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Abstract. In an instance of the house allocation problem two sets A
and B are given. The set A is referred to as applicants and the set
B is referred to as houses. We denote by m and n the size of A and
B respectively. In the house allocation problem, we assume that every
applicant a ∈ A has a preference list over every house b ∈ B. We call
an injective mapping τ from A to B a matching. A blocking coalition of
τ is a subset A′ of A such that there exists a matching τ ′ that differs
from τ only on elements of A′, and every element of A′ improves in τ ′,
compared to τ according to its preference list. If there exists no blocking
coalition, we call the matching τ an Pareto optimal matching (POM).
A house b ∈ B is reachable if there exists a Pareto optimal matching
using b. The set of all reachable houses is denoted by E∗. We show

|E∗| ≤
∑

i=1,...,m

⌊m
i

⌋
= Θ(m logm).

This is asymptotically tight. A set E ⊆ B is reachable (respectively
exactly reachable) if there exists a Pareto optimal matching τ whose
image contains E as a subset (respectively equals E). We give bounds
for the number of exactly reachable sets. We find that our results hold
in the more general setting of multi-matchings, when each applicant a
of A is matched with `a elements of B instead of just one. Further,
we give complexity results and algorithms for corresponding algorithmic
questions. Finally, we characterize unavoidable houses, i.e., houses that
are used by all POM’s. This yields efficient algorithms to determine all
unavoidable elements.

1 Introduction

1.1 Definitions

In an instance of the house allocation problem two sets A and B are given. The
set A is referred to as applicants and the set B is referred to as houses. We denote
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by m and n the size of A and B respectively. In the house allocation problem, we
assume that every applicant a ∈ A has a preference list over every house b ∈ B.
We call an injective mapping τ from A to B a matching. A blocking coalition of
τ is a subset A′ of A such that there exists a matching τ ′ that differs from τ
only on elements of A′, and every element of A′ improves in τ ′, compared to τ
according to its preference list. If there exists no blocking coalition, we call the
matching τ a Pareto optimal matching (POM).

The underlying graph is a complete bipartite graph on the set A∪B. In this
graph injective mappings indeed correspond to matchings.

We represent the preference lists by an m× n matrix. Every row represents
the preference list of one of the applicants in A, i.e., in a given row r correspond-
ing to some applicant a ∈ A, the leftmost house is the one that a prefers most,
etc., house b1 is left to b2 in r if and only if a prefers b1 over b2. Note that no row
contains an element from B twice. We usually denote this matrix by M and fol-
lowing this interpretation we usually denote the applicants of A by r1, r2, . . . rm
and the houses of B by 1, 2, . . . , n. Because of this matrix representation, we
usually refer to applicants of A only as rows and to houses of B as elements (of
the matrix).

To illustrate the notion consider the following matrix and observe that the
matching indicated by circles is indeed Pareto optimal.




1 5 3 2 4

3 1 4 5 2

1 3 5 4 2




With this notation the edge set of a matching τ in the underlying graph corre-
sponds to a set of positions in the matrix. To make this formal consider an edge
(a, b) in the underlying graph. Let r be the row of a in M and b the kth house
in row a. Then edge (a, b) corresponds to position p = (r, k) in M . The image
set of τ corresponds to the set of houses of B in these positions. Thus, we say
that τ picks, selects, chooses, reaches, assigns some position p of M (resp. some
element b of B), if p is in τ (resp. b is in the image set of τ). Similarly, we say
that a row a picks, selects, chooses, reaches, assigns a position P in row a (resp.
b) if this holds for the matching τ under consideration.

In a POM the positions after the m-th column will never be assigned, because
at least one of the previous m elements in that row is preferred and not assigned
to any other element on A. Therefore it is sufficient to consider only m × m
square matrices.

If some POM τ assigns p (resp. b), then it is a reachable position (resp.
reachable house). More generally, a set E ⊆ B is reachable if there exists a POM
τ with E ⊆ s(τ). In this case we also say that τ reaches E. A set E with |E| = m
is exactly reachable if there exists a Pareto optimal matching τ with E = s(τ).
An element b is unavoidable if it belongs to the set s(τ) for every Pareto optimal
matching τ of M and avoidable otherwise. A set E is avoidable if there exists a
POM τ with s(τ) ∩ E = ∅. Note that for a set |E| = m it is exactly reachable
if and only if B \E is avoidable. We will also study matrices with fewer than m



columns, precise definitions will be given in Subsection 1.4. As a rule of thumb,
in this case preference lists are shorter and it can happen that some elements of
A are not assigned.

1.2 Results

Enumerating reachable elements and sets In Section 2 we deal with enu-
merative problems related to reachable elements. Our main result here is the
following. Let M be an m ×m matrix and E∗ be the set of all reachable ele-
ments. Then

|E∗| ≤
m∑

i=1

bm/ic ≤ m(ln(m) + 1).

This improves the trivial upper bound of m2 which appears in [8]. In [8] the
authors also showed a lower bound construction which has asymptotically as
many reachable elements as is implied by our upper bound. Thus Theorem 1.2
is asymptotically tight.

Denote by E(M) the family of all (exactly) reachable m-element sets of M .
For example, if all the elements in the first column of M are distinct (or, more
generally, if |B| = m), then |E(M)| = 1. With Theorem 1.2 we can bound E(M).

Corollary 1. For any matrix M , we have |E(M)| ≤
(
m(lnm+1)

m

)
.

This is the only non-trivial upper bound that we found, improving
(
m2

m

)
of

[8]. As an important consequence, our upper bound also improves the upper
bound on the pattern matching problem regarded in [8]. The best known lower
bound is

(
m
bm/2c

)
[8]. The construction in that paper is a matrix where in the first

bm/2c columns the i-th column ci contains only element i and in the (bm/2c+
1)-st column there are m different elements which are also all different from
1, 2, . . . bm/2c.

Characterization of avoidable elements and sets Section 3 concentrates on
the notion of avoidable elements. Let x be the element suspect to be avoidable.
Given some set of rows R we denote by Ex(R) the set of elements left of x in
the rows R (i.e., y is in Ex(R) if and only if there exists a row r ∈ R in which
y appears to the left of x; if x does not appear in R then all elements in R are
regarded to be left of x).

An element x of a matrix M is avoidable if and only if for every set R of
rows of M , we have:

|Ex(R)| ≥ |R|

Extremal results and algorithmic results in connection to avoidable elements
are included in Section 3.



Complexity of reachability Computational questions about reachable ele-
ments are considered detailed proofs can be found in the full version. We con-
sidered all reasonable computational questions connected to the notions we con-
sidered. The problems are defined as follows:
Problem 1 (Deciding Reachability)
Input: A matrix M and a set D ⊆ B.
Question: Is D reachable?

Problem 2 (Counting Exactly Reachable Supersets)
Input: A matrix M and some set D ⊆ B.
Question: How many sets E with D ⊆ E ⊆ B are exactly reachable?

Problem 3 (Deciding Exact Reachability)
Input: A matrix M and a set E ⊆ B, |E| = m.
Question: Is E (exactly) reachable?

Problem 4 (Counting Reachable Sets)
Input: A matrix M .
Question: How many sets D ⊆ B are reachable?

Problem 5 (Counting Exactly Reachable Sets)
Input: A matrix M .
Question: How many sets E are exactly reachable?

The next table summarizes our findings about algorithmic questions. The general
case is always the same as with 3 column matrices. Problems 1 and 2 are already
complete if D contains exactly 1 element. Our contribution among others is to
show NP-completeness also for matrices with only 3 columns.

Problem 2 columns 3 columns
1) Deciding Reachability polynomial NP-complete
2) Counting Exactly Reachable Supersets #P-complete #P-complete
3) Deciding Exactly Reachability polynomial polynomial
4) Counting Reachable Sets explicit formula ?
5) Counting Exactly Reachable Sets #P-complete #P-complete

It remains an open question whether Problem 4 is hard for general matrices.
We conjecture it is already #P-complete for 3 column matrices.

1.3 Motivation and related work

One-sided matchings have natural practical uses, e.g. consider the house-allocation
problem where the set A consists of people and the set B consists of houses, see
for instance [2].

A recent book on matchings under preferences is by David Manlove [9]. In
this paper we tried, whenever applicable, to follow the notation therein.

A field that evidently seems to be related to our topic is that of stable match-
ings. This field is very broad and belongs to economic game theory. The seminal



work from Gale and Shapley is the starting point for this field [7]. Some work
in this field and different variations of the problem can be found in the PHD
thesis of Sandy Scott [13], recent papers can be found in the online available
proceedings of the Second International Workshop on Matching Under Prefer-
ences called MATCH UP [1]. In these works there are many different concepts
of preferences and stability and they ask for efficient computable solutions that
maximize the outcome for the participants in one way or the other. Readers
interested more broadly in the topic of algorithmic game theory are referred to
the book edited by Nisan, Roughgarden, Tardos and Vazirani [10].

In contrast to most research done in these areas, our question is more combi-
natorial in nature. The underlying algorithmic question of computing a Pareto
optimal matching is trivial. Thus, instead of existence questions, rather the enu-
merative questions become interesting. However, for the original definition of
stability many authors have tried to upper and lower bound the number of
stable matchings and some combinatorial structures have been unfolded. See
Section 2.2.2 [9] for an overview of results in this direction.

Further some of the complexity results we will present have been found, in
parallel and without our awareness. The first dates back to 2005 [3]. Their main
result is an efficient algorithm to compute a POM with maximal cardinality.
Further they show hardness to compute a minimum maximal POM. The first
results already has some ideas of the proof of Theorem 1.2. Although they show
an easy 2-approximation, it is open, whether there exists a PTAS for a minimum
maximal POM.

We are aware of 4 more papers that considered similar results to our com-
plexity results [12], [4] , [5] and [6]. All of them appeared in 2013 three of them
in December. Their main motivation is to study the behavior of the randomized
serial dictatorship also called randomized priority allocation. The randomized
serial dictatorship picks a permutation at random and thereafter computes the
corresponding greedy matching.

Saban and Sethuraman solveed ,in this context, NP-hardness of Problem 1,
for arbitrary matrices [12]. Note that Henze, Jaume and Keszegh showed first
that Problem 1 is NP-complete [8]. Aziz, Brandt and Brill showed #P-hardness
for a variant of Problem 2 for arbitrary matrices [4]. We improve these results,
as we can show this holds also for matrices with only 3 columns. Aziz and
Meske show that constraint versions are solvable in polynomial time [5]. At last
Cechlárová et. al. consider a generalized setting. However they show NP-hardness
of compute a minimum maximal matching even for matrices with 2 columns by
an elegant and simple reduction from vertex-cover [6].

Another important connection is that this work is originally motivated by a
work that was presented at the EuroCG 2012 in Braunschweig [8]. The authors
considered a generalisation of Voronoi diagrams under the assumption that not
just one point, but many points are matched injectively to a ‘nearest neighbor’, in
a way that minimizes the sum of the square root of distances between matched
points. From the definitions in their paper, the Pareto optimality comes as a
natural property. They asked explicitly for the number of exactly reachable sets,



as it gives an upper bound on the number of Voronoi cells in the above setting.
Motivated by this, they gave lower and upper bounds on the number of exactly
reachable stable sets. To do this, first they gave lower and upper bounds for the
number of reachable elements. In this paper we improve their upper bound for
the number of reachable elements and by that we prove that their lower bound is
asymptotically correct. This also yields a significant improvement on the previous
upper bound on the number of exactly reachable stable sets, although in this
case our new upper bound still does not meet the lower bound they had.

Their work is based on a work by Rote presented at the EuroCG 2010 (2
years earlier) in Dortmund [11].

1.4 Preliminaries

As we also want to study matrices with fewer than m columns, we need to
define what we mean by a matching under these assumptions. There are two
equivalent ways. First we could say that every row, for which all elements are
already picked by other rows just do not get assigned to anything. A nicer way
is to add columns, with all elements in one column being the same and not
appearing before. If we want to know if some set E is exactly reachable in the
first way, we construct E′ from E by adding the elements from the first m− |E|
additional columns (and vice versa). The following is an example of a 2 column
matrix. 



1 4
2 1
2 5
4 3


 ∼




1 4 c1 c2
2 1 c1 c2
2 5 c1 c2
4 3 c1 c2




We use the first approach. However, using the second approach, some hard-
ness results will carry over from 2 or 3 column matrices to k column matrices
(2 ≤ k ≤ m). In such a case, we will point this out again at the appropriate
places.

To see the correspondence between matchings in a graph theoretical sense
and in our context we define the bipartite row element graph G as follows. The
vertices are defined as the set of rows and elements; an element e is adjacent to
some row r if and only if e appears in r. See an example for the special case of
a matrix with only 2 columns.




1 2
1 3
1 4
3 4
5 6
7 6




r1

r2

r3

r4

r5

r6

1

2

3

4

5

6

7

The circled POM corresponds to the dashed matching on the right side.



If there is no blocking coalition of size ≤ i, we call the matching an i-Pareto
optimal matching (i-POM). In particular this implies that every POM is an i-
POM. We call a matching 1-POM if there is no blocking coalition of size one.
The next matching is one-Pareto optimal but not Pareto optimal.




1 5 3

5 1 4

5 1 1




A matching τ is greedy if there exists a permutation π of A such that the
matching can be generated in the following manner: we process the rows of M
in the order determined by π, and in each row we pick the leftmost element that
was not picked earlier. Given some permutation π we call the corresponding
greedy matching τπ.

Lemma 1 brings all the introduced notions together, showing that POM,
1-POM and greedy matchings select exactly the same sets. The equivalence of
POM and greedy matchings was already proved in [8].

Lemma 1. Let E ⊆ [n] with |E| = m. The following statements are equivalent.

1. E is (exactly) reachable, i.e. there exists a POM τ with s(τ) = E.
2. There exists a permutation π such that for the greedy matching τπ we have

s(τπ) = E.
3. There exists an one-Pareto optimal matching (1-POM) τ with s(τ) = E.

Proof. [1 ⇒ 2] Let τ be a POM matching such that s(τ) = E. We construct
a permutation π inductively. If possible take as the next row, in the order of
our permutation, the one that has a position of τ in its first entry. Delete the
element a at this position from all other rows and continue. We show that at
each stage there must be such a row. For the purpose of contradiction assume
such a row does not exist. Take any row, denoted by q1 and let e1 be some
element which is left to the element selected by τ in row q1. Because τ is Pareto
optimal, there exists some row r2 selecting e1. Let e2 be any element left to e1
in row r2. In this way we can define a sequence (ei) and (ri). As we have only
finitely many elements, at some point we get a first ej that appears earlier in the
sequence ei = ej , i < j. This implies that in the rows ri, . . . rj we can improve
simultaneously (i.e., it is a blocking coalition), which is a contradiction to the
assumption that τ is Pareto optimal.

[2⇒ 3] As every row picks the best element, not yet selected, it is clear that
no single row can improve.

[3 ⇒ 1] Let τ0 be some 1-Pareto optimal matching and E = s(τ0). Observe
that all the elements left to the elements picked by τ are in E. The set of
matchings that are better or equal to τ0 is non-empty as it contains τ0 and the
set is of course finite, so there exists a best matching τ1 among them, i.e. one for
which there is no better matching. This must be a POM and by Observation 2
s(τ1) = s(τ0) = E, and the size of s(τ1) is also m. ut



Note that this lemma implies that also for any i, i-POMs select the same sets
as POMs/1-POMs. Note also that the proof of Lemma 1 implies that actually
every greedy matching is Pareto optimal and vice versa.

2 Enumerating reachable elements and sets

We start with a trivial but important observation.

Lemma 2. If τ is a POM and τ selects position p in row a, then τ selects every
element that appears in row a left of p.

For every row r, there exists a reachable position pr furthest to the right in that
row, we call such a position last reachable. However note, that not all positions
must be reachable left of the last reachable position. Consider the following
matrix. Together with the matching τ indicated by circles.




5 4 3 2

5 1 6 7

1 2 8 9

2 1 5 4




Clearly, τ is a POM and thus the circled position in the bottom row with element
4 is the last reachable position in that row. However, it is easy to check, that
the two positions left to this circled position (with elements 1 and 5) are not
reachable.

Let M be an m×m matrix and E∗ be the set of all reachable elements. Then

|E∗| ≤
m∑

i=1

bm/ic ≤ m(ln(m) + 1).

Proof. Let τi be a POM selecting the last reachable position pi in row i (1 ≤
i ≤ m) (these matchings are not necessarily different.).

Let e be some element that can be reached by some POM. We show e is
selected by one of the POMs τ1, . . . , τm. Indeed, if e is at some last reachable
position then this is clear. Otherwise, e appears in some row r not at the last
position pr. By Observation 2, e must be picked by τr. Thus the matchings
τ1 . . . , τm reach together all reachable elements. As τ1 . . . , τm are m POMs, the
first inequality follows from Lemma 3. Finally, it is well-known that the harmonic
series is bounded by ln(m) + 1, thus the second inequality holds as well. ut

Lemma 3. Let T be some set of k POMs. We denote by E(T ) the set of elements
reached by at least one POM of T . Then

|E(T )| ≤
k∑

i=1

bm/ic.



Proof. The proof goes by induction on k. The base case k = 1 is true as one
POM selects exactly m different elements.

Consider now a set T of k ≥ 2 POMs and the set of positions reached by
T . Among these positions we denote by pi the position furthest to the right in
row i and we denote F = {p1, . . . pm}. We say that an element e (resp. position
p) is uniquely reachable by some τ if τ is the only POM in T that reaches e
(resp. selects p). Consider the set G ⊆ F of those rightmost reachable positions
that are reachable by exactly one POM of T . By the pigeon-hole principle there
exists a POM τ in T that reaches at most 1/k portion of G. Denote the set of
elements in these positions by H (|H| ≤ bm/kc).

By the definition of H all other elements are not selected uniquely by τ , i.e.
some other matching of T also selects it. Thus the rest of the reached elements
are also reachable by T − τ . By induction we get

E(T ) ≤ E(T − τ) + bm/kc ≤

(
k−1∑

i=1

bm/ic

)
+ bm/kc =

k∑

i=1

bm/ic.

This finishes the proof. ut

Next we show two constructions concerning tightness of the results from
Theorem 1.2 and Lemma 3.

Asymptotic tightness of Theorem 1.2 follows from the following construction
by Henze, Jaume and Keszegh [8].

Example 1 ([8]). For each k, a matrix Mk with m = 2k rows and (m/2) log 4m =
(k + 2)2k−1 reachable elements is constructed recursively as follows.

M0 =
(

1
)

;

and, for k ≥ 0,

Mk+1 =




1
... M ′k

2k

1
... M ′′k

2k




,

where M ′k and M ′′k are relabelings 3 of Mk with no common element and all
elements different from 1, 2, . . . , 2k. The undefined entries of the matrix can be
filled arbitrarily.

Regarding Lemma 3, we prove that it is tight for certain values of k and m:

3 A matrix M ′ is a relabeling of a matrix M if there is a bijective function between
the elements (not positions!) of M and M ′ such that applying this function to the
elements in all the positions ofM we getM ′. Clearly two matrices that are relabelings
of each other are equivalent from our perspective.



Corollary 2. For every k there exists a matrix Nk with m = k! rows and a
set Tk of k POMs, such that the number of elements reached by Tk is exactly∑k
i=1m/i.

Proof. The construction is again recursive. For each k we define the matrix Nk
with m = k! rows and k columns with the property that each element appears
only in one column, and each element that appears in the jth column (j ≤ k),
appears there exactly k−j+1 times. We also define a set Πk of k permutations of
the k! rows from which we get Tk by taking the greedy matchings corresponding
to the permutations. We will prove that all the elements of Nk are reachable by
some greedy matching of Tk.

The matrices Nk are defined in the following way:

N1 =
(

1
)
,

and for k ≥ 1:

Nk+1 =




1
... N1

k

k!
...

...
1
... Nk+1

k

k!




.

Here N1
k , N

2
k , . . . N

k+1
k are k + 1 matrices which are all relabelings of Nk with

no elements common to each other and to the set {1, 2, . . . , k!}. It is clear that
Nk+1 has (k + 1)! rows and k + 1 columns. Moreover, each element in the jth
column (j ≤ k+ 1) appears there (k+ 1)− j + 1 times: this is clear for the first
column, and is easily seen for other columns by induction.

Next we define the permutations. For k = 1, Π1 contains the only permu-
tation on the one row of N1. Next we recursively define Πk+1. For each N j

k

(1 ≤ j ≤ k + 1), we have by recursion an associated set {πj1, π
j
2 . . . π

j
k} of k

permutations (thus, πji is the ith permutation from Πk relabeled accordingly

to N j
k – the jth copy of Nk in Nk+1). Now the permutations in Πk+1 are de-

fined as follows. For every i (1 ≤ i ≤ k + 1), the permutation πi is obtained
by taking first the k! rows of N i

k in any (for example, the natural) order; then
the rows of N1

k ∪N2
k ∪ · · · ∪N

i−1
k in the order determined by the permutations

π1
i−1, π

2
i−1, . . . , π

i−1
i−1 ; and, finally, the rows of N i+1

k ∪N i+2
k ∪· · ·∪Nk+1

k in the or-

der determined by the permutations πi+1
i , πi+2

i , . . . , πk+1
i . Clearly, each row was

taken once, so πi is indeed a permutation. Also, when processing such a permu-
tation, in the first k! steps we choose all elements 1, 2, . . . , k!, so in the rest the
permutation chooses the same elements in each N j

k (j 6= i) as the corresponding

permutation (πji−1 or πji ) would choose in N j
k .

Thus by induction it is true that these permutations choose all elements of
Nk. Indeed, this is true for N1 and by induction it remains true as for every N j

k



(1 ≤ j ≤ k + 1) all πji (1 ≤ i ≤ k) is part of some πu (1 ≤ u ≤ k + 1). Finally,

the number of different elements in Nk+1 is
∑k+1
i=1 m/i, as we have k+1 columns

and in the jth column (1 ≤ j ≤ k + 1) each element appears (k + 1) − j + 1
times, thus this column has m

(k+1)−j+1 different elements. ut

3 Characterization of avoidable elements

In this section we give characterization of avoidable elements. Recall that we
define Ex(R) as the set of elements left of x in the rows of R (i.e., y is in Ex(R)
if and only if there exists a row r ∈ R in which y appears to the left of x; if x
does not appear in R then all elements in R are regarded to be left of x)

An element x of a matrix M is avoidable if and only if for every set R of
rows of M , we have:

|Ex(R)| ≥ |R|

Proof. [⇒] Let τ be a POM which does not pick x and let R be a set of rows.
In each row a different element is picked by τ , which is left of x. This shows the
claim.

[⇐] W.l.o.g. x is present in all the rows. Consider the bipartite graph on
A∪B, defined by all pairs (a, b) ∈ A×B such that b appears in row a before x.
The above condition says, that for all subsets R ⊂ A the neighbourhood of R is
larger or equal to R in terms of size.

By Hall’s theorem, there exists a matching τ that picks elements to the left
of x. W.l.o.g. in τ each row picks an element farthest to the left in M not chosen
by any other row. In other words τ is an 1-POM. By Lemma 1 there is a POM
τ ′ selecting the same set of elements as τ , thus τ ′ does not choose x and so x is
avoidable.

Acknowledgments We want to thank Matthias Henze and Rafel Jaume for posing
this open question. We also want to thank Rob Irving, Ágnes Cseh and David
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