
Műszaki Tudományos Közlemények vol. 13. (2020) 174–177.
DOI: Magyar: https://doi.org/10.33895/mtk-2020.13.33

Angol: https://doi.org/10.33894/mtk-2020.13.33

TanulásiráTa-módszer full-baTch gradiens-
Tanulásra

a learning raTe meThod for full-baTch gradienT
descenT
Asadi Soodabeh,1 Vogel Manfred2

Institute for Data Science, University of Applied Sciences and Arts, Northwestern Switzerland
1 soodabeh.asadidezaki@fhnw.ch
2 manfred.vogel@fhnw.ch

abstract
In this paper, we present a learning rate method for gradient descent using only first order information.
This method requires no manual tuning of the learning rate. We applied this method on a linear neural net-
work built from scratch, along with the full-batch gradient descent, where we calculated the gradients for
the whole dataset to perform one parameter update. We tested the method on a moderate sized dataset of
housing information and compared the result with that of the Adam optimizer used with a sequential neural
network model from Keras. The comparison shows that our method finds the minimum in a much fewer
number of epochs than does Adam.

Keywords: machine learning, gradient descent, learning rate.

Összefoglalás
Cikkünkben egy olyan tanulásiráta-módszert mutatunk be gradienstanulásra, amely kizárólag elsőrendű
információkat használ fel. Ezen módszer esetében nem szükséges a tanulási ráta manuális beállítása. Az
algoritmust alkalmaztuk egy nulláról felépített lineáris neurális hálóra full-batch gradiens-módszer esetén,
mikor a gradienst a teljes adathalmazra kiszámoljuk egy paraméter-aktualizálási lépésben. A módszert egy
közepes méretű, szállásinformációkkal kapcsolatos adathalmazon teszteltük, a kapott eredményeket pedig
összevetettük a Keras-beli Adam algoritmus által szolgáltatottakkal egy szekvenciális neurális háló esetén.
Az eredmények azt mutatják, hogy az Adam algoritmushoz képest a mi módszerünk sokkal kevesebb epoch
alatt megtalálja a minimumot.

Kulcsszavak: gépi tanulás, gradiens módszer, tanulási ráta.

1. introduction
Machine learning methods aim at updating a set

of parameters W in order to optimize an objective
function f(W). They iteratively perform a proce-
dure which applies changes to the parameters.
Gradient Descent (GD) is one of the most popular
and widely used algorithms for training machine
learning models such as deep neural networks.
GD attempts to optimize the objective function
by following the steepest descent direction given
by the negative of the gradient. There are many

modifications to the GD algorithm. In fact, Keras
[1] offers several other optimizers for deep learn-
ing which are actually improvements of the GD
method. The GD algorithm requires the learning
rate hyperparameter to be chosen. Setting the
learning rate typically involves a tuning proce-
dure. Usually, the highest possible learning rate
is chosen manually. Choosing higher than this
rate can cause the objective function to diverge.
On the other hand, choosing it too low results in
slow learning. Determining a good learning rate

https://doi.org/10.33895/mtk-2020.13.33
https://doi.org/10.33894/mtk-2020.13.33

Asadi S., Vogel M. – Műszaki Tudományos Közlemények 13. (2020) 175

could be more of an art than a science for many
problems. There have been several attempts at
estimating a good learning rate at each itera-
tion of GD. These either try to speed up learning
when suitable, far from the minima, or to slow
down learning near a local minima. Learning rate
schedules have been proposed [2] to automatical-
ly decrease the learning rate based on how many
epochs through the data have been done. These
approaches typically add additional hyperparam-
eters to control how quickly the learning rate de-
cays. One method to accelerate the training pro-
cedure is the Momentum method [3]. This can be
considered as the simplest extension to GD. Mo-
mentum strategy is based on saving the past gra-
dient information and using it in the current iter-
ation to update the parameters. In [4], Adagrad
is introduced and significantly good results are
obtained on large scale learning. The update rule
in Adagrad is

 (1)

when we update the parameters as
W(i+1) =W(i) + ΔW(i).

Here:
α - is a global learning rate,
g(i) – is the gradient of the cost function with re-

spect to the parameters.
i – superindex that indicates the i-th iteration.
While the manually tuned global learning rate α

appears here, each iteration has its own specific
rate that grows with the inverse of the gradient
magnitude. Due to the continual accumulation of
squared gradients in the denominator, propor-
tional to the inverse of the gradient, the learning
rate will continue to decrease throughout train-
ing, eventually decreasing to zero and stopping
training completely. In [5], with Adadelta optimiz-
er, this deficiency was removed.

In [6], the authors proposed Adam algorithm
which is based on adaptive estimates of low-
er-order momentums. A variant of this algorithm
which is based on the infinity norm is proposed
as Adamax.

Here, we propose a suitable value for the learn-
ing rate at the current iteration (epoch for the
full-batch GD) which is based on estimating the
scalar function of the learning rate with a parab-
ola and choosing the minimum of the parabola as
the learning rate in the current iteration. Details
of our method are explained in the next section.

2. results
Suppose that are the ma-

trix of features and the vector of labels, respec-
tively. We consider the cost function to be the
mean squared error as

 (2)

where
yi is the i-th label corresponding to xi the i-th row

of features matrix X.
 denotes the i-th predicted value,

W, b are the weight and the bias parameters to
be optimized.

For simplicity, in the sequel, we omit b and con-
sider W only. Suppose that we are in the current
iteration (i). The idea of gradient descent is to step
forward from the current position in the direc-
tion of the negative gradient. The step size should
be chosen to reach the minimal point. Thus, the
problem is to choose α such that

 (3)

is minimal. The new approximate solution W(i+1)

is given as:

 (4)

In order to find the minimum of h, we should
differentiate h and apply some root-finding algo-
rithms. This is often too complicated, additional-
ly, knowing the exact minimum on the negative
gradient line is not really helpful, because the op-
timum almost certainly does not lie on this line.
Hence, it suffices to approximate h by a parabola
and to take the absolute minimum on this para-
bola as an approximation for the minimum of h.

Our algorithm works as follows:

 – We first define β1 = 0 and β3 = 1, and we calculate

 – While we divide β3
by 2. Note that since β1 is not the minimum of h,
there exists such a value for β3.
 – With β1 = 0, β3 and β2= β3 / 2, and their corre-
sponding function values, we can construct the
parabola P(β) := Aβ2 + Bβ + C. The minimum α of

P in the interval [β1, β3] is either or

the boundary α = β3.

This gives a new approximation as the one in (4).

Asadi S., Vogel M. – Műszaki Tudományos Közlemények 13. (2020)176

3. implementation

We tested our optimizer on the set of data of
House Sales in King County, USA [7]. This dataset
contains 21613 data points which were broken
into 17384 points for train- and 4229 for valida-
tion sets. We built a linear neural network from
scratch and used the above-explained idea for
finding the suitable learning rate. We also used
the sequential dense layers from Keras and im-
plemented a neural network along with different
optimizers from Keras. The best result was ob-
tained for Adam. Therefore, we compared our re-
sults with those of Adam optimizer. We made our
comparison in terms of the mean squared error
(MSE) and the mean absolute percentage error
(MAPE) defined as follows:

 (5)

and

 (6)

figure 1 and figure 2 illustrate how MSE and
MAPE decrease over the iterations. As shown
in the figures, our optimizer falls around the
minimum after very few iterations while Adam
does not still capture the minimum after 500 ep-
ochs. After this number of epochs, our optimizer
reached the MAPE error of 20.14 and 20.69 for
the training and the validation sets, respectively,
while Adam reached the MAPE of 39.03 and 39.76
for the training and the validation sets, respec-

figure 1. Logarithm of MSE over 500 epochs for the
validation set.

tively. The hyperparameters selected for Adam in
this implementation are as follows:

 – learning rate: 0.0003
 – beta_1=0.9
 – beta_2= 0.99
 – decay=10-6

4. conclusions

We presented a learning strategy for a gradi-
ent descent optimizer which estimates the scalar
function of the learning rate in a typical iteration
by a parabola while the parameters and the gra-
dient with respect to the parameters are fixed. We
implemented our idea on a set of housing data
and compared the progress of mean squared er-
ror as well as the mean absolute percentage error
with those of Adam over a certain number of ep-
ochs. This is done for a linear neural network with
whole data used in the process before the param-
eters get updated. Under these circumstances, our
idea appears to find the minimum much faster
than Adam does. We have not been successful yet
in obtaining satisfactory results in circumstanc-
es other than these. The idea for future work is
to apply some slight modifications to enable our
method to work well for any neural network and
for the case of mini-batch gradient descent to ful-
fill the memory requirement as well.

acknowledgment

The work of the first author is supported by the Swiss
Government Excellence Scholarships grant number
ESKAS-2019.0147. This author would also like to
thank the support from the University of Applied
Sciences and Arts, Northwestern Switzerland.

figure 2. MAPE over 500 epochs for the validation
set.

Asadi S., Vogel M. – Műszaki Tudományos Közlemények 13. (2020) 177

references
[1] Keras

https://keras.io/
[2] Robinds H., Monro, H.: A stochastic approxima-

tion method. Annals of Mathematical Statistics,
22. (1951) 400–407.
https://projecteuclid.org/euclid.aoms/1177729586

[3] Rumelhart D. E., Hinton G. E., Williams R. J.:
Learning representations by back-propagating er-
rors. Nature, 323. (1986) 533–536.
https://www.nature.com/articles/323533a0

[4] Duchi J., Hazan E., Singer Y.: Adaptive subgradient
methods for online leaning and stochastic optimi-
zation. Journal of Machine Learning Research,
12. (2011) 2121–2159.
http://jmlr.org/papers/v12/duchi11a.html

[5] Zeiler M. D.: Adadelta: An adaptive learning rate
method. arXiv preprint arXiv:1212.5701, 2012.
https://arxiv.org/abs/1212.5701

[6] Kingma D., Lei Ba J.: Adam: a method for stochas-
tic optimization. ICLR 2015.
https://arxiv.org/abs/1412.6980

[7] House Sales in King County, USA: Predict house
price using regression
https:/ /www.kaggle.com/harlfoxem/hous-
esalesprediction

https://keras.io/
https://projecteuclid.org/euclid.aoms/1177729586
https://www.nature.com/articles/323533a0
http://jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/abs/1212.5701
https://arxiv.org/abs/1412.6980
https://www.kaggle.com/harlfoxem/housesalesprediction
https://www.kaggle.com/harlfoxem/housesalesprediction

