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A B S T R A C T

This paper investigates the effect of displacement constraints on the attenuation performance
of tuned mass dampers (TMDs) used in boring and turning applications. A simplified piecewise-
smooth mechanical model is investigated through time domain simulations and hybrid periodic
orbit continuation, first under harmonic excitation, then under regenerative cutting load. A
quasi-frequency response function is derived for impacting TMDs through composition of
different families of period-1 orbits, then an acceptability map for turning is formulated
based on the appearance of cutting-edge contact-loss and fly-over events. The bi-stable domain
boundaries are determined through two parameter continuation of contact-loss grazing events.
It is shown that in both cases arising rigid body collisions can significantly hinder TMD damping
performance and lead to resonance problems or machine tool chatter.

. Introduction

Tuned mass dampers have been successfully implemented in industrial machining solutions [1,2], such as the boring bars
iscussed in [3]. These TMDs with the optimal tuning induce a significant increase in the stable regions of the regeneration–delay
tability charts, while also raising the critical depth of cut, similarly to Fig. 1.(c). Consequently, material removal rate and the tool
ength to diameter ratio can both be increased compared to regular boring bars, while maintaining safe, chatter free operation.

The use of tuned-mass dampers (TMDs) is a simple and powerful approach to solve industrial resonance problems. In principle
nstalling a mass and spring system with optimal tuning can completely cancel out resonant vibrations by utilizing the antiresonance
henomenon. Unfortunately, in practice this simple solution is only applicable when the natural frequency of the system and the
perational bandwidth of excitation is constant and known. In machining applications both of these parameters often vary due to
hanging spindle speeds or tooling and fixture configurations.

If during operation, the operational frequency deviates from the point of antiresonance the aforementioned device suffers a sharp
eterioration in its attenuation performance [4], which becomes even more significant as the newly introduced resonant frequency
s approached. To overcome this issue, Den Hartog [5] showed that by introducing a certain amount of damping the operational
requency range can be greatly expanded with a relatively small sacrifice of absorber performance, thus introducing the concept
f the modern TMD. Den Hartog also derived closed form expressions for the optimal tuning of such devices to achieve the lowest
ibration amplitude across the whole excitation frequency range.

In machining applications the stability of cutting and the appearance of unwanted harmful vibrations (chatter) is connected in a
implified manner to the real part of the frequency response function (FRF) of the machine tool. Consequently, as shown by Sims [6]
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Fig. 1. Comparison of TMD tunings. Panel (a) shows the mechanical model of the TMD designed to reduce resonant vibrations of 𝑚1. Panel (b) presents the
absolute value (𝑀) and real part (𝑅) of the resulting system dimensionless FRFs

(

𝑋1 (𝛺)
𝑚1𝜔2𝐹 (𝛺)

)

, while panel (c) shows the spindle speed - depth of cut stability
charts of turning based on these FRFs.

optimizing the TMD tuning for minimizing either peak of the FRF’s real part, the robustness of the cutting process can be increased
even further. Since this tuning method provides the highest critical depth of cut, below which the operation is stable on the entire
spindle speed domain, it is frequently used in TMDs designed for machining applications.

A comparison of the discussed tuning methods (damping free, Den Hartog, Sims) is presented on Fig. 1. As seen here on panel (b)
and (c), tuning for antiresonance results the highest peaks in the real part of the FRF and consequently leads to the lowest critical
depth of cut, making it inconvenient for machine tools.

In boring applications, for optimal performance, tuned mass dampers have to be placed close to the cutting edge [7,8]. Due to
the lack of space, this means installing the TMD inside a tube segment of the boring bar. This is a simple and effective technique,
however it also weakens the structure of the bar and restricts the free displacement of the TMD.

Given large enough tool vibrations these constructional constraints will lead to inevitable collisions between the TMD and the
inner surface of the boring bar, after which the system becomes non-linear and piecewise-smooth. Intuitively it is unclear how this
will affect the absorbing performance of the TMD. On one hand the restriction of the TMD will lead to less energy displaced to
the additional TMD mode and dissipated through viscose damping, but on the other hand the inelastic impacts might be able to
compensate for it.

As demonstrated in several studies, the energy dissipated during rigid body collisions is a practical approach of vibration
attenuation and chatter suppression for boring and turning operations. The effectiveness of impact dampers is shown by bending,
impact, and cutting tests in [9], by a neural network based tool-wear predictor in [10], and by analytic investigation using the
method of multiple scales in [11]. With high vibration amplitudes the constrained TMD will behave and dissipate energy similarly
to these impact dampers.

This paper aims to uncover how the arising impacts affect the stability maps of turning and boring. As is common in the
literature [3,8,11] to emphasize the underlying behaviour, the machine tool assembly is reduced to a 2 degree of freedom (DoF)
piecewise-linear vibro-impact oscillator, focusing only on the first, most dominant mode.

The dynamic behaviour of low-DoF vibro-impact oscillators has been thoroughly researched. In [12,13], hybrid return maps
and Floquet theory are employed to investigate a flexible beam subjected to rigid amplitude constraints and a constrained inverted
pendulum placed on a linear oscillator respectively. In [14], the shooting method is employed for bifurcation analysis of the free
vibrations of a conservative 2-DoF piecewise-linear vibro-impact oscillator. Sticking solutions and Zeno behaviour (impact chatter)
are investigated in [15,16] by detailed numerical studies.

Such mechanical systems are often described by their piecewise-smooth periodic orbits, built up from continuous segments
separated by discrete impact events (hybrid-periodic orbits). These can be analysed through piecewise-smooth Poincaré return
maps [12,13], shooting methods [14] or collocation [17]. They exhibit rather intricate dynamic phenomena, such as grazing and
sliding bifurcations, Zeno behaviour (often called chatter), and sudden transitions to chaos. Due to high parameter sensitivity and
2

discontinuous changes in system dynamics, both numerical and analytic investigation requires a great deal of effort and care.
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Fig. 2. Panel (a) piecewise-linear vibro-impact oscillator model. Panel (b) calculation of actual feed rate accounting for contact loss events and fly-over modes.
(𝑡) = 0 in fly-over segments denoted by dashed lines.

Applying the aforementioned methods to the mechanical model of boring with a constrained TMD is far from straightforward.
he cutting forces introduce a regenerative effect, which converts the governing equation of motion into a piecewise-smooth delay
ifferential equation, and on high vibration amplitudes, the possible contact loss of the cutting edge also has to be accounted for.
his leads to a new non-smooth event and requires the storing of workpiece profiles from past revolutions [18,19].

There are open source continuation packages available for hybrid-dynamic systems (which have both continuous and discrete
ynamics) such as PyDSTool [20], TC-HAT [17] and the COCO hpo package [21]. However, for the level of customizability needed
n this application, a problem specific hybrid periodic orbit correction and continuation scheme was written. Since the phase
pace of delay differential equations is infinite dimensional, the shooting and Poincaré return map methods require some form
f discretization in time. Consequently, spectral collocation was used for the analysis and continuation of hybrid periodic orbits, as
t provides good convergence properties [22,23] and the orbit has to be discretized either way.

Aided and guided by time domain simulation results, the developed spectral collocation scheme was first used on the piecewise-
inear vibro-impact oscillator model, in the presence of harmonic excitation. By following period-1 orbits with different number
f impacts, a quasi-frequency response function was constructed for the constrained TMD. Then the numerical methods were
eneralized to account for delayed terms, contact-loss events, and fly-over modes. An approximate non-smooth stability map of
urning was formulated through time domain simulations, and was validated by two parameter continuation of hybrid periodic
rbits with grazing bifurcations on the event surface of cutting edge contact-loss.

The remainder of this paper is structured as follows. In Section 2 the mechanical model of boring with a constrained tuned mass
amper is derived, accounting for rigid body collisions, cutting edge contact-loss and fly-over modes. Section 3 discusses the time
omain simulation routines, the boundary value problem formulation of hybrid periodic orbits, and the operation of the continuation
lgorithm. Section 4 displays the results achieved by these numerical methods, and finally Section 5 presents conclusions.

. Model description

When formulating the mechanical model of boring with a constrained TMD, only the first, dominant mode of the machine tool
ssembly was taken into account, thus reducing the problem to the 2 DoF piecewise-linear vibro-impact oscillator shown on Fig. 2(a).
ere 𝑚1, 𝑏1 and 𝑘1 represent the modal mass, damping and stiffness of the machine tool, 𝑚2, 𝑏2 and 𝑘2 are the TMD mass, damping

and stiffness, while 𝑑 is the TMD clearance and 𝑟 is the coefficient of restitution. The 𝐹 (𝑡) excitation will later represent either a
harmonic load or the regenerative cutting force.

Considering instantaneous, inelastic impacts according to the Newton’s impact law, the governing equation of motion is

if |𝑥1 − 𝑥2| < 𝑑
[

𝑚1 0
0 𝑚2

] [

�̈�1
�̈�2

]

+
[

𝑏1 + 𝑏2 −𝑏2
−𝑏2 𝑏2

] [

�̇�1
�̇�2

]

+
[

𝑘1 + 𝑘2 −𝑘2
−𝑘2 𝑘2

] [

𝑥1
𝑥2

]

=
[

𝐹 (𝑡)
0

]

,

if |𝑥1 − 𝑥2| = 𝑑
[

�̇�+1
�̇�+2

]

=
⎡

⎢

⎢

⎣

𝑚1(𝑟+1)
𝑚1+𝑚2

− 𝑟 𝑚2(𝑟+1)
𝑚1+𝑚2

𝑚1(𝑟+1)
𝑚1+𝑚2

𝑚2(𝑟+1)
𝑚1+𝑚2

− 𝑟

⎤

⎥

⎥

⎦

[

�̇�−1
�̇�−2

]

.

(1)

For the representation of the regenerative cutting force, a simple linear orthogonal cutting model was used

𝐹 (𝑡) = 𝐾 𝑤ℎ(𝑡), (2)
3
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where 𝐾cr is the radial cutting edge coefficient, 𝑤 is the depth of cut and ℎ(𝑡) is the actual feed rate. Considering large vibrations
and fly-over segments, ℎ(𝑡) can be calculated as illustrated on Fig. 2(b).

ℎ̄(𝑡) =min
𝑘
(𝑘ℎ0 − 𝑥1(𝑡) + 𝑥1(𝑡 − 𝑘𝜏)),

ℎ(𝑡) =

{

0, if ℎ̄(𝑡) < 0,

ℎ̄(𝑡), if ℎ̄(𝑡) ≥ 0,

(3)

where 𝑘 = 1, 2,… , 𝑛, 𝑣𝑓 and ℎ0 =
2𝜋
𝛺 𝑣𝑓 is the prescribed feed and feed rate, while 𝜏 = 2𝜋

𝛺 is the time needed for one full workpiece
revolution.

To reduce the number of system parameters, Eq. (1) can be nondimensionalized using the inverse of the natural frequency of

the dominant mode of the machine tool as a time unit 𝑡 ∶= 𝜔1𝑡 =
√

𝑘1
𝑚1

𝑡, and either the equilibrium clearance or the prescribed feed
ate as a displacement unit. Consequently the two excitation cases considered will take the following forms

𝑑 ∶= 1, 𝑓 (𝑡) ∶= 𝑓 cos(𝛺𝑡 + 𝜙), 𝑓 ∶= 𝐹
𝜔2
1𝑚1𝑑

, (4)

for harmonic (�̃� ∶= 1
𝑑 ), and

𝑑 ∶= 𝑑
ℎ0

, 𝑓 (𝑡) ∶= �̃�ℎ̃(𝑡), �̃� ∶=
𝐾cr𝑤
𝜔2
1𝑚1

, ℎ̃(𝑡) ∶=
ℎ(𝑡)
ℎ0

. (5)

for regenerative cutting force (�̃� ∶= 1
ℎ0
𝑥). Dropping the tildes results in the nondimensionalized equation of motion

if |𝑥2 − 𝑥1| < 𝑑
[

1 0
0 𝜇

] [

�̈�1
�̈�2

]

+
[

2𝜁 + 2𝜒𝜇 −2𝜒𝜇
−2𝜒𝜇 2𝜒𝜇

] [

�̇�1
�̇�2

]

+
[

1 + 𝜑2𝜇 −𝜑2𝜇
−𝜑2𝜇 𝜑2𝜇

] [

𝑥1
𝑥2

]

=
[

𝑓 (𝑡)
0

]

,

if |𝑥2 − 𝑥1| = 𝑑
[

�̇�+1
�̇�+2

]

=

[ 𝑟+1
1+𝜇 − 𝑟 𝜇(𝑟+1)

1+𝜇
𝑟+1
1+𝜇

𝜇(𝑟+1)
1+𝜇 − 𝑟

]

[

�̇�−1
�̇�−2

]

,

(6)

here 𝜁 ∶= 𝑏1
2𝜔1𝑚1

is the oscillator damping ratio.

The tuned mass damper frequency tuning 𝜑 ∶= 𝜔2
𝜔1

=
√

𝑘2∕𝑚2
√

𝑘1∕𝑚1
and stand-alone damping ratio 𝜒 ∶= 𝑏2

2𝜔1𝑚2
is assumed to be tuned

according to the closed form formulas of Sims [6]

𝜑 =

√

𝜇 + 2 +
√

2𝜇 + 𝜇2

2(1 + 𝜇)2
, 𝜒 =

√

3𝜇
8(1 + 𝜇)

, (7)

with the mass ratio 𝜇 = 𝑚2
𝑚1

as a given parameter.
Sims tuning was selected as it provides the highest critical depth of cut for the simple turning operation, as seen on Fig. 1.(c), and

its frequently used in commercially available boring bars [3]. A major part of this paper is devoted to show how the performance
of these devices deteriorates from the results of linear stability analysis when displacement constraints are accounted for.

3. Numerical methods

For displacement constrained TMDs, the governing equation of motion (6) is a hybrid, piecewise-linear ordinary (ODE) or delay
differential equation (DDE), depending on the form of excitation: (4) or (5). Investigating such equations is often too complicated
to do so analytically, therefore numerical methods are employed for the analysis of system dynamics. This section presents the
numerical methods used for time domain simulation and hybrid periodic orbit continuation of Eq. (6).

3.1. Time domain simulation

To get a general feel of system dynamics, first a time domain simulation scheme was formulated, exploiting the ODE/DDE solver
and event handling functionalities of the DifferentialEquations.jl [24] Julia package.

First, Eq. (6) was converted to first order form using 𝐮 = [𝑥1, 𝑥2, �̇�1, �̇�2]⊺. On smooth segments, this results in

�̇� = 𝐀𝐮 + 𝐛, (8)

where

𝐀 =

⎡

⎢

⎢

⎢

⎢

0 0 1 0
0 0 0 1

−1 − 𝜑2𝜇 𝜑2𝜇 −2𝜁 − 2𝜒𝜇 +2𝜒𝜇
2 2

⎤

⎥

⎥

⎥

⎥

4

⎣

𝜑 −𝜑 2𝜒 −2𝜒
⎦
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Fig. 3. Boundary value problem formulation of hybrid periodic orbits of turning with a constrained tuned mass damper. Using a scaled Chebyshev mesh of
size 𝑁 , on 𝑛 segments with 𝑚 coordinate dimensions. Therefore, 𝑖 = 1…𝑁 , 𝑗 = 1… 𝑛, 𝑘 = 1…𝑚, and the orbit is described by 𝑘𝑢𝑗,𝑖 state variables and 𝑡𝑗 event
imes. Blue and orange lines show the first two dimensions of the state in a possible orbit (𝑛 = 4, 𝑁 = 10, 𝑚 = 4). The grey area denotes the time spent in
ly-over, which in some cases can be reduced to the green grazing point. If this coincides with an impact event a blue double event point can be formulated.
For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

nd 𝐛 = [0, 0, 𝑓 (𝑡), 0]⊺, and at non-smooth event times (|𝑢2 − 𝑢1| = 𝑑) the impact map becomes

𝐮+ = 𝐑𝐮−, (9)

ith

𝐑 =

⎡

⎢

⎢

⎢

⎢

⎣

1 0 0 0
0 1 0 0
0 0 𝑟+1

1+𝜇 − 𝑟 𝜇(𝑟+1)
1+𝜇

0 0 𝑟+1
1+𝜇

𝜇(𝑟+1)
1+𝜇 − 𝑟

⎤

⎥

⎥

⎥

⎥

⎦

.

To simulate the solution of (6), Eq. (8) was integrated using the Tsit5 (Tsitouras 5/4 Runge–Kutta) method, while detecting and
pplying (9) when a zero crossing is found in the impact condition using a root finding algorithm.

Most of the time this provided adequate results, however due the appearance of Zeno behaviour (impact chatter), with the
vailable limited numerical precision, impact events sometimes went undetected, leading to solutions with no physical meaning.
s demonstrated by Nordmark and Piiroinen [25] these infinite impact sequences can be detected, and their completion, which
equires a finite amount of time, can be predicted. If chatter events are complete, the solution will transition to a sliding one, where
he two degrees of freedom evolve in unison until a separation condition is met.

Consequently an additional condition was implemented in the event handling algorithm, to check for possible chatter sequences.
f 𝛥𝑡𝑖 < 𝜖, where 𝛥𝑡𝑖 is the time elapsed between two subsequent impacts, the integration is stopped and continued as a sliding
olution, determined by integrating

�̇�∗ = 1
1 + 𝜇

([

0 1
−1 −2𝜁

]

𝐮∗ +
[

0
𝑓 (𝑡)

])

(10)

until the separation condition �̇�∗2 = ±𝜑2𝑑 is reached. This corresponds to the time instant when the spring force of 𝑘2 overcomes
the inertial force. Here 𝐮∗ = [𝑢1, 𝑢3]⊺, which at the end is transformed back as 𝐮 = [𝑢∗1 , 𝑢

∗
1 ± 𝑑, 𝑢∗2 , 𝑢

∗
2]

⊺, depending on which event
surface, the complete impact chatter phenomenon took place on. Finally the integration of (8) is resumed in the aforementioned
fashion.

3.2. Boundary value problem of hybrid periodic orbits

Time domain simulation is a powerful tool, however due to the non-linear, initial condition and parameter dependent behaviour
of Eq. (6), cannot provide a reliable general picture of system dynamics. For further numerical analysis a hybrid periodic orbit
continuation scheme was formulated, based on the spectral collocation methods described by Trefethen in [22].

Periodic orbits of initial value problems can also be obtained as solutions of appropriate boundary value problems (BVPs), with
infinite-dimensional boundary conditions in the case of DDEs [26]. For periodic orbits of piecewise-smooth systems, the same can
be achieved, either through smoothing the non-smooth effects [19], or applying inner boundaries for all such events [18].

First of all, formulating the appropriate BVP requires the adequate discretization of the hybrid periodic orbits. As the solution on
the smooth segments of orbits is generally not periodic, the use of Chebyshev polynomials is a straightforward choice. It provides
a homogeneous interpolation within the intervals, and allows spectral differentiation, which converges fast and is easily rescalable
with interval lengths.
5
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Table 1
List of event and segment boundary types considered, illustrated with the same colours on Fig. 3.
The condition column defines the event surface, while the boundary column describes the smooth
or non-smooth event map.

Name Condition Boundary

impact |

2𝑢𝑗,𝑁 − 1𝑢𝑗,𝑁 | = 𝑑 𝐮𝑗+1,1 = 𝐑𝐮𝑗,𝑁
contact-loss 1 − 1𝑢𝑗,𝑁 + 1𝑢(𝑡𝑗,𝜏 ) 𝐮𝑗+1,1 = 𝐮𝑗,𝑁
contact-loss 1 − 1𝑢𝑗,𝑁 + 1𝑢(𝑡𝑗,𝜏 ) 𝐮𝑗+1,1 = 𝐮𝑗,𝑁grazing − 𝑗𝑢𝑁3 + 3𝑢(𝑡𝑗,𝜏 )

impact and |

𝑗𝑢𝑁2 − 1𝑢𝑗,𝑁 | = 𝑑
𝐮𝑗+1,1 = 𝐑𝐮𝑗,𝑁contact-loss 1 − 1𝑢𝑗,𝑁 + 1𝑢(𝑡𝑗,𝜏 )

grazing − 3𝑢𝑗,𝑁 + 3𝑢(𝑡𝑗,𝜏 )

The first step of discretization is to assign segment boundaries to each non-smooth event, as illustrated in Fig. 3. By default this
can either be an impact, or a contact-loss event. Later on, for two parameter continuation, more complicated contact-loss grazing,
and impact contact-loss grazing boundaries will be defined as well. These points all come with one or more conditions to ensure
their existence, and a continuity law, which will provide the necessary boundary conditions for proper formulation of the BVP.
These event types and their respective constraints are listed on Fig. 1. Since these events and consequently the segment boundaries
are allowed to move, their times are included as free variables when formulating the governing BVP. The event conditions provide
the extra constraints necessary to keep it fully defined.

Now the only thing left to do is to apply the continuously smooth equation of motion (8) for the inner points of each segment.
This was achieved using the first 𝑁−1 rows and all 𝑁 columns of the Chebyshev spectral differentiation matrix 𝐃 defined in chapter
6 of [22]. Doing so results in the following set of (𝑁 − 1) × 𝑛 × 𝑚 equations

2
𝑡𝑗 − 𝑡𝑗−1

𝐃 𝑘𝐮𝑗,𝑖 = 𝐀 𝑘𝐮𝑗,𝑖 + 𝐛(𝑡𝑗,𝑖), (11)

where 𝑖 = 1,… , 𝑁−1 is the mesh index within smooth segments, 𝑗 = 1,… , 𝑛 is the index of segments within the orbit, and 𝑘 = 1,… , 𝑚
indexes the coordinate dimensions. Assuming an 𝑚 coordinate dimensions (𝑚 = 4 in this case), on 𝑛 smooth segments, with 𝑁 mesh
points in each. In (11), all 𝑁 mesh points are necessary for the spectral derivation, however in the BVP only 𝑁 − 1 equations are
considered as the 𝑁th terms are be defined by the boundary conditions provided in Table 1. Due to the periodicity of the orbits,
𝑗 − 1 maps to 𝑛 if 𝑗 = 0 and 𝑗 + 1 maps to 1 for 𝑗 = 𝑛.

Unfortunately the calculation of 𝐛(𝑡𝑗,𝑖) is not trivial, especially in the regenerative case. If 𝐛(𝑡𝑗,𝑖) is defined using (4), assuming
harmonic excitation, the calculation requires an extra phase variable 𝜙, and consequently an additional phase condition 𝑡𝑛 = 𝑙 2𝜋𝛺 ,
𝑙 ∈ N.

When the regenerative force from Eq. (5) is considered, the calculation of 𝑓 (𝑡) is not so straightforward. Evaluating the actual
feed rate is rather complicated, especially when contact-loss events and fly-over segments are present. In such cases, finding the
time instant within the periodic orbit, corresponding to the current surface of the workpiece at time 𝑡, can be achieved as

𝑡𝜏 = min
𝑚

{𝑡 − 𝑚𝜏 + 𝑙𝑇 ≥ 0}, 𝑙 = 0, 1, 2,… (12)

where 𝑚 is the lowest integer, when 𝑡𝜏 lands in a segment without fly-over. Consequently on the discrete mesh, the actual feed rate
is

ℎ(𝑡𝑗,𝑖) = 𝑚 − 1𝑢𝑖,𝑗 + 1𝑢(𝑡𝑗,𝑖,𝜏 ), (13)

or 0 if 𝑡𝑗,𝑖 is part of a segment in fly-over.
Generally 𝑡𝑗,𝑖,𝜏 will not land on an existing mesh point and 𝑘𝑢(𝑡𝑗,𝑖,𝜏 ) has to be interpolated exploiting the same Chebyshev

polynomials used for the spectral differentiation. Therefore,

𝑘𝑢(𝑡𝑗,𝑖,𝜏 ) =
𝑁−1
∑

𝑙=0
𝑎𝑙 cos

(

𝑙 arccos
(

2
𝑡𝑗,𝑖,𝜏 − 𝑡0

𝛥𝑡
− 1

))

, (14)

where 𝑡0 = 𝑡𝑚,1 and 𝛥𝑡 = 𝑡𝑚,𝑁 − 𝑡𝑚,1 are the start point and length of the 𝑚th solution segment containing 𝑡𝑗,𝑖,𝜏 . 𝑁 is the degree of
interpolation and the 𝑎𝑙 coefficients are derived using discrete Chebyshev transform

𝑎𝑙 =
1

𝑁 − 1

( 1
2
(

(−1)𝑙 𝑘𝑢𝑚,1 + 𝑘𝑢𝑚,𝑁
)

+
𝑁−1
∑

𝑛=2

𝑘𝑢𝑚,𝑛 cos
(

𝑙𝜋 𝑛 − 1
𝑁 − 1

)

)

. (15)

In summary the formulated BVP consists of 𝑛 ×𝑁 × 𝑚 + 𝑛 state variables 𝑘𝑢𝑗,𝑖 and 𝑡𝑗 (also 𝜙 if the excitation is harmonic), and the
same amount of equality constraints, 𝑛× (𝑁 −1)×𝑚 coming from (11), 𝑛×𝑚 from boundary conditions and 𝑛 from event conditions
shown in Table 1 (+1 phase condition).
6
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3.3. Continuation algorithm

Due to the adaptive nature of the mesh and the complexity of calculating ℎ(𝑡), for the solution of the previously formulated BVP,
he NLSolve.jl Julia nonlinear solver package was employed [27]. For better convergence and numerical stability, an option to define
xtra segment boundaries one workpiece revolution after impact events (at 𝑡imp + 𝜏) was added. However, this option was seldom
sed, due to the increase of state dimension significantly slowing down the calculations.

Through the solution of the boundary value problem, single parameter continuation of hybrid periodic orbits became possible.
y simple incremental modification of a system parameter, and repeated correction of the solution, branches of different families
f periodic orbits could be followed. Since no saddle–node (fold) type bifurcations of periodic orbits are expected, only natural
arameter continuation was implemented.

Unfortunately this continuation scheme has a few limitations. First, it requires rigorous initialization by defining the exact
equence of occurring events, which cannot change through the course of continuation, and second, the physical meaning of the
rbits is not guaranteed by the equality constraints of the BVP alone. Consequently, additional inequality conditions must be defined
nd evaluated at every parameter step. The violation of these will indicate grazing bifurcations, where the continuation must be
topped and continued with a different sequence of events.

In the case of the impact event surface, two types of grazing bifurcation can happen. Either an already existing impact disappears,
y the relative velocity reaching zero, or a new impact event appears, by the state reaching the event surface within the segments.
hese events can be detected by the violation of either

|

4𝑢𝑚,𝑁 − 3𝑢𝑚,𝑁 | > 0 or |

2𝑢𝑗,𝑖 − 1𝑢𝑗,𝑖| < 𝑑, (16)

here 𝑚 marks all segments with impact boundaries at their end.
The situation is similar for the contact-loss event surface. An existing pair of contact-loss events and the enclosed fly-over segment

ight disappear, by the length of the segment becoming zero, or a new fly-over section might emerge from a breach of the event
urface in an in-contact segment. These can be detected when

ℎ(𝑡𝑚,𝑖) > 0 or |𝑡𝑙 − 𝑡𝑛| > 0, (17)

s violated. Here 𝑚 denotes all non-fly over segments, while 𝑙 and 𝑛 mark all possible combinations of contact loss event times. A
imilar condition to the second half of (17) was implemented between all segment boundaries to detect changes in the sequence of
vents.

Grazing events detected by all these inequality conditions can also be followed with the formulated continuation scheme. This
s done in two parameters, by the introduction of an extra constraint and adding one of the system parameters to the state of the
VP. In case of turning with a constrained TMD, grazing bifurcations on the contact-loss event surface are the most important, as
hey indicate the margin of solutions with large amplitude vibrations and interrupted cutting, also known as chatter.

The extra condition was introduced on a new type of segment boundary, where to guarantee the grazing of the contact-loss event
urface, apart from the ℎ(𝑡) = 0 condition, its derivative was also prescribed to be zero d

d𝑡ℎ(𝑡) = 0. This assures a local extrema in
eed rate and thus a grazing event. On discretized orbits, these conditions take the form shown in Table 1.

In some special cases an impact and a contact-loss grazing event were found to coincide, leading to a new segment boundary
ype, shown in Table 1 and Fig. 3 with colour blue. This event however, is only a by-product of the discretization scheme and the
ixed order of non-smooth events. Nevertheless its two parameter continuation provided promising results, even though only two
f its three existence conditions could be satisfied by the solution of the governing BVP.

. Results

Working with piecewise-smooth systems is always a difficult and delicate task. To help speed up this process the numerical
nvestigation of both models began with solving a large batch of initial value problems, to get a general sense of system dynamics.
ased on the information gathered from these runs, searching for hybrid-periodic orbits became a lot easier.

Time domain simulations were also employed in the initialization phase of all continuation tasks, as the previously formulated
VP is highly sensitive of the initial state, especially when it comes to event times and event order. Consequently, the general order
f investigation was to initialize an orbit by time domain simulation, correct and follow it to grazing events via continuation, then
imulate new initial orbits and repeat the process until the target parameter domain is covered.

.1. Quasi-frequency response function

First the simpler and easier to handle harmonically excited (4) case was examined. The most important and interesting
haracteristic of this model is its excitation frequency 𝛺 dependence. In linear case, without constraints, this would be the frequency
esponse function (FRF). Due to the nonlinearities arising from TMD collisions, this description is no longer valid, but the response
mplitude’s frequency dependence can still be investigated via hybrid periodic orbit continuation. Furthermore the phase and
herefore the real and imaginary parts can also be approximated by applying the Hilbert transform on artificial time signals generated
y the repetition of resulting periodic orbits.

Through continuation of different families of periodic orbits, quasi-frequency response functions (QFRFs) were formulated for
he piecewise-linear vibro-impact oscillator, while varying system parameters between runs. The effect of dimensionless excitation
7
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Fig. 4. Periodic orbit continuation results for the harmonically excited vibro-impact oscillator. Panel (a) presents the quasi-frequency response function (QFRF)
on different excitation amplitudes (equivalent to modifying 1

𝑑
), with 𝜇 = 0.05, 𝜁 = 0.02, 𝑟 = 0.9 and dotted: 𝑓 = 0.1, dashed: 𝑓 = 0.2, solid: 𝑓 = 0.5. Here 𝑀 is

he absolute value and 𝑅 is the real part of the dimensionless (quasi-)frequency response function ( 1
𝑚1𝜔2

1
𝑄𝐹𝑅𝐹 ), 𝛺 is the dimensionless excitation frequency and

𝑛 is the number of impacts found in the followed orbits. The solid grey line shows the original, unconstrained linear FRF, while the dashed grey line denotes
the effect of a Lanchester damper (𝜒 → ∞). Panel (b) shows the same graph on different damping ratios, with 𝜇 = 0.05, 𝑓 = 0.5, 𝑟 = 0.9 and dotted: 𝜁 = 0.1,
dashed: 𝜁 = 0.05, dash–dot: 𝜁 = 0.02, solid: 𝜁 = 0.1. Panel (c) displays two critical, branch terminating, grazing orbits (𝜇 = 0.05, 𝜁 = 0.02, 𝑓 = 0.5, 𝑟 = 0.9),

hile panel (i–v) show periodic orbits with 𝑛 = 2, 4, 6, 8, and 10 impacts. (𝜇 = 0.05, 𝜁 = 0.01, 𝑓 = 0.5, 𝑟 = 0.9). (For interpretation of the references to colour
n this figure legend, the reader is referred to the web version of this article.)

mplitude 𝑓 (which is inversely proportional to the TMD clearance 𝑑) and damping ratio 𝜁 , is presented on Fig. 4(a) and (b).
oncerning the rest of the parameters, 𝜇 and thus 𝜒 and 𝜑 were considered as given values, while 𝑟 was found to have no noticeable
ffect on the shape of the function. Within orbits, the coefficient of restitution did not affect the vibration amplitude, only the number
f impacts per period.

The original frequency response function is denoted by a grey line on Fig. 4(a). From the continuation results, it is clearly visible,
hat the system suffers a significant loss in damping performance if the displacement of the TMD is constrained. The negative peak of
he real part cancelled out by Sims tuning [6] reappears. This will be shown to have severe consequences on the stability properties
f the boring process.

The QFRFs take on a shape similar to the FRF of a slightly detuned 1 DoF system. This behaviour is similar to the one
emonstrated in [28] for impact dampers, which states that on large vibration amplitudes the system behaves as if the moving
ass was fixed directly to the vibration attenuated structure. Special dampers, where the stand alone damping ratio is regarded as

nfinite (𝜒 → ∞), also known as Lanchester dampers, cause the two bodies to move in unison and produce a similar characteristics.
his is demonstrated with a dashed grey line on Fig. 4(a).

For low 𝑓 or high 𝜁 values the QFRF can be constructed by following a single 2 impact, period 1 orbit. Changing these values
eads to the quasi-frequency response function being segmented into multiple branches of different impact numbers by grazing
ifurcations. For example a branch of 2 impact periodic orbits can terminate in the grazing events shown on Fig. 4(c).

There is a wide range of existing orbits, with a wide variety of impact numbers and orders. Due to the symmetricity of the
ystem and the two impact surfaces, these are all either symmetric or come in mirrored pairs. The number of collisions increases
ith the vibration amplitude, theoretically up to infinity as Zeno behaviour and sliding solutions are reached [25]. The system

an also exhibit more complicated behaviours, such as quasi-periodic solutions, but these were not investigated as the formulated
umerical methods were unable to handle them.

Considering the intricacy and difficulty of uncovering all possible periodic orbits, the numerical investigation was restricted to
ymmetric orbits with even number of impacts, such as the ones presented on Fig. 4(i–v). Due to numerical limitations, initializing
rbits becomes more and more difficult as the number of impacts increases. Consequently, only orbits with up to 10 collisions per
eriod were considered. Nevertheless, despite all restrictions, following only these orbits was able to provide a reasonably full and
ccurate picture of system dynamics.
8
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Fig. 5. Hybrid periodic orbit continuation results for turning with a constrained TMD (𝜁 = 0.02, 𝜇 = 0.05, 𝑟 = 0.9, 𝑑 = 0.5). Panel (a) shows the followed
orbits. Starting with an initial 2 impact fly-over orbit, which is converted to a grazing orbit by single parameter continuation in 𝑤 (A → B → C). Then it is
followed in two parameters 𝑤, 𝛺, branching out to different more complicated orbits(→ D → E and → F → G → H). The colours black, red, green and blue
denote the same events as in Table 1. Panel(b) shows the formulated ‘‘stability’’ map, where the blue and green areas have solutions without contact loss, the
grey areas are bi-stable and the white area is unstable. Solid black line marks the linear stability map of 2 DoF turning, dotted black line the original 1 DoF
turning, and grey line the contact loss limit derived by time domain simulations. (For interpretation of the references to colour in this figure legend, the reader
is referred to the web version of this article.)

4.2. Stability map

If regenerative excitation (5) is present, uncovering all intricacies of system dynamics becomes even more complicated and
time consuming. Consequently, the numerical investigation was focused only on determining parameter domains, which lead to
machining operations with acceptable workpiece surface quality. In practice, this meant separating areas with solutions without
contact-loss events and fly-over segments, from the rest of the parameter space.

This process was started by solving a large batch of initial value problems, within a binary search algorithm formulated for
finding the minimal dimensionless depth of cut 𝑤 necessary for cutting edge contact loss. A result of this search for a broad range
of spindle speeds 𝛺 is presented on Fig. 5(b) with a grey line.

Here the black line represents the linear stability map of turning with an unconstrained TMD. Parameter combinations below
this line ensure the existence of a stable, constant steady state solution even for the constrained case. Nevertheless, it is found that
given strict enough TMD displacement restrictions and large enough perturbations, even here (grey area), the system can exhibit
steady state solutions with contact-loss events and fly-over. To ensure landing on such solutions large energy initial conditions were
used for the aforementioned 𝑤 limit search.

The other noteworthy result of the initial contact-loss limit search is the set of green areas of Fig. 5(b). Here despite the instability
of the constant steady state solution, the TMD displacement constraints can limit the tool vibration amplitude to an acceptable level.
Here the solutions take on a shape similar to the one shown for impact dampers in [11]. Segments with and without impacts follow
one another in long periodic fashion, as the activation amplitude of impacting orbits is repeatedly reached then lost due the energy
dissipated during collisions.

To validate the findings of the time domain simulation results, two parameter (𝑤-𝛺) continuation of contact-loss grazing orbits
was implemented. This process followed the steps presented on Fig. 5(a). First the simplest possible type of orbit necessary for
prolonged large amplitude vibrations was initialized through solving an initial value problem (A). Then this impacting, fly-over
orbit was followed in 𝑤 close to a contact-loss grazing bifurcation (B). Here the orbit was converted by replacing the two old
9
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Fig. 6. Bi-stable behaviour of turning at point a and b of Fig. 5(b).

contact-loss events with a new grazing one (C). Then this orbit was followed in 𝑤-𝛺, leading to an impact grazing event (F) and
the overlap of two segment boundaries (D).

At the impact grazing event a new orbit was initialized through the same process as A → B → C, but now with 4 impacts (G).
The continuation of this orbit lead to impact grazing events in both directions. The critical orbit (H) indicates that this process could
be repeated for 6, 8 and so on impact orbits, making up the sections missing from the 𝑤 limit on Fig. 5(b). Nevertheless, this was
not performed considering the difficulty and tediousness of the task due to numeric limitations and parameter sensitivity.

At the other notable point (D) the continuation stops due to an inherent limitation of the algorithm, as events cannot change order
or pass through one another. Here there are two possible ways to continue. Either a new double event is formulated (D), or the order
of events is switched (E). Both solutions can be followed, however the latter will eventually lead to the former, as one of the impact
events eventually converges to the contact loss grazing point as 𝑤 is increased. Leading to the same issue as before with following C.

he double event of D has 3 existence conditions, which cannot be satisfied simultaneously in two parameter continuation, however,
he branch prescribing only the first two, coincides well with the time domain simulation results, thus validating them.

As seen on Fig. 5(b), the same continuation routine was repeated around 𝛺 = 1.2 and 𝛺 = 0.335 leading to similar results.
Overall the time domain simulation and continuation results coincidence quite well.

4.3. Bi-stable behaviour of constrained TMDs

The bi-stable zones presented on Fig. 5(b) pose a significant danger, since here, even though linear stability analysis predicts
safe operation, the system is prone to harmful chatter vibrations. Given large enough perturbations, the system no longer returns to
its constant steady state solution, however, ends up on a stable impacting periodic solution with contact loss and fly-over effects.

Fig. 6 presents time domain simulation results, to illustrate this phenomenon. Two bi-stable 𝑤 - 𝛺 combinations were picked,
oint a and b from Fig. 5(b), with 𝜁 = 0.02, 𝜇 = 0.05, 𝑟 = 0.9, and 𝑑 = 0.5. The system was perturbed by two impulses at 𝑡 = 366.52
nd 𝑡 = 733.04, with the second one being slightly larger than the first. After the first disturbance, the system settles down to its
onstant steady state solution, however, the second one leads to exponentially growing vibrations which only become limited due
o the onset of fly-over events and chatter.

Such impulsive perturbations are relatively common in manufacturing practice. Material impurities or geometric faults can often
ead to sudden entry or separation of the cutting edge, producing impact like effects. Determining the systems explicit tolerance
gainst these disturbances would go a long way towards optimal operation of boring bars with enclosed TMDs. Future work should
e concentrated on this issue.

Modern machine tools contain a large number of moving parts, in the form of both passive and active elements, all subjected
o some form of a motion limiting constraint. Such as finite strokes of e.g. inertial actuators, actuator or control saturations, end
witches and geometric limits. Operating machines close to these boundaries can be unreliable and dangerous due to the arising
on-smooth effects caused by reaching these rigid limits. Bi-stable behaviours similar to the one presented on Fig. 6 might arise
eading to severe wear of moving parts and faulty machined workpieces.

The investigated displacement constrained passive tuned mass damper model provides an illustrative example on the dangers
f non-smooth effects. The concept of avoiding collisions whenever possible can be generalized to all aforementioned devices, by
taying clear of actuator and input saturations, actuator stroke limits, and geometric limits when operating industrial machine tools.

. Conclusions

The effect of displacement limiting constrains is investigated on tuned mass dampers subjected to harmonic excitation and
egenerative cutting force. Through time domain simulations and hybrid periodic orbit continuation, a quasi-frequency response
unction for a piecewise-linear vibro-impact oscillator, and a contact loss based stability map for boring with a constrained TMD is
10
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For this particular application, problem specific numerical schemes were constructed capable of handling both impact and
ontact-loss events, with special attention to Zeno behaviour and grazing bifurcations. Continuation of contact-loss grazing periodic
rbits was found to be a reliable approach for determining stability boundaries in the non-smooth case of boring.

The arising collisions are shown to be inherently harmful for vibration attenuation. Despite the energy dissipated during impacts,
he displacement constraints lead to a significant loss of attenuation performance. On the stability map of boring, major bi-stable
ones appear, where large enough perturbations may lead to steady state solutions with contact loss, even though the constant
teady state solution is stable.

Overall, tuned mass damper collisions are demonstrated to be a significant source of danger, which should be accounted for and
voided if possible when operating boring bars with enclosed TMDs.
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