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Abstract. A mdj pontos szegmentdldsa fontos szerepet jatszik
a  kiilonb6z6  koéros  elvaltozasok — szamitogép  altal  vezérelt
diagnosztizaldsaban. Az évek oOta tarté kutatdsok ellenére ez még
mindig kihivast jelentd feladat, kiillondsen a kiilonb6z6 forrasokbdl
szarmazd, heterogén 3D-s adatok feldolgozdsa esetén. Ebben a cikkben
CT felvételeken torténdé automatikus méjszegmentaldsra mutatunk be
egy Ujszert fuzids eljarast, mely tradiciondlis eljardsokat és neurdlis
hal6 alapi predikciés maszkokat 6tvoz. ElGszor egy régiénovelés alapt
eljarast javaslunk, ami aktiv kontdr moédszert és kiiszobolés alapu
valdsziniiségi stirtiségfliggvényt alkalmaz. Ezutan az igy kapott bindris
maszkot egy GrowCut eljards altal javitott 3D U-Net neurdlis halé
szegmentalasi eredményével kombinaljuk. Végiil a fizié eredményét egy
maj-sziv szeparalé moédszer alkalmazasaval tessziik pontosabba.

Hérom kiilonb6zé CT adatbazison végeztiink széleskorti kvantitativ
kiértékelést, hogy reprezentaljuk az eltérd képi sajatossagokat. A javasolt
fuzios médszer képes kompenzalni mind a tradicionalis, mind az U-Net
alapi megkozelitések hatranyait és egyenletesen stabilan teljesit a
heterogén CT adatok esetén. Az elért teljesitmény - hatékonysagat
tekintve - képes versenyezni a szakirodalom vezet$ eljardsaival, igy egy
igéretes 1j irdnyt jelenthet a tovdbbiakban.

1 Introduction

Liver segmentation is still a challenging task, due to the variability of the organ’s
shape and size, similar intensity values among neighboring organs and tissues,
such as the heart, the stomach, the kidneys and the abdominal wall. On the other
hand, the liver has a crucial role in metabolic processes, therefore it is essential
to perform a fast and accurate diagnosis in case of any disease. Moreover, with
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the improvement of different medical imaging techniques, the focus is placed on
the application of non-invasive diagnostic methods, before performing a painful,
invasive examination (like biopsy). The liver might have different pathologies, out
of which liver cancer is the fifth most commonly occurring cancer in men and the
ninth most commonly occurring cancer in women, with over 840,000 new cases
in 2018 world-wide, according to the World Cancer Research Fund. Therefore,
a continuous effort is required to develop eflicient and automatic segmentation
methods, which may support the diagnostic process and facilitate the treatment
decision-making.

Nowadays, Computed Tomography (CT) is a widely used, modern,
non-invasive imaging technique for liver-related disease diagnosis. There are
many approaches, also available in clinical applications, for the detection of
the liver using CT data, which requires varying amount of operator input.
Automatic methods do not depend on the operator’s skill and these approaches
are not as time-consuming as the interactive ones. Semi-automatic methods are
partly interactive methods because they require user interaction throughout
their utilization. CT scans are preferred because of their beneficial image
characteristics, however, different medical institutions may have different CT
scanners, therefore, the developed segmentation methods should be prepared to
handle variations in image features as well.

Besides handling heterogeneous data, our aim was to develop a method
which is able to handle previously unseen scan types reliably. In real life cases,
there might not be enough data with annotated ground truth, to build a shape
model or to perform a thorough training process, therefore we propose to fuse
feature-based and learning-based techniques.

Previously, different segmentation approaches were proposed for liver
segmentation [1]. Earlier works mainly included pixel-based methods, such
as [2,3], based on local and global thresholding, region growing, atlas-based
voxel classification or edge detection. A statistical, voxel labeling method was
introduced in [2] which is based on feature extraction, applying a multi-atlas
registration procedure. The advantage of pixel-based methods is that anatomical
information can be built into the process. It can be applied as an atlas or a priori
knowledge as well. In our work, we applied region growing, similarly to [3]. Region
growing is shown to achieve good performance in the segmentation, however it
is sensitive to the initial seed selection, therefore a sophisticated pre-processing
is required. Graph-based methods are also introduced for liver segmentation, [4]
uses supervoxel-based graph cuts.

Beside pixel-based techniques, the other main group contains structure-based
methods, including shape-based models [5,6], however they require a large
training dataset to build the model. As it was previously mentioned, our
aim was to build an approach, which is also appropriate for small data
sets, therefore, concerning feature-based methods, we preferred pixel-based
approaches throughout our work.

Lately, learning-based techniques are often used for segmentation purposes
[7-10], however they require a large amount of training data and usually
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perform more efficiently on homogeneous inputs (i.e., the statistics of the
unknown samples should match that of the training dataset). These bottom-up
segmentation models usually do not integrate top-down, context-based
(i. e. anatomic) information and mainly concentrate on low-level features. In a
very recent work [11], deep belief networks are introduced for liver segmentation.
For segmentation of medical images, convolutional neural network (CNN) models
are widely used, since CNNs can take 2D or 3D images as input and they are
designed to better utilize spatial and configural information. The 3D U-Net
[8] is often applied for volumetric medical data segmentation, extending the
traditional U-Net representation [7] into 3D. The model can handle complex
segmentation cases efficiently, therefore it is also applied in our work.

In this paper we propose a fusion method, which combines regional-based
techniques and convolutional features. The method starts with preprocessing,
including determining the abdominal region and thresholding based on
probability density function. Then the combination of active contour and
region growing methods are applied on the preprocessed image. After some
postprocessing steps, the result is combined with the 3D U-Net’s prediction
mask. Before the fusion, the prediction masks are improved by removing most
of the false positive voxels using the GrowCut method [12].

The quantitative evaluation for the fusion method is performed on 3 different
databases, including 2 publicly available, VISCERAL [13] and SLIVER [1]
databases, and also on a private database. The results show that the proposed
fusion method is uniformly efficient on different databases and achieves similar
performance results when compared to the state-of-the-art on the publicly
available SLIVER database.

2 Developed segmentation methods

2.1 Liver segmentation using traditional techniques

Abdominal region As a first step, the region of the abdomen is obtained
from the CT volume images to remove several non-abdominal slices. This step is
necessary, since our presumption is that the middle slice of the volume is going
to include liver pixels. This presumption does not hold for every original volume.
For the extraction of the abdominal region, maximum intensity projection (MIP)
and thresholding are used, inspired by [4].

Image preprocessing Since the obtained abdominal slices have low intensity
variance among organs, preprocessing is required. The actual slice is rescaled
based on its maximum value of Hounsfield unit and stored in a 16-bit image
(Figure 2(a)). The noise is then reduced by median filtering, since it preserves
edges.

Our presumption at this point is that the liver is located in the upper half of
the image. To make sure that this presumption is valid in every case (sometimes
the input data is rotated), we automatically examined the location of the spine
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Fig. 1. Probability density functions of pixel intensity values: (a) Low contrast; (b)
High contrast type.

in the axial MIP image of the bone mask. If the spine was on the left side of the
image, the liver was located in the lower half of the image, so we had to rotate
the volume with 180 degrees. After this step, 2/3 of the lower right quarter is
removed, since this part of the image does not contain liver pixels.

The image is then thresholded using probability density function (PDF).
The density estimation is based on a normal kernel function and is evaluated
at equally-spaced points. The input of the estimation is the upper left quarter
of the image (a sample image is shown in 2(a) with a red rectangle outlining
the upper left quarter), which contains most of the voxels of the liver, excluding
the pixels with lower intensity than 500. One of the PDF peaks is expected to
represent the intensity range of the liver.

By analyzing the probability density function of the abdominal regions, the
regions can be classified as high contrast (Figure 1(b)) or low contrast type
(Figure 1(a)), as it was also stated in [4]. The high contrast images have two
or more peaks in their probability density function, while in the low contrast
images only one peak is detected. For the high contrast images, our analysis
showed that the second peak represents the intensity range of liver. The lower
and upper boundary of the threshold are determined by the location and the
width (half-height) of the proper peak, except in the cases when the half height
is larger than 7000, then half-prominence of the peak is used. This thresholding
method extracts the liver area and removes most of the pixels of other organs
(Figure 2 (b)). This step is followed by cavity filling and morphological opening
(Figure 2 (c)).

Combination of region growing and active contour In this proposed
segmentation step, first, the combination of Chan-Vese active contour method
[14] and morphological operations are applied to further simplify the input image.
The initialization mask for the active contour is a simple rectangle (for example
the area defined by the red rectangle on Figure 2(a)) whose location is based on
the orientation of the skeleton. The iteration number is set to be large, since in
some cases the active contour does not reach the contour of the liver. Then, we
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(b) (c)

Fig. 2. Preprocessing of the input image: (a) Rescaled image; (b) PDF-based
thresholded image; (c) Preprocessed image.

select the largest connected component from the detection result and we keep
the original intensity over this region, setting the others to zero. This modified
intensity image will serve as a force field to drive the region growing process.

To make the established method automatic, the traditional active contour’s
energy function [15] is calculated on the center slice of each axis in the filtered
abdominal region: Ejmage = Wiine Lline + Wedge Ledge + Wierm Ererm. Since in the
abdominal region the liver is the largest organ, we expect to find the pixel with
maximum intensity of the energy image located in the liver. From this seed point,
2D region growing is applied on the middle slice. The region is iteratively grown
by comparing all unallocated neighboring pixels to the region. The similarity
measure 0;(x) for pixel x on slice ¢ is defined as the difference between the
intensity value of x pixel and the grown region’s R mean intensity and it is
calculated for each neighboring pixel:

9i(x) = [Li(x) — mean[I(R;)], (1)

where I;(x) is the intensity value of the current x neighboring pixel of the
ith slice and mean[I(R;)] is the mean intensity of the R grown region in the
ith slice. The pixel with the smallest distance measured is added to the grown
region. This process stops when the intensity difference between region mean and
new pixel becomes larger than a certain threshold (7). For the first layer (i = 1),
the 7 is automatically set to the difference of the upper and lower boundary of
the threshold, determined in the PDF-based preprocessing step. For subsequent
layers, 7 is calculated iteratively, using the standard deviation ¢ of the region
growing result’s intensity in the previous ith slice:

Tiv1 = 2.5 x o[I(R;)] (2)

On the obtained liver mask of the middle slice, the next external force is
calculated, and the pixel with the maximum value will be the seed point for the
region growing in the next slice iteratively. By performing this iterative region
growing process on each axis, we receive 3 matrices of label maps, from which
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we generate a mask for liver by summing the 3 matrices. In the final binary 3D
liver mask, a voxel will have 1 value, where at least one of the matrices’ voxels
had the value of 1 (logical OR function of the 3 matrices voxelwisely).

Postprocessing The obtained region growing result may contain holes and
falsely detected tissues from neighboring organs. A cavity filling step is applied to
the image and morphological opening operation with a sphere structure element
is used to smooth the contour of the object and to eliminate thin protrusions.
Lastly, the largest connected component is saved as the binary mask of the liver.

2.2 Fusion method

In order to achieve better results, we attempt to fuse the proposed algorithm
with a convolutional neural network’s (CNN) prediction mask. We carried out
the experiments with the 3D U-net [8] on CT and Magnetic Resonance Imaging
volumes. The obtained prediction masks were not very accurate, containing high
numbers of false positives scattered along the body. By applying top-down,
anatomical information, the prediction masks were updated by removing the
false positive detections outside the abdominal region and by only keeping the
largest connected component. Figure 3 represents a typical prediction map before
and after the update.

(a) (b)

Fig. 3. 3D image of the prediction mask, (a) Before the update, (b) After removing
most of the false positive pixels.

In order to further increase the accuracy of the prediction masks, the
GrowCut method [12] is used. This method’s advantage is that it only segments
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the marked object and disconnected, similarly colored, unmarked objects are
considered as background. For the GrowCut method, the initial foreground label
is the updated prediction mask (Fig. 3(b)) eroded with a sphere structuring
element (radius = 5) (shown as bright white in Fig. 4(c)). The background label
is set based on the preprocessed image (Fig. 2(c)), which is further processed
by keeping only the largest connected component (Fig. 4(a)). Then a bounding
box is created around the remaining objects of the preprocessed image (red in
Fig. 4(b)), which will separate the background (pale red in Fig. 4(c)) from the
unlabeled part of the image. The GrowCut method is applied with these labels
on the rescaled image (Fig. 4(c)).

(a) (b)

Fig. 4. The process of labeling for GrowCut method: (a) Largest connected component
of preprocessed image; (b) The separating frame shown as red; (c¢) Labels of the
GrowCut method, pale red indicates the background label, bright white represent the
foreground label.

Then the result of GrowCut method (PM) is fused with the result of
the previously described liver segmentation method (M) and after some
morphological operations, we achieved better results. The fusion of the results
has the following form:

LiverMask =6 x M 4+ (1 — ) x PM, (3)

where & = 0.5 was applied.

The resulting liver mask may include falsely detected heart pixels, as the
upper part of the liver, located close to the heart, has very similar image
characteristics. As a postprocessing step, a previously introduced liver-heart
separation step [3] was used. The original method was based on the delineation
of the lung, which was improved by exchanging the time-consuming 3D region
growing with binary image operations. We start by determining the air-filled
parts of the 3D abdominal region, applying binary thresholding between
[—1024, —300] HU (based on our experiments) (Fig. 5(b)). Then we erase all
the connected components of the obtained 3D binary volume, which are: (i)
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connected to any of those volume borders that the lungs are not connected to
(red in Fig. 5(c)); (ii) not connected to any volume borders (yellow in Fig. 5(c)).
This way we can produce a much faster segmentation of the lung, than the
proposed technique. Based on the lung mask, a surface is defined, which connects
the two lobes and separates the heart (above the surface) and the liver (under
the surface) [3].

Fig. 5. Illustration of the lung segmentation on a sample coronal slice: (a) Original
image; (b) Obtained binary mask of air-filled parts; (c) Filtered regions (yellow and
red blobs); (d) Result of the segmentation.

3 Experimental evaluation

The segmentation performance of the proposed algorithms were evaluated by
comparing with manual segmentations done by experts and calculating 10
different measures, widely used in the state-of-the-art: Precision, True Positive
Rate (TPR), False Positive Rate (FPR), Accuracy, Dice Similarity Coefficient
(DSC), Volumetric Overlap Error (VOE) [%], Relative Volume Difference (RVD)
[%], Average Symmetric Surface Distance (ASSD) [mm], Root Mean square
symmetric Surface Distance (RMSD) [mm], and Maximum symmetric surface
Distance (MaxD) [mm] [4].

3.1 Evaluation of the proposed traditional method

The traditional method, introduced in Sec. 2.1, was tested on several samples
with various shapes, provided by the SLIVER dataset [1] including expert
segmentations for 20 abdominal CT scans (SLIVER train dataset). The number
of slices, in-plane resolution, and inter-slice resolution varied between 64 and
394, 0.58 and 0.81 mm, and 0.7 and 5.0 mm, respectively.

As Table 1 shows, the proposed traditional approach achieved quite good
results on the SLIVER database, since the average DSC index is 94%, the FPR
is 0% on average, and the FNR=1-TPR is lower than 10%. These last two
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Table 1. Quantitative results on the SLIVER dataset for the proposed traditional
algorithm.

l Metrics [Results“ Metrics [Resultsl

Precision| 0.96 VOE | 11.09
TPR 0.92 RVD | -3.09
FPR 0.00 || ASSD | 2.62

Accuracy| 0.99 [[RMSSD| 5.46
DSC 0.94 MaxD | 42.93

metrics are preferred to be as low as possible (lower than 5%) considering the
liver segmentation and consequent treatments.

Furthermore, precision and accuracy imply that we have an almost perfect
segmentation with values of 96% and 99%, respectively. However, our proposed
method still needs some improvement. Large distance between the result and
manual segmentation can be observed in terms of ASSD, RMSSD, and MaxD.
This occurs occasionally because of the connection of the liver and some
neighboring tissues and usually because of the undersegmentation happening
at the vessels next to the boundary of liver. Relative volume difference (RVD)
shows that on average our segmentations are 3% smaller than the reference,
which is also caused by not segmenting the vessels next to boundary.

3.2 Evaluation of the fusion method

To increase the performance of the segmentation, we attempted to fuse the
proposed traditional method with neural networks (Sec. 2.2). As a first step, the
3D U-Net [8] was trained and tested on a mixed dataset (mixed DS), then it
was also cross-validated on the SLIVER database. The mixed DS included 60
volumes from the VISCERAL [13] and the SLIVER databases, from which 6 CT
volumes were randomly chosen for testing, including 2 SLIVER, 2 VISCERAL
and 2 contrast enhanced VISCERAL scans. The remaining 54 CT volumes were
used for training.

The obtained prediction masks were updated by removing false positive
voxels on the non-abdominal slices, and keeping the largest connected
component. Table 2 shows that the added anatomical information improved the
results significantly, however this performance on the SLIVER database (second
column in Table 2) is still lower compared to the traditional method (Table 1).

The comparison of the traditional, updated U-Net and the fusion methods
are included in Table 3 for two different databases: the mixed DS and a private
database. The private database included 8 abdominal CT scans with ground
truth data. The results show that in case of large amount of training data (Mixed
DS), the updated prediction masks overperform the traditional and the fusion
method. Also, it can be seen, that the fusion method made a great improvement
on the results comparing to the traditional method. However, in case of a
smaller database (Private database), the amount of data is not enough to achieve
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Table 2. Quantitative results on the SLIVER dataset and on the mixed dataset (DS)
for the 3D U-Net.

U-Net |updated U-Net| U-Net |updated U-Net
SLIVER SLIVER Mixed DS| Mixed DS
Precision 0.09 0.93 0.58 0.95
TPR 0.09 0.78 0.68 0.96
FPR 0.05 0.00 0.02 0.00
Accuracy 0.90 0.98 0.97 1.00
DSC 0.08 0.81 0.63 0.95

sufficient training performance, therefore, we used the 3D U-Net model trained
on the mixed DS. It is important to note, that the elements of the private dataset
originated from completely different scanners than the VISCERAL or SLIVER
dataset volumes, and have different internal properties (variance, resolution,
etc.). The evaluation shows that the updated U-Net does not perform as good
on the new database as on the already seen data. This supports the fact that
trained CNNs have issues with new data with new characteristics, unless there
is enough to further train the network with some of the new data. However,
the proposed fused solution does not have this drawback, thus it can function
without further training steps. Thus, the fusion method improved the results of
the prediction masks and the traditional method and provided a more robust
performance on both datasets.

Figure 6 shows some representative slices of the fusion method’s segmentation
results from 3 SLIVER volumes compared to the expert segmentation in in
the axial, coronal, and sagittal directions, respectively (ground truth in red,
segmentation result in yellow). It can be seen that the proposed fusion method’s
results approximate the reference segmentations.

The liver is successfully separated from neighboring organs: from the heart
in Figure 6(d), (e), and (i); from the kidney in Figure 6(c), (f), and (g). It can
handle tumors inside the liver efficiently (Figure 6(c)), but undersegments if the
tumor is close to the boundary (Figure 6(b), (e), (f)). Typical undersegmentation
occurs at the tip of of the liver (Figure 6(a)) and also because of vessels (Figure
6(b), (g) and (n).

Table 4 shows quantitative comparative results of our proposed fusion
method with fully automatic state-of-the-art methods for the SLIVER train
dataset. For our method to be comparable, the 3D U-Net was evaluated on
the SLIVER dataset, using the leave-one-out cross-validation method. Due to
the limited training dataset, the segmented prediction masks were unusable
in 3 cases, thus, these were eliminated from the evaluation. The compared
methods - briefly mentioned in the Introduction section -, are selected to
cover a complete spectrum of the liver segmentation techniques: pixel-based
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Table 3. Quantitative comparison of the proposed method, the updated U-Net, and
the fusion method.

Mixed DS Private database
Traditional U-Net Fusion || Traditional U-Net Fusion
method method || method method
Precision 0.88 0.95 0.93 0.94 0.78 0.90
TPR 0.87 0.96 | 0.90 0.85 0.80 | 0.88
FPR 0.01 0.00 | 0.00 0.00 0.02 0.01
Accuracy 0.98 1.00 0.99 0.99 0.97 0.99
DSC 0.86 0.95 | 091 0.89 0.79 | 0.89
VOE 24.42 9.12 | 16.39 19.57 32.62 | 19.36
RVD 3.38 0.75 | -2.03 -9.51 1.95 | -2.40
ASSD 6.81 1.80 3.37 4.24 7.94 5.13
RMSSD 12.29 3.11 | 5.86 8.83 12.10 | 9.21
MaxD 67.20 23.76 | 34.99 73.06 53.57 | 50.34

Table 4. Comparative results with fully automatic state-of-the-art methods for the
SLIVER train dataset.

| Method [[Accuracy[TPRJFPR|DSC[VOE|RVD]ASSD|RMSSD[MaxD|
van Rikxoort et al. (2007) [2] - - - - |12.5] 1.8 | 24 44 | 324
Zhang et el. (2010) [6] - - - - 15.25(0.731 093 | 223 | 24.8
Wu et al. (2016) [4] - - - - |754(4.16| 0.95 | 1.94 |18.48
Dou et al. (2016) [9] - - - - |5.37(1.32| 0.67 | 1.48 |29.63
Esfandiarkhani et al. (2017) [5] - - - - 18.13[0.42| 1.31 | 2.38 |21.35
Ajani et al. (2018) [10] - - - 1096 |741| - - - -
Ahmad et al. (2019) [11] - - - 10.948(4.31|1.28| - - -
Fusion method 0.99 [0.95[0.00/0.95[9.51[0.50] 1.85 | 3.03 |[23.94

method [2,4], shape-based models [6,5] and learning-based approaches [9-11].
The evaluation metrics show that our approach achieves usually higher VOE
value, however for the RVD, ASSD, RMSSD, MaxD, the resulting values are in
the average range. The same can be claimed for the compared DSC scores. The
comparison shows that for the SLIVER database the proposed fusion method’s
performance is comparable to the state-of-the-art, therefore together with the
stable performance on the other datasets, including heterogeneous volumetric
data, and its good performance on previously unseen data with different
statistics, the proposed fusion method provides a promising and well-performing
segmentation alternative.
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Fig. 6. 2D slices of segmentation results. Each column shows slices of one case in the
axial, coronal, and sagittal directions, respectively. The contour of the ground truth is
in red. The contour of the fusion method’s segmentation result in yellow.

4 Conclusion

This paper presented a fully automatic liver segmentation method based on the
fusion of traditional methods and neural networks. The proposed ”traditional”
method starts with a preprocessing step, where the region of abdomen is
determined and then thresholded based on the probability density function
to remove most of the non-liver voxels. Active contour and region growing
techniques are applied to give a binary mask of the liver, which is post-processed.
To produce a better segmentation, the proposed method is combined with the
output of 3D U-Net CNN model. First, the U-Net prediction map is updated
by adding anatomical information, eliminating false positive voxels from the
non-abdominal slices and only keeping the largest connected component. For
further increasing the accuracy of the prediction masks, the GrowCut method
is applied. The updated prediction mask is finally fused with the proposed
traditional method.
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Quantitative evaluation and comparison is performed on 3 different
databases, including 2 publicly available databases (VISCERAL and SLIVER)
and also on a private database. The obtained results confirm that the roposed
fusion method’s performance is comparable to the state-of-the-art and it gives
uniformly stable results for heterogeneous CT volumes, even for unseen data with
different statistics. It compensates for the drawbacks of the two different methods
in every case, thus improving the results. In the future, we will concentrate on
a more sophisticated fusion of the traditional and convolutional features, to
integrate top-down information into the network model to further enhance the
segmentation performance.
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