a configuration of the supplier is optimal. The following inequalities
describe a relaxation of the dynamic program:
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G(v) ≤ φ(u, v) when u ≥ v (19)

φ(u, v) ≤

(
v−1∑
t=u

h2′

t

)
d2

v +G(v + 1) when u < v (20)

φ(u, v) ≤

(
v−1∑
t=u

h2′

t

)
d2

v + φ(u, v + 1) when u < v (21)

φ(u, v) =

(
u−1∑
t=v

g2′

t

)
d2

v + φ(u, v + 1) when u > v (22)

φ(u, v) ≤ f2
u +G(u+ 1) when u = v (23)

φ(u, v) ≤ f2
u + φ(u, u+ 1) when u = v (24)

G(T + 1) = φ(u, T + 1) = 0 when u ≤ T (25)
φ(u, v), G(v) ≥ 0 for all u, v (26)

Lemma 1 The configuration 1 = `1 ≤ i1 < `2 ≤ i2 < · · · < `K ≤ iK ≤ T is
optimal for demand d2

t if and only if there exists (φ,G) that satisfies (19)-(26),
and also for each j = 1, . . . ,K:

i) G(`j) = φ(ij , `j),

ii) φ(ij , v) =
(∑v−1

t=ij
h2′

t

)
d2

v + φ(ij , v + 1) for ij < v < `j+1 − 1,

iii) φ(ij , v) =
(∑v−1

t=ij
h2′

t

)
d2

v +G(v + 1) for v = `j+1 − 1,

iv) φ(ij , ij) = f2
ij

+ φ(ij , ij + 1) if ij < `j+1 − 1,

v) φ(ij , ij) = f2
ij

+G(ij + 1) if ij = `j+1 − 1.

Proof The crux of the proof is that we observe how the quantities G(v) and
φ(u, v) relate in an optimal solution with the given configuration.
Necessity: Suppose the given configuration is optimal. SinceG(v) = minu≥v φ(u, v),
condition (i) is satisfied. Moreover, for j = 1, . . . ,K, the demand d`j

, . . . , d`j+1−1

is satisfied from the time period ij , which implies conditions (ii)-(v).
Sufficiency: We have to prove that the configuration is optimal, provided there
exist φ(u, v) and G(v) satisfying the conditions (i)-(v) along with (19)-(26). It
suffices to show that (φ,G) can be chosen such that among (20) and (21) at least
one holds at equality for each u < v, and among (23) and (24) at least one holds
with equality for each u. Such a solution is the output of the above dynamic
program, and therefore, G(1) is the optimal solution value, and the configuration
is optimal. Notice that the conditions (i)-(v) ensure that the configuration is
indeed a feasible solution for the lot-sizing problem.

It remains to show how to choose (φ,G). Let (φ,G) be arbitrary satisfy-
ing (i)-(v) and (19)-(26) with maximum

∑
u6=v φ(u, v) +

∑
v G(v) value. No-

tice that this sum is finite, since (19)-(26) ensure that all the φ(u, v) and
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G(v) values are bounded. Now suppose φ(u, v) < min{
(∑v−1

t=ij
h2′

t

)
d2

v +G(v +

1),
(∑v−1

t=ij
h2′

t

)
d2

v +φ(u, v+ 1)} for some u < v. Obviously, (u, v) is not among
the values for which φ(u, v) is fixed by (i)-(v), since those values cannot be
changed due to (25). Notice also that φ(u, v) is involved only into two inequal-
ities on the left hand side, i.e., there is one inequality in (20) and one in (21).
Then we increase φ(u, v) until equality holds. Clearly, we obtain a solution
with a larger sum of the values of φ and G, a contradiction. One similarly ob-
serves that none of the G(v) values could be increased. Finally, if some of the
φ(u, u) is strictly smaller than f2

u + min{G(u + 1), φ(u, u + 1)}, then we may
increase φ(u, u) along with all the φ(u, k) with k < u, to keep (22) satisfied, a
contradiction again. Hence, this choice of (φ,G) is as desired.
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