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Abstract
Composite metal foams are hybrid structures with the main advantages of high specific strength and me-
chanical energy absorption associated with low density. In the course of our research, we successfully 
manufactured functional metal foams of EN AC-44200 matrix filled with lightweight expanded clay aggre-
gate particles (LEcAPs) in En AW-6060 alloy tubes with a diameter of 50 mm and a wall thickness of 5 mm.  
Manufacturing was performed by low-pressure infiltration directly into the aluminium tube. Six different 
types of samples were examined: metal matrix syntactic foam, in-situ metal foam, ex-situ metal foam, and 
their heat-treated pairs. In the compression tests, the heat treatment provided a visible improvement in the 
results of the ex-situ metal foams.
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1. Introduction
As a structural material, knowledge of the man-

ufacturability, strength, and failure process of 
composite metal foams are particularly impor-
tant to ensure designability [1–3]. The main goals 
of this research are the production and develop-
ment of various composite metal matrix syntactic 
foam-filled tubes and the mapping of mechanical 
properties with quasi-static compressive test. To 
achieve and fully understand the above, exten-
sive microstructural and mechanical material 
tests were performed.

Metal matrix syntactic foams (MMsFs) are gen-
erally produced individually and not as function-
al, structural elements. recent research has been 
conducted on foam-filled tubes (FFTs), mostly dis-
cussing aluminium-matrix foams placed in thin-
walled tubes [4–8]. There have also been cases 
where MMsFs were surrounding thin-walled alu-
minium tubes [9], as well as in-situ FFTs prepared 
by powder compact foaming technique [10].

2. Materials and methods

2.1. Materials
In this research, En Ac-44200 matrix syntactic 

foams were filled into EN AW-6060 alloy tubes. 
Lightweight expanded clay aggregate (LEcA) par-
ticles sold by Liapor GmbH & co. KG were used 
as fillers, which mainly contained SiO2, Al2O3 and 
Fe2O3 oxides. The internal structure of the par-
ticles gives the porosity of the produced metal 
foams

2.2. Production
For the tests, six different types of samples were 

prepared: in-situ FFTs, ex-situ FFTs, MMsFs and 
their heat-treated pairs (Table 1).

Table 1. Types and numbers of specimens

In-situ Ex-situ MMSF

non heat-treated (O) 3 2 3

Heat-treated (T6) 3 2 1*

*The En Ac-44200 alloy does not respond to hardening.
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The in-situ foam-filled tubes were prepared 
by low-pressure infiltration, where the molten 
matrix material was poured directly into the 
EN AW-6060 tube filled with LECA particles. The 
infiltration parameters must be carefully adjust-
ed, as the molten aluminium alloy may permeate 
the tube’s wall.

The filler particles were first prepared for cast-
ing: LEcA particles with an average diameter of 
Ø3.5–4 mm were mixed in a random close pack-
ing (rcP). These were placed into Ø50 mm outer 
and Ø40 mm inner diameter aluminium alloy 
(En AW-6060) tubes. The tubes were welded at 
the bottom, with a hole drilled as a gas outlet. 
The bottom of the tube was padded with an alu-
mina quilt to prevent the melt from flowing out, 
which was clamped with a stainless-steel net, and 
a stainless-steel net was also placed on top of the 
particles to prevent displacement and floating in 
the melt.

The particle-filled tubes were preheated in a fur-
nace at 530 °c for 45 minutes. The En Ac-44200 
alloy was heated to an incandescent state in an 
induction melting furnace. After reaching a low 
viscosity molten state, the furnace was turned off, 
and the temperature of the melt was monitored 
with a digital thermometer while cooling. The En 
Ac-44200 alloy has a slightly higher melting point 
(650 °c) than the En Ac-44200 (585 °c), so the 
molten matrix can be poured poured between the 
particles, without melting through the tube wall. 
When the melt temperature reached 650 °c, it 
was poured into the tube, and the Ar gas pressure 
required for infiltration was applied through an 
insulated pipe (350 kPa). After cooling, the sam-
ples were cut into 40 mm tall pieces for compres-
sion tests. Their density was also measured. 

MMsFs were manufactured similarly to foam-
filled tubes, but a steel closed section was used 
instead of an aluminium tube. The samples were 
subsequently cut out into cylinders with a height 
of 40 mm and a diameter of Ø40 mm. For the pro-
duction of ex-situ metal foam-filled tubes, MMSFs 
machined to a given size (Ø40 mm) were placed 
in empty tubes with a tight fit (Figure 1).

In order to increase the strength of the alumin-
ium alloys, heat treatment was performed on 
some samples since the base material of the tube 
(En AW-6060) is precipitation hardenable.

During heat treatment, the Mg and si are dis-
solved in the first step, and then diffusion is pre-
vented by rapid cooling in water. During ageing, 
the compound precipitates from the supersatu-
rated solid solution in a fine form and effectively 
increases the strength. The heat treatment steps 
were determined as heating at 300 °c/hour and 
then holding at 500 °c for 2 hours. This is fol-
lowed by rapid cooling in water. Then heating at 
200 °c/ hour and keep at 200 °c for 3 hours. Final-
ly, rapid cooling in water.  

2.3. Measurements
For microstructural examination of the manu-

factured metal foams, scanning electron micro-
scopic (sEM) images were taken of the samples 
with a pre-polished surface.

The samples marked in Table 1 were tested 
using the IsO 13314:2011 standard to evaluate 
mechanical properties. Quasi-static compressive 
tests were performed on an Instron 5989 uni-
versal electromechanical material testing ma-
chine with a 600 kn load cell and a Zwick / roell 
Z400rED universal material testing machine with 
a 400 kn load cell at a crosshead speed of 4 mm/
min. A 0.3 mm thick Kolofol Teflon film was ap-
plied to the top and bottom of the specimens upon 
contact with the compression plates to reduce 
friction. For comparability, all specimens were 
compressed to at least 50% engineering strain.

From these data, the maximum of the compres-
sive strength (σc) and energy absorption (W50% - 
area under the curve) values were determined up 
to 50% engineering strain.

3. Results
sEM images show precipitates (white portions) 

of different sizes and distributions in both mate-
rials (Figure 2). It can be observed that there is no 
gap between the alloys, only a few minor scratch-
es can be seen on the tube material. It can also be 
observed that the precipitates in both alloys are 
smaller in size and more densely distributed in 
the heat-treated sample.

comparing the curves of the non-heat-treated 
specimens with the curves of the heat-treated 
specimens (Figure 3) it can be seen that the heat 
treatment had a significant effect on the proper-
ties of the ex-situ FFTs. The curve groups move 
together up to roughly 20% deformation and then 

Figure 1. (a) Empty tube and MMSF,  
(b,c) Placing MMSF in the tube.
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split there. It can also be observed that the heat 
treatment did not affect the properties of the indi-
vidual metal foams as expected.

It can also be seen that the properties of the 
in-situ FFTs were not significantly affected by the 
heat treatment process, except for the properties 
of one specimen. In the initial stage, the compres-
sive force significantly exceeded the values of the 
non-heat treated in-situ FFTs, and the nature of 
its curve is similar to that of ex-situ heat-treated 
FFTs. One possible reason for this was that the 
other heat-treated specimens’ cooling was not 
fast enough, requiring further testing. 

It can be observed that while the values of ex-si-
tu FFTs improved as a result of heat treatment, 
the same cannot be said about the in-situ FFTs. 
However, the standard deviation of the compres-
sive strength of non-heat treated in-situ FFTs is 
large (Table 2) 

4. Conclusions
From the results obtained during our research, 

we came to the following conclusions:
 – The production of in-situ aluminium foams 
infiltrated into an aluminium tube is not only 
possible but also simple and low-cost.

 – The use of heat treatment is justified because:
 – In the case of ex-situ FFTs, it greatly im-
proves the properties of the material. The 
tube does not fall apart during compres-
sion, and thus the specific energy absorp-
tion of the foam increases significantly.

 – With proper heat treatment, in-situ FFTs 
approach the values of ex-situ FFTs, which 
is important because in-situ FFTs can be 
produced in fewer steps, simpler, and fast-
er.

 – On the sEM images, it can be seen, that there 
is a tight fit between the tube and the foam 
and that finer precipitates appeared as a re-
sult of the heat treatment, causing an increase 
in strength, based on the compressive tests. 
An ex-situ procedure cannot achieve such a 
tight fit.
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Figure 2. SEM images taken (a) before and (b) after 
heat treatment of an in-situ specimen

Figure 3. Stress-strain curves for each specimen.

Table 2. Results of the compressive test by specimen 
type

Engineering 
stress 

σc (MPa)

Absorbed energy 
W50% (J/cm3)

MMsF (O) 24.75±4.52 8.88±1.16

MMsF (T6) 12.19 7.47

In-situ (O) 138.17±42.79 45.33±8.62

In-situ (T6) 133.09±10.99 46.13±6.25

Ex-situ (O) 127.45±0.43 49.09±0.61

Ex-situ (T6) 159.47±1.93 61.77±0.44
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