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Abstract

We prove that octants are cover-decomposable into multiple cover-

ings, i.e., for any k there is an m(k) such that any m(k)-fold covering

of any subset of the space with a �nite number of translates of a given

octant can be decomposed into k coverings. As a corollary, we obtain

that any m(k)-fold covering of any subset of the plane with a �nite

number of homothetic copies of a given triangle can be decomposed

into k coverings. Previously only some weaker bounds were known for

related problems [21].

1 Introduction

Let P be a collection of sets in Rd. We say that P is an m-fold covering

of a set S if every point of S is contained in at least m members of P . A
1-fold covering is simply called a covering.
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De�nition. A set P ⊂ Rd is said to be cover-decomposable into k coverings

if there exists a (minimal) constant m(k) = mP (k) such that every m(k)-

fold covering of any X ⊂ Rd with a �nite number of translates of P can be

decomposed into k coverings of X. Ifm = m(2) exists, we say that P is cover-

decomposable. If m(k) exists for every k, we say that P is cover-decomposable

into many coverings.

We note that in the literature ([17], [14]) the de�nition is slightly di�er-

ent and the notion de�ned here is sometimes called �nite-cover-decomposable,

however, to avoid unnecessary complications, we simply call it cover-decomposable.

The main result of this paper is

Theorem 1. Octants are cover-decomposable into many coverings, any m(k)-

fold covering of any subset of R3 with a �nite number of translates of a given

octant can be decomposed into k coverings, where m(k) ≤ 122
k−1+2k−2−2 <

122
k
.

We prove this theorem in Section 2. In the remainder of this section we

give a brief history of the problem. For a more detailed introduction and

other results on cover-decomposability, see the recent surveys [17] and [14]

and the papers [1, 2, 3, 6, 12, 13, 16, 18, 19, 20].

It is easy to see that a quadrant (i.e., a 2-dimensional orthant) is cover-

decomposable. Cardinal [4] noticed that orthants in 4 and higher dimensions

are not cover-decomposable as there is a plane on which their trace can be any

family of axis-parallel rectangles and it was shown by Pach, Tardos and Tóth

[15] that such families might not be decomposable into two coverings. Cardi-

nal asked whether octants (3-dimensional orthants) are cover-decomposable

and this was settled in [9] by the following theorem.

Theorem 2. Octants are cover-decomposable, any 12-fold covering of any

subset of R3 with a �nite number of translates of a given octant can be de-

composed into two coverings.

In fact, the following equivalent, dual form of Theorem 2 was proved.

Theorem 3. Any �nite set of points in R3 can be colored with two colors

such that any translate of a given octant with at least 12 points contains both

colors.
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Similarly, we will prove the following, equivalent form of Theorem 1, using

Theorem 3.

Theorem 4. Any �nite set of points in R3 can be colored with k colors such

that any translate of a given octant with at least 122
k−1+2k−2−2 points contains

all k colors.

2 Proof of Theorem 1

In the next section we give the basic de�nitions and notations already

established in our previous paper [9], so the reader familiar with these results

can skip straight to Section 2.2.

2.1 De�nitions and Notations

Denote byW the octant with apex at the origin containing (−∞,−∞,−∞).

We will work in the dual setting, that is we have a �nite set of points, P , in

the space, that we want to color with k colors such that any translate of W

with at least m(k) points contains all k colors. We call such a k-coloring of a

point set in the space a k-good coloring. If such a coloring exists for any P ,

then it follows using a standard dualization argument (see [17] or [14]) that

W (and thus any octant) is cover-decomposable into k coverings. So from

now on our goal will be to show the existence of such a coloring.

For simplicity, suppose that no number occurs multiple times among the

coordinates of the points of P (otherwise, by a small perturbation of P we

can get such a point set, and its coloring will be k-good for P ). Denote the

point of P with the tth smallest z coordinate by pt and the union of p1, . . . , pt

by Pt. First we will show how to reduce the coloring of P to a planar and

thus more tractable problem.

Denote the projection of P on the z = 0 plane by P ′. Similarly denote

the projection of pt by p′t, the projection of Pt by P ′
t and the projection of

W by W ′. Therefore W ′ is the quadrant with apex at the origin containing

(−∞,−∞).

For such an ordered planar point set P ′ we say that a coloring with k

colors of it is a k-good coloring, if for any t and any translate ofW ′ containing
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at least m(k) points of P ′
t , it is true that the intersection of this translate

and P ′
t contains all k colors. We use the same notation (k-good) for two

di�erently de�ned colorings, because a k-good coloring of a spatial point set

and a k-good coloring of the corresponding planar point set are equivalent

problems.

Claim 5. The ordered planar point set P ′ has a k-good coloring if and only

if the spatial point set P has a k-good coloring.

We omit the proof, as it is not too hard and it is a straightforward gen-

eralization of the respective Claim from [9].

Now we will prove that any P ′ has a k-good coloring, thus establishing

Theorem 4 and since they are equivalent, also Theorem 1. To avoid going

mad, we will omit the apostrophe in the following, so we will simply write

W instead of W ′ and so on. Also, we will use the term wedge to denote a

translate of W .

A possible way to imagine this planar problem is that in every step t

we have a set of points, Pt, and our goal is to color the coming new point,

pt+1, such that we always have a k-good coloring. We note that this would be

impossible in an online setting, i.e. without knowing in advance which points

will come in which order. (For related problems, see [10].) But using that we

know in advance every pi makes the problem solvable.

We introduce some notation. If px < qx but py > qy then we say that p

is NW from q and q is SE from p. In this case we call p and q incomparable.

Similarly, p is SW from q (and q is NE from p) if and only if both coordinates

of p are smaller than the respective coordinates of q.

2.2 The Proof

Here we prove by induction on k that any ordered planar point set P has a

k-good coloring. For k = 2 it follows from Theorem 3 thatm(2) ≤ 12. Now we

will prove that m(k) ≤ 144((m(k−1))2−m(k−1))+1, establishing Theorem

4. We will start with a preprocessing part where we give an algorithm that

partitions the point set, then using the partition we can de�ne the coloring

algorithm. Finally we will prove that it indeed gives a k-good coloring.
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To distinguish the points of P from other points of the plane, from now on

we call them P -points. We similarly use this notation for other sets, e.g. the

points of X are called X-points. First we de�ne an algorithm which partitions

the P -points into subsets. One subset is the set of points, S, and for any S-

point p we associate a region, Rp, that contains only points that are NE from

p (but not necessarily all such points) and we denote the S-points from Rp

by Sp = P ∩ Rp. Note that all Sp-points lie NE from p. The regions Rp for

p ∈ S partition those points of the plane that lie NE from some P -point. The

set S and the sets Sp together partition P . (As we supposed that no number

occurs multiple times among the coordinates of the P -points, when we say

that the regions partition some other region, we do not need to care about

their boundaries.) For an illustration see Figure (a).

The partitioning algorithm is the following. We process the points one-

by-one according to their order in P , starting with p1 and recursively de�ne

the partition and the regions while we maintain the above properties at all

times. We begin by putting p1 into S and set Rp1 to be all the points of the

plane that are NE from p1, Sp1 is empty. Now suppose we are at time t and

we process the next point q = pt. If q is in one of the regions Rp (where

p ∈ Pt−1) then we put q into Sp. Otherwise, q is not NE from any of the

P -points, in which case we put q in S. We associate the region Rq with q

which contains those points of the plane which lie NE from q but are not

contained in any of the regions Rp for p ∈ Pt−1 and thus Sq is empty. It is

easy to see that all properties are maintained.
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Now we can de�ne the coloring algorithm. The set S is �rst colored by

induction using the k − 1 colors {1, 2, . . . , k − 2, red}. Then we recolor the

points that are red by induction using two colors, k − 1 and k (during this

recoloring we completely ignore all non-red points). Finally, for each Sp we

color Sp by induction using k − 1 colors, {1, 2, . . . , k} \ {color(p)}, i.e. with
colors that di�er from the color of p (again, when coloring some Sp, we

completely ignore points not in Sp).

Now we prove that the algorithm is correct. Suppose at any time we have

a wedge W with 144((m(k− 1))2 −m(k− 1)) + 1 points in it. If W contains

at least m(k − 1) Sp-points for some p, then we are done, because we have

k−1 di�erent colors in the region, plus the point associated with this region,

that has the missing kth color.

Otherwise, since if W contains a point from a region Rp, it also contains

the S-point p, we can conclude thatW contains at least ⌈144((m(k−1))2−m(k−1))+1
m(k−1)

⌉
= 144m(k−1)−143 S-points. Since 144m(k−1)−143 ≥ m(k−1), we know

from the correctness of the algorithm for k − 1 colors that W contains all

colors that are at most k− 2. If W also contains m(2) = 12 points that were

colored red, then after the recoloring it contains points with color k−1 and k

as well (using the correctness of the algorithm for two colors). Suppose that

this is not the case and denote by I the at most 11 S-points from W that

were �rst colored red (and then k − 1 or k). Using the pigeonhole principle

again, with respect to the order of P , W must contain at least ⌈144m(k−1)−143
12

⌉
= 12m(k − 1) − 11 consecutive S-points (and no I-points). Denote the set

of these S-points by J and the I-points that came before them by I ′. Cover

the points of the plane that are not NE from any I ′-point with |I ′|+ 1 ≤ 12

wedges∗ (two of them are actually half-planes, see Figure (b)). Notice that

none of the S-points coming after I ′ can be NE from an I ′-point, in particu-

lar all J-points belong to at least one of these wedges. Thus at the time just

before adding the next I-point (when all the J-points are already present),

one of these wedges contains at least ⌈ |J |
12
⌉ ≥ m(k − 1) J-points. Since these

points were all colored with a color which is at most k − 2, this contradicts

the correctness of the algorithm for k − 1 colors that we applied for the set

∗Note that here we could win about a factor of 2 by summing up for various values of

|I ′| instead of bounding it with 11.
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S. This �nishes the proof.

3 Remarks and open problems

It has been conjectured that if P is cover-decomposable (mP (2) exists),

then it is also cover-decomposable into many coverings (mP (k) exists). This

paper is yet another evidence that this conjecture holds. Another conjecture

is that in fact m(2) = O(m(k)), the next step is to verify this for octants.

For more related questions, see the recent surveys [17] and [14].

The following claim follows from the paper of Cardinal and Korman [5]:

Claim 6. Any �nite set of points in R3 can be colored with 4 colors such that

any translate of a given octant with at least 2 points contains two di�erent

colors and 4 colors are sometimes needed.

In fact they prove the stronger statement that 4 colors are enough even

if we change the octant in the statement to any cone. The above statement

can be proved easily with our approach as well, for completeness we sketch

this proof.

Proof. Project the points again on the z = 0 plane and consider them as an

ordered point set. We de�ne a graph G and its drawing in the plane as follows.

We connect two points if there exists a wedge W that contains exactly these

two points at some time t. If the two points are in SW-NE position then we

connect them by a straight segment, if they are in NW-SE position then by

a reverse-L shape (a polygonal line with two segments, one going very close

to the top side of the rectangle de�ned by these two points and the other

segment going very close to the right side of the rectangle). This can be done

such that there are no intersections between adjacent edges and it is easy to

check that there will be no intersections between non-adjacent edges. Thus

G will be a planar graph and 4-coloring the vertices of G gives the needed

coloring.

This claim and our earlier result about the cover-decomposability of oc-

tants raise the following problem.
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Problem. What is the smallest k such that any �nite set of points in R3 can

be colored with 3 colors such that any translate of a given octant with at least

k points contains two di�erent colors?

We know that k is at least 2 trivially and at most 12 as for k = 12 already

2 colors su�ce [9]. In case of the related problem where instead of translates

of a given octant we consider discs in the plane, even the existence of such a

k is unknown [7, 8].
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