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Abstract
The aim of this study was to identify transcription factor (TF) binding sites and cis-regulatory elements (CREs) on the 
promoters of FvSPR1-like2 (SPIRAL) and FvSPT (SPATULA) genes in the woodland diploid strawberry (Fragaria vesca 
L.). We identified: (1) MYB59, WRKY25 and WRKY8 TFs which play a role in ethylene signaling; (2) ARF family of TFs 
which play a role in ARF-mediated auxin signaling on the promoter of FvSPR1-like2 gene; (3) ARR family of TFs which 
play a role in cytokinin signaling; (4) ERF family of TFs which play a role in ethylene signaling on the promoter of FvSPT. 
This bioinformatic analysis of TFs and CREs may provide a better understanding of the function of genes involved in, and 
the mechanism underlying, non-climateric ripening during strawberry fruit maturation.

Keywords Agroinfiltration · Cis-regulatory elements · SPATULA · SPIRAL · Transient gene expression · Transcription 
factors

Introduction

Members of the SPR gene family encode small proteins 
that contribute to cell elongation by regulating microtubule 
organization (Nakajima et al. 2004). SPR genes in A. thali-
ana are classified into two main groups, SPR1 and SPR2 
(Bichet et al. 2001; Burk and Ye 2002), and five subgroups, 
SPR1-like1 to SPR1-like5, all of which have been function-
ally characterized (Nakajima et al. 2004).

The SPR gene influences the elongation and development 
of plants at both cellular and organ levels (Furutani et al. 
2000; Nakajima et al. 2004). Furutani et al. (2000) induced 
a mutant SPR gene in A. thaliana whose roots curved to the 
right unlike control roots that grew straight. The mutation 
resulted from the arrangement of cortical microtubules on 
the opposite side of the optimal direction in epidermal root 
cells, also effecting helical handedness. Overexpression of 
the SPR gene did not stimulate root skewing since its main 
function is to maintain the straight elongation of root cells. 
In addition, the SPR gene enhanced the rapid elongation 
of cells, resulting in the lengthwise enlargement of tissues. 
Moreover, SPR genes interact with cellular molecules to 
control anisotropic growth (Nakajima et al. 2004).

The SPT transcription factor positively indicates and 
controls cytokinin output in the medial region of the ovary 
(Reyes-Olalde et al. 2017a). The SPT gene regulates auxin 
signaling in gynoecium and style-sigma development 
(Moubayidin and Ostergaard 2014; Schuster et al. 2015). 
The SPT gene is expressed in non-climacteric strawberry 
(Fragaria × ananassa Duch.) when treated with auxin and 
ethylene and is regulated by four ethylene responsive ele-
ments (EREs) in the SPT promoter region (Tisza et al. 2010).

Transcriptional regulation of gene expression is funda-
mental to biological processes, such as cell growth, devel-
opment, differentiation, fruit ripening and responses to 
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environmental signals (Meshi and Iwabuchi 1995). Given 
its importance as a transcriptional regulator of genes, the 
analysis of plant promoters may provide important informa-
tion that would better guide the construction of biotechno-
logical systems because regulated gene expression systems 
can increase the function of genetically modified organisms 
(Corrado and Karali 2009). As internal physiological control 
regulators, plant hormones also have important roles in the 
transcriptional regulation of genes, such as development and 
fruit ripening (An et al. 2020), for example, ethylene and 
auxin control different steps of the flower-to-fruit transition 
(Bapat et al. 2010; Kumar et al. 2014;  Ziliotto et al. 2012). 
An antagonistic effect can be observed between ethylene and 
auxin during tomato fruit ripening (Li et al. 2017).

In this study, tomato (Solanum lycopersicum L.) cv. 
Micro-Tom and tobacco (Nicotiana benthamiana) were 
selected as model plants, as these plants are often chosen 
in genetic studies to examine and observe differences in 
gene expression using the green fluorescence protein (GFP) 
marker gene (Hoshikawa et al. 2019; Reed and Osbourn 
2018). Agrobacterium tumefaciens-mediated transfer, 
together with an agroinfiltration (also known as agroinjec-
tion) method, was used in this study. Agroinfiltration is an 
Agrobacterium-mediated transient recombinant protein 
expression method which can be used to avoid labor-inten-
sive and time-consuming methods to produce stable trans-
genic plants (Hoshikawa et al. 2019). Infiltration is achieved 
by delivering the Agrobacterium with the target genes into 
extracellular leaf space by physical infiltration (Norkunas 
et al. 2018). Physical infiltration in this study was performed 
with a needleless syringe.

The aim of this study was to characterize the SPT and 
SPR gene promoters which were isolated from Fragaria 
vesca L., the woodland diploid strawberry, by finding 
specific motifs. The putative promoter region was iden-
tified with the JASPAR 2020 plantae algorithm (Fornes 
et al. 2020) for TFs as well as a promoter motifs data-
base (http:// jaspar. gener eg. net/) allowing us to predict the 
promoter regions of the tomato (Solanum lycopersicum 
L.) cv. Micro-Tom SPT, SPR1-like2 (MtSPT and MtSPR1-
like2), as well as F. vesca SPT, SPR1-like1 and SPR1-like2 
(FvSPT, FvSPR1-like1 and FvSPR1-like2) genes, which 
show selective complementation in A. thaliana (Hidvégi 
et al. 2020). We compared these promoter sequences with 
promoters of A. thaliana SPT and SPR1-like2 (AtSPT and 
AtSPR1-like2) reference genes. Moreover, we used PCR 
amplification of different lengths of upstream regions of 
the FvSPT and FvSPR1-like2 coding sequences and inser-
tion of putative promoter fragments into a binary vector 
(pGWB604) carrying the sGFP reporter gene. Tomato 
and tobacco were agroinjected with the pGWB604 and 
pGWB405 (CaMV35S::sGFP, as positive control) binary 
vectors that included a fusion of the promoter deletion 

lines and the sGFP reporter gene. Promoter deletion lines 
can be used to identify the presence of genetic regulatory 
elements (TFs or CREs) such as enhancers and silencers 
in the region upstream of the start codon.

Materials and methods

Plant materials and growth conditions

Diploid strawberry (Fragaria vesca ‘Rügen’) was used as 
the template to amplify the putative promoter regions of 
FvSPT and FvSPR1-like2. Seeds of tomato (cv. Micro-
Tom), diploid strawberry and tobacco (Nicotiana bentha-
miana) were sown ex vitro in 50 mm Jiffy-7® pots (1 seed/
pot). Jiffy pots were placed in a climate room at 22 °C and 
kept under an 8-h photoperiod at a photosynthetic pho-
ton flux density (PPFD) of 37 µmol  m−2  s−1 provided by 
Biolux tubes (Osram L58W, Markham, Canada). When 
seedlings formed two fully developed leaves, rooted plant-
lets were transferred to plastic pots (9 cm) into soil and 
grown under the same conditions as seedlings. No fertiliz-
ers or additional supplements (e.g., pest control agents) 
were added.

Computational analysis of promoters

The S. lycopersicum genome was studied in silico based 
on the Tomato Genome Consortium (2012) whole-
genome sequences for promoters of MtSPT (Gene ID: 
101,266,791, NC_015439.3) and MtSPR1-like2 (Gene ID: 
101,257,849, NC_015440.3) genes. The F. vesca Whole 
Genome v2.0a1 assembly & annotation (http:// www. 
rosac eae. org) was used to analyze in silico the promoters 
of FvSPT (XM_004287975; LOC101290893), FvSPR1-
like1 (XM_004297177; LOC01307108) and FvSPR1-like2 
(XM_004299243; LOC101309836) genes. We used the A. 
thaliana whole-genome assembly (Swarbreck et al. 2007) as 
the reference for the promoters of AtSPT (BT024676) and 
AtSPR1-like2 (BT026462) genes.

The promoters of FvSPR1-like1, FvSPR1-like2 and 
FvSPT genes were isolated and aligned with the A. thali-
ana and S. lycopersicum sequences by using NCBI BLAST 
(https:// blast. ncbi. nlm. nih. gov/ Blast. cgi) analysis to find 
similarities or homologies. The promoter regions of the 
genes were examined with JASPAR 2020 (Fornes et al. 
2020) and PLACE 30.0 (database of plant cis-acting regula-
tory DNA elements; Higo et al. 1999) to determine the tran-
scriptional factor binding sites (TFBS) and CREs to develop 
promoter deletion lines of promoters of FvSPR1-like2 and 
FvSPT genes.

http://jaspar.genereg.net/
http://www.rosaceae.org
http://www.rosaceae.org
https://blast.ncbi.nlm.nih.gov/Blast.cgi
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PCR amplification of promoter deletion lines

The sequences upstream (from the start codon) of the 
FvSPT gene (3100 bp, XM_004287975; LOC101290893) 
and the FvSPR1-like2 gene (2800 bp, XM_004299243; 
LOC101309836) were amplified. PCR amplification was 
performed in FvSPR1-like2 and FvSPT promoter genes to 
yield 500 bp (FvSPR500, FvSPT500), 1000 bp (FvSPR1000, 
FvSPT1000), 2000  bp (FvSPR2000, FvSPT2000) and 
3000 bp (FvSPT3000) fragments. PCR amplification was 
performed with the GoTaq Long PCR Master Mix (Promega, 
Madison, WI, USA). Genomic DNA (100 ng) was used as 
template DNA in a 50-µL PCR mix. The PCR mixture con-
sisted of 25 µL of GoTaq Long PCR Master Mix (2x) and 
30 pmol of each primer (Suppl. Table 1). PCR conditions, 
optimized in-house, were: 95 °C for 2 min followed by 35 
cycles at 95 °C for 30 s, 65 °C 1 min (500 bp and 1000 bp 
promoter deletion lines) or 3 min (2000 bp and 3000 bp pro-
moter deletion lines). Cycling was followed by a final incu-
bation at 72 °C for 10 min. PCR products were separated on 
1.0% agarose gels in 1 × TAE buffer (Sambrook et al. 1989) 
by agarose gel electrophoresis and detected by fluorescence 
under UV light (302 nm) with a  VWR® Smart3 Gel docu-
mentation system (VWR International, Radnor, PA, USA) 
after staining with 0.1% ethidium bromide (IBI Scientific, 
Dubuque, IA, USA).

TOPO® and  gateway® LR cloning

FvSPT500, FvSPT1000, FvSPT2000, and FvSPT3000 
from FvSPT and FvSPR500, FvSPR1000, and FvSPR2000 
from FvSPR were cloned by directional cloning using the 
pENTR™ Directional  TOPO® vector based on the Invit-
rogen pENTR™ Directional  TOPO® Cloning Kit manual 
(Invitrogen, Carlsbad, CA, USA). One  Shot® TOP10 chem-
ically competent Escherichia coli cells (Invitrogen) were 
transformed with constructed TOPO vectors according to 
the One-Shot Chemical transformation protocol (Invitro-
gen pENTR™ Directional  TOPO® Cloning Kit manual, 
Invitrogen). The E. coli was grown on Luria–Bertani (LB) 
media (Bertani 1951) with 100 mg/mL kanamycin (Duch-
efa, Haarlem, the Netherlands). To select positive clones 
of putative promoter regions, colony PCR and agarose gel 
electrophoresis was applied using the same conditions 
employed for PCR amplification of promoter deletion 
lines. Colony PCR used M13 universal primer (Invitro-
gen pENTR™ Directional  TOPO® Cloning Kit manual, 
Invitrogen). E. coli colonies carrying the inserted promoter 
region were grown overnight on LB plates with 100 mg/
mL kanamycin and transferred with toothpicks to 5 mL of 
LB media containing 5 µL kanamycin (100 mg/mL) and 
grown on a shaker (140 rpm at 37 °C, overnight). Plasmid 

DNA from competent E. coli was isolated and purified by 
the PureYield™ Plasmid Miniprep Kit (Promega, Madi-
son, WI, USA) based on the manufacturer’s user manual. 
 Gateway® LR Clonase™ II enzyme Mix (Invitrogen) was 
used for pGWB604 plasmid (Nakagawa et al. 2007; Gen-
Bank: AB543113.1) construction as the binary destina-
tion vector which contains the synthetic green fluorescent 
protein marker gene (sGFP; Niwa 2003). The pGWB405 
(Nakagawa et al. 2007; GenBank: AB294429.1) vector, 
which contains the CaMV35S promoter with sGFP, was 
used as the positive control for transient gene expression. 
The FvSPR500::pGWB604, FvSPR1000::pGWB604, 
FvSPR2000: :pGWB604,  FvSPT500: :pGWB604, 
FvSPT1000::pGWB604, FvSPT2000::pGWB604 and 
FvSPT3000::pGWB604 vector constructs were built by 
cloning.

Agrobacterium‑mediated transformation

Agrobacterium tumefaciens GV3101 strain (Intact Genom-
ics, Creve Coeur, MI, USA) was incubated in an LB plate 
with a working concentration of 10 µg/mL gentamycin 
(10 mg/mL stock; Duchefa) at 28 °C for 2 d. A single colony 
of A. tumefaciens from the LB plate was incubated in 5 mL 
of liquid LB with 5 µL of spectinomycin (50 mg/mL stock; 
Duchefa) and 5 µL of gentamycin (10 mg/mL stock) over-
night in a MaxQ 4000 Benchtop Orbital Shaker (ThermoFis-
cher Scientific, Waltham, MA, USA) at 140 rpm and 28 °C. 
Cultures were placed on ice for 30 min then centrifuged for 
10 min at 4000 rpm and at 4 °C. The supernatant was dis-
carded, and the pellet was resuspended in 5.0 mL of 20 mM 
 CaCl2 on ice then centrifuged again for 5 min at 4000 rpm 
and 4 °C. The supernatant was discarded and 1.0 mL of ice-
cold 20 mM  CaCl2 was added to the pellet in ice water. A 
200 µL aliquot as competent A. tumefaciens cells was pre-
chilled in 1.5-mL microcentrifuge tubes (Eppendorf, Ham-
burg, Germany). Plasmid DNA (3 µL; 500 ng) was added 
from the pGWB604 vector containing the promoter region 
into each tube containing competent A. tumefaciens cells 
and kept on ice for 20 min, placed in liquid nitrogen for 
5 min, heat shocked at 37 °C for 5 min, then added to ice for 
5 min. Liquid LB media (1.0 mL) was added to each heat-
shocked colony and incubated in a shaker at 28 °C and at 
140 rpm for 3–4 h. Sample (100–150 µL) was pipetted onto 
an LB plate supplemented with 10 µg/mL of gentamycin 
(10 mg/mL stock) and 50 µg/mL of spectinomycin (50 mg/
mL stock). Based on the Bergkessel and Guthrie (2013) pro-
tocol, colony PCR was performed to confirm the success of 
transformation using the same conditions used for  TOPO® 
and  Gateway® LR cloning.



376 Biologia Futura (2021) 72:373–384

1 3

Agroinfiltration in tomato and tobacco

A single A. tumefaciens colony was cultured in 5 mL of 
LB medium supplemented with 5 µL gentamycin (10 mg/
mL stock) and 5 µL spectinomycin (50 mg/mL) overnight at 
28 °C on a shaker at 140 rpm. Cultures were transferred to 
50 mL of induction medium (10.5 g  K2HPO4, 4.5 g  KH2PO4, 
1 g  (NH4)2SO4, 0.5 g Na-citrate, 1 g glucose, 1 g fructose, 
4 mL glycerol, 0.12 g  MgSO4, 1.95 g MES (10 mM); pH 
5.6; Singer et al. 2012) containing 100 µM acetosyringone 
(Duchefa), which was added after autoclaving (121 °C, 
60  min). Cells were incubated in induction medium at 
30 °C for 5–6 h at 140 rpm. After incubation, cells were 
centrifuged at 4000 rpm for 10 min, and then the pellet 
was resuspended in infiltration medium (10 mM  MgSO4, 
10 mM MES; pH 5.6; Singer et al. 2012) supplemented 
with 200 µM acetosyringone. Green and ripening tomato 
fruits (age: about 60 d after germination; sample number: 
20 fruits/vector construct, 2 fruits/plant) and tobacco leaves 
(age: about 45 d after sowing; sample number: 20 leaves/
vector construct, 2 leaves/plant) were agroinjected by using 
a 1 mL syringe (Z683531; Sigma-Aldrich, St. Louis, MI, 
USA) with a 0.5 × 1.6 mm needle (Sigma-Aldrich). Infiltra-
tion solution was injected (5–6 mm deep) into tomato fruit 
through stylar apex, while leaves were injected by slightly 
injuring the epithelium tissue of the abaxial surface. Plants 
were tested 3 d later with the Phire Plant Direct PCR Kit 
(ThermoFischer Scientific). The PCR mixture consisted of 
10 µL of Phire Plant Buffer (2 ×), 40 pmol of each primer 
pair (specific to the sGFP gene and the GlyA gene of A. 
tumefaciens GV3101), 0.4 µL of Phire Hot Start II DNA 
Pol and 0.5 µL of diluted plant tissue. PCR conditions were 
98 °C for 5 min followed by 40 cycles at 98 °C for 5 s, 60 °C 
for 5 s and 72 °C for 20 s. Cycling was followed by a final 
incubation of 72 °C for 1 min. PCR products were separated 
by gel electrophoresis based on the same protocol that was 
used for promoter PCR. Only sGFP-positive plants were 
selected for GFP fluorescence and RT-qPCR analysis.

Verification of GFP fluorescence by UV light

GFP fluorescence was verified with a  FastGene® blue/green 
LED flashlight (FG-11; NIPPON Genetics, Tokyo, Japan), 
which was used to irradiate (excitation: 489 nm; emission: 
520 nm) leaves and fruit at the mature red ripening stage 
(about three days after agroinjection) at a distance of ~ 10 cm 
from each organ in the dark. To photograph the irradiated 
leaves, a yellow UV filter (NIPPON Genetics) was mounted 
to the camera (Nikon Coolpix B500, Tokyo, Japan) lens to 
filter out blue light, and to allow GFP fluorescence to be 
visualized. Fluorescence was also verified in controls at 
the same time. The location of GFP fluorescence was visu-
ally assessed and confirmed. Three controls were used for 

both methods at the same time as the agroinjection into ripe 
fruits and leaves using infiltration solution: (a) without any 
A. tumefaciens; (b) A. tumefaciens without any plasmid; 
(c) A. tumefaciens with a constitutive promoter (CaMV-
35S) + sGFP in the plasmid.

Quantification of sGFP expression by real‑time PCR

After confirming the possible presence of the sGFP gene 
using UV fluorescence, tomato fruits and tobacco leaves 
(two per plant; 20 plants/line) showing fluorescence follow-
ing UV light detection were picked after 3 d. To measure 
sGFP intensity, RT-qPCR was used (Wang et al. 2004). 
Total RNA was isolated using Direct-zol™ (Zymo Research, 
Irvine, CA, USA) with TRIzol reagent based on the manu-
facturer’s protocol. After purifying total RNA, three quality 
control methods were applied: 1) microcapillary electro-
phoresis with an Implen n50 spectrophotometer (Implen, 
Munich, Germany) for preliminary quantification; 2) aga-
rose gel electrophoresis to assess total RNA degradation and 
potential contamination; 3) Agilent Bioanalyzer 2100 system 
(Agilent Technologies, Santa Clara, CA, USA) to check the 
quality and quantity of total RNA. cDNA was amplified 
from 120 ng of total RNA with reverse transcription using 
the FIREScript RT cDNA Synthesis MIX (Solis BioDyne, 
Tartu, Estonia). qPCR was performed with the 5 × HOT 
FIREPol EvaGreen qPCR Supermix (Solis BioDyne) on the 
ABI 7300 real-time PCR system (ThermoFischer Scientific) 
to detect the intensity of sGFP expression. Specific primers 
(Suppl. Table 1) for RT-qPCR were used to detect sGFP 
and normalizing (reference) genes (MtGAPDH: At1g13440, 
FvGAPDH: ID07104 and NbGAPDH: At1g12900) which 
were selected based on the stability of housekeeping gene 
expression level (Expósito-Rodríguez et al. 2008; Liu et al. 
2012, 2020). In the RT-qPCR analysis, we used the  2−ΔΔCt 
method to quantify the relative changes in gene expres-
sion (Livak and Schmittgen 2001). To compare the inten-
sity of sGFP gene expression between the positive control 
(CaMV35S::sGFP) and promoter deletion line::sGFP con-
structs, gene expression logarithmic fold change (log2LFC) 
was calculated. The  2−ΔΔCt method and log2LFC were 
calculated by HTqPCR v3.11 (Dvinge and Bertone 2009) 
in R software (Gentleman et al. 2004; Huber et al. 2015). 
The Student’s t test was performed using ΔΔCt values, and 
a p-value less than 0.05 was considered to be significant. 
Statistical analyses were conducted in GraphPad Prism 9.0 
(GraphPad Software, San Diego, CA, USA). Results were 
exported into Microsoft Excel 365.
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Results

Promoter sequence analysis

After comparing of results from JASPAR2020 and PLACE 
30.0 data, various putative TFs and CREs were examined 
in the promoter sequences of MtSPR1-like2, FvSPR1-like2, 
FvSPR1-like1, AtSPR1-like2, MtSPT, FvSPT and AtSPT 
genes. We identified 222, 364, 117, 186, 323, 473, and 484 
TFBS and 473, 645, 248, 30, 548, 733, and 719 CREs in 
the promoter sequences of MtSPR1-like2, FvSPR1-like2, 
FvSPR1-like1, AtSPR1-like2, MtSPT, FvSPT and AtSPT 
genes, respectively (TFs: Suppl. Table 2; CREs: Suppl. 
Table 4).

We compared the different promoter regions (TF and 
CREs) related to flowering, fruit development and ripening 
in tomato, A. thaliana and F. vesca (Suppl. Table 2, Suppl. 
Table 5). Table 1 shows the frequency of TFBS in the 
promoter sequences that play a role in flowering and fruit 
ripening. There were 16, 25, 7, 5, 34, 24 and 29 TFBS in 
the promoter sequences of MtSPR1-like2, FvSPR1-like2, 
FvSPR1-like1, AtSPR1-like2, MtSPT, FvSPT and AtSPT 
genes, respectively (Table 1).

Table 2 shows the frequency of CREs in the promoter 
sequences that played a role in flowering and fruit rip-
ening. There were 11, 25, 6, 1, 27, 26 and 16 CREs in 
the promoter sequences of MtSPR1-like2, FvSPR1-like2, 
FvSPR1-like1, AtSPR1-like2, MtSPT, FvSPT and AtSPT 
genes, respectively (Table 2). Based on the PLACE 30.0 
database, CREs that were regulated by auxin, ethylene, 
 GA3 and cytokinin were classification. We identified 1, 
8 and 1 CREs that were promoted by ethylene, auxin and 
 GA3, respectively. Cytokinin did not promote CREs in 
these promoter regions.

Using the UV lamp, GFP f luorescence was only 
detected in the leaves of FvSPR2000::pGWB604, 
FvSPT1000::pGWB604, FvSPT2000::pGWB604, 
FvSPT3000 : :pGWB604  and  CaMV35S: : sGFP 
(pGWB405) tobacco lines (Suppl. Figure 1f, 1 h, 1i, 1j, 
1c), and in the green fruit of FvSPR2000::pGWB604, 
FvSPT2000::pGWB604, FvSPT3000::pGWB604 and 
CaMV35S::sGFP (pGWB405) Micro-Tom tomato lines 
(Suppl. Figure 2c, e, f, b).

Using RT-qPCR, the sGFP gene was detected and its 
expression intensity was measured in the fruits of Micro-
Tom tomato and leaves of tobacco plants. In tobacco leaves, 
the intensity of sGFP gene expression (RQ) was 0.072, 
0.006, 0.099 and 2.532 in the FvSPR2000::pGWB604, 
FvSPT1000::pGWB604, FvSPT2000::pGWB604 and 
FvSPT3000::pGWB604 lines, respectively, based on 
ΔΔCt values (Suppl. Table 6). The expression logarith-
mic fold change (LFC) was − 3.8, − 7.29, − 3.33 and 1.34 
in the FvSPR2000::pGWB604, FvSPT1000::pGWB604, 
FvSPT2000::pGWB604 and FvSPT3000::pGWB604 lines, 
respectively based on a comparison with sGFP expres-
sion intensity of CaMV35S::sGFP as the positive control 
(Suppl. Table 6; Fig. 1).

In Micro-Tom tomato fruits, sGFP gene expres-
sion intensity was 0.026, 0.024 and 1.028 in the 
FvSPR2000::pGWB604, FvSPT2000::pGWB604 and 
FvSPT3000::pGWB604 lines, respectively based on 
the Ct values (Suppl. Table  6). Expression LFC was 
-5.28, -5.36 and 0.04 in the FvSPR2000::pGWB604, 
FvSPT2000::pGWB604 and FvSPT3000::pGWB604 lines, 
respectively (Suppl. Table 6; Fig. 2) based on a compari-
son with sGFP expression intensity of CaMV35S::sGFP 
as the positive control.

Fig. 1  LFC of sGFP in 
tobacco leaves (control: 
CaMV35S::sGFP; sample size: 
20 measurements per vector 
construct, total: 80 measure-
ments with three biological 
replicates). Error bars: standard 
deviation. * Significant differ-
ences compared with the control 
(Student’s t-test: t(38) = 12.96; 
t(38) = 27.51; t(38) = 10.17; 
t(38) = 4.38, p < 0.05). Also see 
Suppl. Table 6
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Compared to the control (CaMV35S::sGFP), 
FvSPR2000::pGWB604, FvSPT1000::pGWB604 and 
FvSPT2000::pGWB604 ΔΔCt values were significantly 
different (p ≤ 0.05), while FvSPT3000::pGWB604 ΔΔCt 
values were significantly different (p ≤ 0.05) for tobacco 
leaves but not for tomato fruit (Suppl. Table 6).

Discussion

This research focused on the promoter region of FvSPR1-
like2 and FvSPT genes, which play an important role in cell 
development, flowering, and fruit development (Nakajima 
et al. 2004; Reyes-Olalde et al. 2017b; Hidvégi et al. 2020). 
Transient expression using agroinfiltration has limitations, 
such as the exclusive expressed of the marker gene (sGFP) 
in the infiltrated area, while components of the expression 
cassette (vector construction) and strain or density of the 
Agrobacterium culture might affect the efficiency of gene 

Table 1  Frequency of TFBS 
which play a role in flowering 
and ripening processes (based 
on Suppl. Table 3)

TFBS Frequency

MtSPR1-like2 FvSPR1-like1 FvSPR1-like2 AtSPR1-like2 MtSPT FvSPT AtSPT

ARF1 1
ARF2 2 1 1 1 2
ARF34 1
ARF5 1
ARF8 1
ARR10 4 2 3 1 1
ARR11 1 2
ARR14 2
ARR18 1
ARR2 1 1
ATHB15 1
ATHB20 1 1 1
ATHB23 1 1 6 2 2
ATHB53 1 1 1 2
BEE2 2 2
CAMTA1 1
CMTA3 2 1
DREB26 1
EDT1 2 1
ERF13 1
FaEOBII 1
HAT2 1 1 1 1 2 2
KAN1 1 4 2 2 4 2 3
KUA1 2
MYB124 1 1
MYB59 1 1 1 1
MYB73 1
OBP3 1
OsRR22 1
PIF5 1 1 1 1
RVE1 1
SGR5 1
SPT 7 2
TGA1A 1 1 1 1
TGA2 1 1
WRKY25 2 1 2 2
WRKY8 3 1 2 2 2
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expression (Tyurin et al. 2020). The JASPAR2020 TFBS 
database has 572 profiles that include different classes and 
families of TFs in plants based on TF DNA-binding prefer-
ences, modeled as position weight matrices (Stormo 2013).

Fruit ripening in strawberry and tomato are controlled 
by ethylene and can be characterized by their color, ranging 
from green (unripe) to red (ripe) (Tisza et al. 2010; Li et al. 
2017). Auxins retard fruit ripening, and an optimal ethylene-
auxin balance can regulate the fruit ripening period (Su et al. 
2015). We identified the promoters of the FvSPR1-like2 and 
FvSPT genes: ARF1 (Ellis et al. 2005), ARF2 (Zhang et al. 
2014), ARF34 (Majer et al. 2012), ARF5 (Vidaurre et al. 
2007), ARF8 (Nagpal et al. 2005), ATHB15 (Prigge et al. 
2005), ATHB20 (Mattsson et al. 2003), ATHB53 (Son et al. 
2004), CAMTA1 (Bouché et al. 2002), EDT1 (Cai et al. 

2015), HAT2 (Sawa et al. 2002), KAN1 (Hawker and Bow-
man 2004), KUA1 (Lu et al. 2014), MYB124 (Chen et al. 
2015), MYB73 (Kim et al. 2013), OBP3 (Kang et al. 2003), 
RVE1 (Meissner et al. 2013), SGR5 (Morita et al. 2006), 
TGA1A (Pascuzzi et al. 1998) and TGA2 (Johnson et al. 
2003) sites. Auxin response factors (ARFs) can bind specifi-
cally to the DNA sequence 5′-TGT CTC -3′ found in auxin-
responsive promoter elements (AuxREs; Majer et al. 2012). 
We identified ARFAT and SURECOREATSULTR11 CREs 
that contain ARF binding sequences (Maruyama-Nakash-
ita et al. 2005) on the promoters of the FvSPR1-like2 and 
FvSPT genes. The AUXRETGA1GMGH3 CRE is a strong 
binding site for proteins to the AuxRE which regulates ARFs 
(Guilfoyle et al. 1998).

Table 2  Frequency of cis-
regulatory elements (CREs) 
which play a role in flowering 
and ripening processes (based 
on Suppl. Table 5)

CREs Frequency

MtSPR1-like2 FvSPR1-like2 FvSPR1-like1 AtSPR1-like2 FvSPT AtSPT MtSPT

Arfat 1 3 2
Asf1motifcamv 2 5 1 3 4 1
Auxretga1gmgh3 1 1 1
Cacgcaatgmgh3 1
Cargatconsensus 2
Catatggmsaur 6 2
Crtdrehvcbf2 2
D4gmaux28 1
Erelee4 2 2 1 1 4
Gare1osrep1 1
Gareat 2 6 3 3 2
Ntbbf1arrolb 2 3 1 9 4 4
Sebfconsstpr10a 3 2
Surecoreatsultr11 3 4 1 8 4 1

Fig. 2  LFC of sGFP in Micro-
Tom tomato fruit (control: 
CaMV35S::sGFP; sample size: 
20 measurements per vector 
construct, total: 60 measure-
ments with three biological 
replicates). Error bars: standard 
deviation. * Significant differ-
ences compared with the control 
(Student’s t-test: t(38) = 21.34; 
t(38) = 23.90; t(38) = 0.13, 
p < 0.05). Also see Suppl. 
Table 6
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The AGL42 (Dorca-Fornell et  al. 2011), ARR2 
(Weirauch et  al. 2014), CMTA3 (Bouché et  al. 2002), 
DREB26 (Krishnaswamy et  al. 2011), ERF13 (Oñate-
Sánchez and Singh 2002), KUA1 (Lu et al. 2014), MYB59 
(Li et al. 2006), PIF5 (Khanna et al. 2007), WRKY25 
(Li et al. 2011) and WRKY8 (Chen et al. 2013) sites are 
located on the promoter of FvSPR1-like2 and FvSPT 
genes. The AGL42 site, which is a MADS-box TF, is 
involved in the control of flowering time, and promotes 
flowering at the shoot apical and axillary meristems. Genes 
that are controlled by AGL42 are regularly expressed in 
the leaves, flower buds, petals and abscission zone of A. 
thaliana flowers and siliques (Dorca-Fornell et al. 2011). 
We identified AGL42 on the promoters of MtSPR1-like2, 
AtSPR1-like2, MtSPT, FvSPT and AtSPT genes.

ARR1 (Sakai et al. 2001), ATHB34 (Henriksson et al. 
2005), BEE2 (Friedrichsen et al. 2002), FUS3 (Tsuchiya 
et al. 2004), MYB33 (Gocal et al. 2001), MYR2 (Zhao 
et al. 2011), SOC1 (Lee et al. 2008), SRM1 (Wang et al. 
2015) and STZ (Mittler et al. 2006) TFs were found in 
the promoters of the FvSPR1-like2 and FvSPT genes. The 
GARE1OSREP1 CRE regulates the gibberellin-responsive 
element (GARE), including the MYB33 TFBS (Sutoh and 
Yamauchi 2003).

ARR10 (Hwang and Sheen 2001), ARR11 (Imamura 
et al. 2003), ARR14 (Mason et al. 2004), ARR18 (Liang 
et al. 2012) and OsRR22 (Tsai et al. 2012) were located on 
the promoters of FvSPR1-like2 and FvSPT genes.

The FvSPR500::pGWB604 and FvSPR1000:pGWB604 
constructs did not work in tobacco leaves, but 
FvSPR2000:pGWB604 did. FvSPR2000::pGWB604 
also expressed the sGFP gene in Micro-Tom fruit. 
We found ARF1, ARF2, ARF5 and ARF8 sites in 
the − 1067 to − 1059  bp region of the promoter dele-
tion lines of the FvSPR1-like2 gene. These sites were 
not in the − 500 to − 1  bp and − 501 to − 1000  bp 
regions. The ARF family of TFs play a role in ARF-
mediated auxin signaling in the maturation of reproduc-
tive organs (Liu et al. 2015), perhaps, explaining why 
FvSPR2000::pGWB604 was the only construct that 
induced sGFP in tobacco leaves and tomato fruit. The 
FvSPT1000::pGWB604, FvSPT2000::pGWB604 and 
FvSPT3000::pGWB604 constructs worked in tobacco 
leaves, but FvSPT1000::pGWB604 did not work in 
Micro-Tom tomato fruit. The FvSPR500::pGWB604 
construct did not work in Micro-Tom tomato fruit or 
in tobacco leaves. The FvSPR1000::pGWB604 con-
struct had a lower sGFP gene expression intensity than 
FvSPR2000::pGWB604. This differential expression may 
have been caused by MYB59, WRKY25 and WRKY8 
sites, which are regulated by ethylene (Li et  al. 2006, 
2011; Chen et al. 2013). The ethylene-auxin interaction 
might have a role in regulating the promoter of the FvSPR 

gene, as occurs in tomato where there is an antagonis-
tic effect between ethylene and auxin during tomato fruit 
ripening (Li et  al. 2017). The FvSPR1000::pGWB604 
construct does not have the MYB59, WRKY25 and 
WRKY8 sites because these are only found between 
the −1256 and  − 1248 bp, − 1609 to − 1602 and − 1610 
to − 1602 regions (Suppl. Table 2), respectively, which 
do not exist in the FvSPR2000::pGWB604 construct. The 
FvSPT1000::pGWB604, FvSPT2000::pGWB604 and 
FvSPT3000::pGWB604 constructs worked in tobacco 
leaves (Suppl. Figure 1), but the FvSPT1000::pGWB604 
construct did not work in Micro-Tom tomato fruit (Suppl. 
Figure 2).

Conclusion for future biology

In our experiment, we reported CREs specific to various 
TFs in regions of putative FvSPT and FvSPR1-like2 genes 
by bioinformatic analysis. The promoter of the FvSPR1-
like2 gene has the following: (1) MYB59, WRKY25 and 
WRKY8 TFs, which play a role in ethylene signaling; (2) 
ARF family of TFs, which play a role in ARF-mediated 
auxin signaling. The promoter of the FvSPT gene has the 
following: (1) ARR family of TFs, which play a role in 
cytokinin signaling; (2) ERF family of TFs, which play a 
role in ethylene signaling. The function and names of these 
sites and elements, as defined in JAPAR2020 and PLACE 
30.0 databases, were also identified. The function of TFs 
and CREs were confirmed with promoter deletion lines 
and sGFP reporter gene constructs in tobacco leaves or 
tomato fruit by agroinjection.

In recent years, the use of transgenic techniques has led 
to improvements in many plant species due to identifica-
tion of a large number of genes. Molecular researchers have 
made efforts to isolate tissue-specific promoters to increase 
the added value of transgenes. Transcriptional regulation 
is a most important goal in the post-genomic era by under-
standing the transcriptional factors in the promoter regions. 
There are several databases about analyzing, identifying 
and characterizing promoters, which currently available 
from different plant species. With the analyzing progress of 
promoter and TFs that has been achieved in the agricultural 
sector through current biotechnological and bioinformatic 
techniques, might be open a new door to new tissue- and 
stage-specific promoters in new genetically modified (GM) 
cultivars.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s42977- 021- 00089-x.
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