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ABSTRACT

We present a detailed nonlinear dynamical investigation of the Blazhko mod-
ulation of the Kepler RR Lyrae star V783 Cyg (KIC 5559631). We used different
techniques to produce modulation curves, including the determination of amplitude
maxima, the O–C diagram and the analytical function method. We were able to fit the
modulation curves with chaotic signals with the global flow reconstruction method.
However, when we investigated the effects of instrumental and data processing arte-
facts, we found that the chaotic nature of the modulation can not be proved
because of the technical problems of data stitching, detrending and sparse
sampling. Moreover, we found that a considerable part of the detected cycle-to-cycle
variation of the modulation may originate from these effects. According to our results,
even the four-year-long, unprecedented Kepler space photometry of V783 Cyg is too
short for a reliable nonlinear dynamical analysis aiming at the detection of chaos from
the Blazhko modulation. We estimate that two other stars could be suitable for sim-
ilar analysis in the Kepler sample and in the future TESS and PLATO may provide
additional candidates.
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1 INTRODUCTION

The Blazhko modulation has been one of the most puz-
zling mysteries in the field of stellar pulsation for more
than a hundred years. A large fraction of known RR Lyrae
stars show an inexplicable amplitude and phase variation.
Some Cepheids show similar behaviour as well (Moskalik &
KoÃlaczkowski 2009; Molnár & Szabados 2014). The origin
of the modulation is still unclear. Ever since Sergey Blazhko
discovered the phenomenon in RW Dra (Blazhko 1907), sev-
eral explanations have been proposed, but none of them is
without problems (Kovács 2009; Kolenberg 2012). Studying
the nature of the modulation may lead us to the right expla-
nation. Some early models like the magnetic rotator model
(Cousens 1983; Shibahashi 2000) and the nonradial resonant
rotator model (Dziembowski & Cassisi 1999; Nowakowski
& Dziembowski 2001) involve the rotation of the star and
predict strictly periodic modulation. Recent observational
evidences for irregular or multiperiodic modulation indicate
that these models cannot explain the effect (see, e.g. Sódor

? E-mail: eplachy@astro.elte.hu

et al. 2011; Guggenberger et al. 2012; Benkő et al. 2014;
Skarka 2014). Some models based on stochastically behav-
ing phenomena, such as shockwaves (Gillet 2013) or convec-
tion (Stothers 2006), suggest that the modulation must have
a stochastic nature. On the other hand, resonant coupling
between pulsation modes allows for chaotic behaviour, as
it was shown by Buchler & Kolláth (2011). Thus searching
for chaos in modulation is a great opportunity to further
constrain the theoretical models.

Nonlinear dynamics became a remarkable research
field since the phenomenon of chaos was initially reported
(Lorenz 1963). The basic properties of chaotic behaviour are
well-known: chaos may occur for certain parameters in de-
terministic systems that contain (even weak) nonlinearity.
The sensitivity to the initial conditions makes these systems
unpredictable. The chaotic behaviour appears as an irregu-
lar variation in the time series showing great similarity to
stochastic ones, but the phase space geometry is very dif-
ferent. While a two dimensional cut of a phase space (a
return map or Poincaré map) shows a random collection of
points in the case of stochastic data, a chaotic map is al-
ways confined by a characteristically-shaped attractor that
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2 E. Plachy et al.

has fractal properties. Unfortunately, real observational data
of irregular light variations are rarely long or precise enough
to let its phase space pattern distinguish between chaotic,
stochastic, or even multiperiodic nature.

Despite of the difficulties, chaotic behaviour was al-
ready reported in several variable stars. Large-amplitude
variations of late-type bright giant stars based on amateur
observations collected by organisations such as the AAVSO
(American Association of Variable Star Observers) and long-
term photometric surveys provide data that are suitable for
nonlinear investigations. Evidence of chaos was detected in
some semiregular stars (Buchler, Kolláth & Cadmus 2004),
as well as in two RV Tauri-type (Buchler et al. 1996; Kolláth
et al. 1998) and a Mira-type (Kiss & Szatmáry 2002) vari-
able star so far. Previously, chaos was not expected in weakly
dissipative classical pulsators, based on theoretical predic-
tions (Stellingwerf 1984). However, hydrodynamic models
of W Vir stars (Buchler & Kovács 1987; Serre et al. 1996a),
and the more recent calculations of RR Lyrae and BL Her
models (Plachy, Kolláth & Molnár 2013; Smolec & Moskalik
2014) support that chaos can show up in classical variables
as well, due to the nonlinear coupling of pulsation modes.

The detection of the routes to chaos also maintains a
great interest in the field of nonlinear studies. There are dif-
ferent ways for chaos to evolve by varying a certain parame-
ter of the system. The hydrodynamical models already pro-
duced period-doubling bifurcation, intermittency and crisis
(Kolláth et al. 2011; Smolec & Moskalik 2014). In the period-
doubling bifurcation scenario, chaos is preceded by a sudden
change, where the new period is twice of the original period.
Then the period bifurcates over and over again until the
occurrence of the chaotic state. Intermittency manifests it-
self as a chaotic burst that irregularly interrupts a periodic
behaviour. In crisis a transient chaos evolves to a perma-
nently chaotic state. For more details about the properties
of a simple chaotic systems we encourage the reader to study
the summary presented by Smolec & Moskalik (2014).

The period-doubing bifurcation is detectable through
the alternating maxima or minima in the light curve or
through the subharmonic frequencies in the Fourier spec-
trum. It was observed in RV Tauri and white dwarf stars
(Preston et al. 1963; Goupil, Auvergne & Baglin 1988), and
recently in RR Lyrae and BL Her stars as well (Szabó et al.
2010, 2014; Smolec et al. 2012). The former was discovered
in the Kepler prime mission and inspired new RR Lyrae
model calculations as well as these investigations. Despite
the numerical results from hydrodynamic models that had
predicted chaos (Buchler & Kovács 1987; Serre et al. 1996a;
Plachy et al. 2013; Smolec & Moskalik 2014), chaotic be-
haviour in classical variable stars has not been reported yet.
Kepler may bring a new era to this field.

This study presents the first dynamical analysis of the
Blazhko effect. Similar investigations have not been possi-
ble before, even with the persistent ground-based observa-
tions such as the Konkoly Blazhko Survey that were dedi-
cated to this mysterious phenomenon (Jurcsik et al. 2009),
because of the lack of suitable data. Nonlinear investiga-
tions present serious requirements for the input data that
can be hardly achieved from the ground. The requirements
concern the continuity, the accuracy and the length. Quasi-
continous data are suitable only if full pulsation cycles are
covered and gaps do not affect the extrema significantly.

This is rarely true for RR Lyrae stars, for which two con-
secutive cycles cannot be covered from most observing sites,
except maybe from Antarctica (Wang et al. 2011). Accuracy
is especially important to distinguish chaotic data from pe-
riodic signals, whereas the length of the data is crucial to
trace the divergence of the phase space trajectory. At least a
few dozen modulation cycles are required to reliably detect
chaos. However, stochastic data can resemble chaotic data
on short lengths very easily. Any structure in the return
maps of cycle-to-cycle variations can only be recognised if
several points populate the map.

The possible irregular behaviour of Blazhko modulation
is evident now. Photometric measurements of the CoRoT
and Kepler space telescopes contributed many additional
details concerning the shape of the modulation (Benkő et
al. 2014; Szabó 2014; Szabó et al. 2014). The fact that pe-
riod doubling and additional modes are detectable only in
Blazhko stars points to a possible nonlinear mechanism. This
directed our interest towards the nonlinear investigation of
the modulation itself. Results obtained with the amplitude
equation formalism already showed that the modulation can
be chaotic (Buchler & Kolláth 2011). If chaos could be de-
tected from observational data of the modulation, it would
clearly support the idea of the mode-resonance model of the
Blazhko effect. The photometry that Kepler provides is the
most suitable data for dynamical analysis so far.

In this paper we focus on the star V783 Cyg
(KIC 5559631). This star has the shortest amplitude-
modulation period from the Kepler sample, thus has the
most modulation cycles observed through the four-year-long
mission. Therefore it is the best candidate for our investi-
gations. Our aim is to find out if any signs of chaos are
detectable in the modulation of this star. In Section 2 we
present the observed and the test data sets used in the
analysis. The nonlinear analyser tool, the global flow recon-
struction method is presented in Section 3. In Section 4 we
show the analysis and summarise our results. Conclusions
are drawn in Section 5.

2 DATA

V783 Cyg (Kp = 14.643 magnitude, α2000 = 19h 52m 52.s74,
δ2000 = +40◦ 47′ 35.′′4) is a fundamental-mode RR Lyrae
star: an old, helium-burning, horizontal-branch star that is
crossing through the classical instability strip. It has a pul-
sation period of P = 0.6207001 d and a modulation period
of Pm = 27.67 d. Although the observed Blazhko periods
range from less than a week to a few years (Skarka 2013),
in the original Kepler sample this star exhibits the shortest
primary modulation cycle. Additional modes that might in-
terfere with the variations of the fundamental radial mode
were not detected by Benkő et al. (2014), down to 10−4

magnitudes in the Fourier spectrum in the star.
The four-year-long prime mission of the Kepler space

telescope provided us with the most continuous photomet-
ric data of the RR Lyrae targets to date. Due to the
unique precision, important new phenomena were discov-
ered in Blazhko stars immediately after the first data re-
lease, such as period doubling and low-amplitude additional
modes (Benkő et al. 2010; Kolenberg et al. 2010; Szabó et
al. 2010). Even with the unexpected end of the prime mis-
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Figure 1. The final, tailor-made and rectified Kepler light curve of V783 Cyg (KIC 5559631).
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Figure 2. Top: variation of the amplitude maxima; bottom: vari-
ation in the O–C diagram. The solid lines are the spline fits used
in the nonlinear analysis.

sion, unprecedented data were collected for a considerably
long time almost continuously, allowing us to investigate the
modulation in exquisite detail. To achieve the best photo-
metric data a tailor-made aperture technique was developed
by Benkő et al. (2014)1. In this method all individual pixels
were investigated around the star taking into account their
contributions to the light curve. In our analysis we used the
tailor-made light curve of V783 Cyg (KIC 5559631) that con-
tains 16 quarters (Q1-Q16) of data observed in long cadence
mode (30-minute sampling), presented in Figure 1.

We performed the nonlinear dynamical analysis on the
modulation itself instead of the actual light curve. There-
fore the first step was the separation of the modulation from
the pulsation. There are different methods to derive a mod-
ulation signal. Amplitude modulation can be easily deter-
mined from the amplitude maxima or minima of the cycles.
The O–C diagrams of the same amplitude maxima and min-
ima clearly show the phase modulation. The analytical func-
tion method provides an alternative technique by calculating
time-dependent Fourier parameters (Gábor 1946; Kolláth et
al. 2002). We present four modulation curves that we found
to be useful in the analysis and discuss their own uncertain-
ties in more detail.

2.1 Modulation curves from the light curve
extrema

We determined the amplitude maximum and minimum val-
ues of each pulsation cycle using a cubic spline technique.
Due to the relatively sparse sampling (∼ 30 points/pulsation
cycle) and missing data points, some fitted maxima contain
significant error and had to be removed.

2.1.1 Amplitude maxima

The tailor-made photometry of Benkő et al. (2014) pro-
cessed all available pixels in the CCD mask of the stars, but
there are indications that in some cases flux may have ex-
panded outside the Kepler target apertures. The flux loss
of V783 Cyg was estimated to reach one percent, which
can differ in the pulsation minima and maxima and vary
from quarter to quarter. Much effort was taken to eliminate
instrumental effects such as trends and amplitude scaling
differences between quarters. These error sources may af-
fect our dynamical analysis as they appear as cycle-to-cycle
variations in the modulation curve. We found that since the
modulation curve determined from the minima has smaller
amplitudes, it is relatively more distorted by the instrumen-
tal effects than the one determined from the maxima. There-
fore we chose the latter for the analysis (Figure 2, upper
panel).

2.1.2 O–C diagram

The phase values of the maxima, or equivalently, the
O–C values (Figure 2 lower panel), are expected to be less
affected by the instrumental and data processing effects,
but actually show a much larger scatter (∼25%) than the
amplitude maximum values (∼5%). Due to the 30-minute
sampling, the pulsation cycles were strongly undersampled.
This caused relatively high uncertainties in the maximum
time determination. Therefore we first investigated if any
cycle-to-cycle variation can be detected in the O–C diagram,
which is a common feature among RR Lyrae stars (Guggen-
berger et al. 2012; Benkő et al. 2014).

We compared two fits to the O–C values: a periodic fit

1 http://konkoly.hu/KIK/data.html
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Figure 3. The amplitude maximum values (left) and the O–C
diagram (right) of the short cadence data. A slight cycle-to-cycle
variation is visible in both modulation curves.

with a sine function and a spline fit that allows the cycle-
to-cyle variation. We constructed the difference curve of the
two fits and we found that its variation is smaller than the
uncertainty of the O–C values (∼ 0.002 d), so the detection
of the cycle-to-cycle variation in the O–C diagram is not
clear from the long cadence data alone.

Fortunately, V783 Cyg was observed in short cadence
mode (1-minute sampling) in quarter 6 (Q6). This data set
supports that the cycle-to-cycle variation in the O–C di-
agram exists (Figure 3). Therefore we decided to use the
spline fit of the O–C diagram presented above as the second
modulation curve to be analysed.

2.2 Modulation curve derived with the analytical
function method

The analytical function method (Gábor 1946) is a powerful
tool to determine the time dependence of the amplitude and
frequency of the pulsation modes. The analytical function
is calculated in the Fourier space using a filtering window
around the desired frequency (Kolláth et al. 2002).

2.2.1 Analytical function of R21

When we calculated the amplitude variation curves with the
analytical function method we realized that the instrumen-
tal effects discussed in Subsection 2.1.1 are able to funda-
mentally change the signal. After investigating the effects we
found the stitching of the different quarters of the light curve
to be the source of the largest distortions. We tested the
problem by deriving a comparison light curve using a semi-
automated χ2-minimization stitching technique that used
linear scaling and zero-point shifts only.

We tried to fit two adjacent Kepler quarters by adjust-
ing two parameters. We fitted sine curves to the maxima and
minima to one quarter of data, and applied the same func-
tions to the next quarter by simply scaling and shifting the
flux curve of the later quarter. We searched for the minimum
of the χ2 values in this 2-dimensional parameter space. This
is justified, since the envelopes of the Blazhko modulation
are reasonably sinusoidal, and there is no missing quarter
between Q1 to Q16. In principle the method would pro-
vide a smooth stitching of adjacent quarters, but the strong
degeneracy between the parameters hampered the determi-
nation of a unique solution except for a few quarter pairs.
The linear relation between the two parameters suggested
by the χ2 values (see Figure 4) is useful, but the lowest min-
ima do not always provide the best fit between the quarters,
thus there is a remaining freedom to move along the trough.

Figure 4. Contour plot of the χ2 values as a function of linear
scaling and shifting of the light curve of a given Kepler quar-
ter designed to stitch it smoothly to the preceding one. Note the
strong degeneracy between the parameters and the multiple min-
ima with similar depths. Contours are labelled with χ2 values.

Figure 5. Comparison of the normalized-amplitude analytical
functions of the light curves derived with the stitching technique
of (Benkő et al. 2014) (upper panel) and our χ2 method (lower
panel).

Fitting a more complex function to the envelopes may fur-
ther constrain the fitting parameters, but that would require
further (ad hoc) assumptions about the shape of the modu-
lation from quarter to quarter which would complicate the
procedure and is beyond the scope of this paper. Benkő et
al. (2014) employed a more empirical stitching method with
moving-average-based detrending. Figure 5 displays the am-
plitude variations obtained from light curves derived by both
methods. The Benkő et al. (2014) method shows only
a hint of patterns within quarters while the simple
scale and shift method clearly shows such patterns.
It turned out that linear scaling and shifts in themselves can-
not remove all instrumental variations from the light curve.

However, this method does not distort the shapes of
the pulsation cycles as does the detrending method applied
by Benkő et al. (2014). We found that varying the mov-
ing average values also leads to differing distortions in the
amplitude variation signal, that can reach 5-10% differences
in the modulation cycles. We note, however, that these are
very small differences compared to the overall light varia-
tions (∼ 0.1%) and other studies, like a standard Fourier
analysis, should be less affected by them.

The distortion effects are minimized in the analytical
function of R21 which is determined as the quotient of the
amplitude of the first harmonic and the main frequency,
R21 = A2/A1 (Simon & Lee 1982). The differences between
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Figure 6. The upper panel shows a fraction of the R21 = A2/A1

modulation curve where the results of the method of Benkő et
al. (2014), in black, and of our χ2 technique, in red (dashed), are
identical (between time coordinates 420 and 700). Here the cycle-
to-cycle variation can not be explained by instrumental effects,
it must be real. The middle panel shows the difference of the red
and black curves from the upper panel. The curve in the lower
panel shows the distortion in the R21 parameter caused by the
detrending technique of Benkő et al. (2014).

the two stitching methods in the R21 curves come from
the moving-average scaling, as we show in Figure 6. We
compared the difference curve of the methods to
an artificially created distortion curve. First, instru-
mental effects similar to the discontinuities in the
raw Kepler data were added to a periodically mod-
ulated signal that was then subsequently restored
(see Subsection 2.3). Then the difference between
the R21 curves before and after the corruption and
restoration of the artificial signal were calculated.
This provided us with the distortion curve of the
method of Benkő et al. (2014) (lower panel of Figure
6). This curve is very similar to the difference curve
in the middle panel of Figure 6. This implies that the
distortions are caused by the moving-average tech-
nique which is present only in the method of Benkő
et al. (2014). Therefore the χ2-method version of the R21

parameter was chosen as the third modulation curve for the
analysis.

2.2.2 Analytical function of the pulsation period (P1)

We also calculated the temporal variation of the main pul-
sation period of the light curve with the analytical function
method. We investigated the effects of noise on this mod-
ulation curve to estimate the uncertainties. We performed
a Monte Carlo simulation of noisy, periodically modulated
artificial data. We constructed this data from the Fourier-
parameters of the main pulsation frequency of V783 Cyg
(f1 = 1.611 c/d) and its harmonics, creating magnitudes
at the times of Kepler observations. We applied a pe-
riodic modulation by adding a sinusoidal amplitude mod-
ulation with the average amplitude of the observed one
(0.0404 Kp magnitudes). We then added different gaussian
noise to the data with σ = 3 mmag that corresponds to the
residual noise after a 50-frequency fit to the observations.
We note that the observational precision of V783 Cyg is one
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Figure 7. The variation of the R21 Fourier amplitude relation,
and the period variation of the light curve (P1) derived by the
analytical function method.

order of magnitude smaller (σ = 0.34 mmag on the average)
than the noise we used in the simulation.

We derived the analytical functions for every noisy arti-
ficial data sets and checked the cycle-to-cycle variation in the
modulation. We defined the magnitude of the cycle-to-cycle
variation by calculating the average difference of the max-
imum points between every second, third, fourth and fifth
modulation cycles, respectively. We then compared the aver-
age differences of the observed modulation curve (∼ 2 · 10−5

d) to the ones we got from the Monte Carlo simulation
(∼ 7 · 10−6 d), and found the former to be significantly
larger. The latter value can be adopted as the uncertainty
of the P1 analytical function.

This investigation showed that beyond the uncertain-
ties, a cycle-to-cycle variation exists in the analytical func-
tion of P1. P1 became the fourth modulation curve in the
analysis.

We used the periodically modulated artificial data set
to study also the data processing effects on the modulation
curves. Different trends and scaling factors, similar to the
discontinuities and jumps in the observational data, were
applied in every quarter to distort the periodically modu-
lated data set. Then we used the stitching and detrending
method of Benkő et al. (2014) as an attempt to restore the
original light curve.

These investigations showed that instrumental effects
distort not only the amplitude maxima and the R21 param-
eter, but the period, P1 too. Distortion manifests itself as
additional cycle-to-cycle variation and its magnitude was es-
timated to be 6.8 · 10−6 d due to the sparse sampling and
1.5 ·10−5 d due to the detrending method, respectively. This
implies that a large part of the irregularity observed in the
Blazhko modulation of V783 Cyg may have instrumental
and data processing origins.

2.3 Testing the instrumental and the data
processing effects

The irregularities arising from instrumental noise and data
processing effects can mimic chaotic behaviour on short time
scales. To check this possibility we chose two test curves for
the nonlinear analysis along with the observed modulation
data. We decided to test the effect of noise using a phase
modulation curve, and the data processing effects with the
amplitude modulation curve. Because the modulation curve
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Figure 8. Test data sets. Top: the analytical function of the
pulsation period of the periodically modulated test data set
with σ = 0.003 gaussian noise added (Test 1 ). Bottom: Spline-
smoothed values of the pulsation cycle maxima after the period-
ically modulated test data set was distorted and then restored
with the method of Benkő et al. (2014) (Test 2 ).

of the maxima has to be smoothed for the nonlinear anal-
ysis, it is less useful than an analytical function for testing
the effects of noise. Therefore we used the analytical func-
tion of the period of a noisy, periodically modulated data set
from the Monte Carlo simulation discussed in Section 2.2.2
(Test 1 ). The other test data set was dedicated to test the
stitching and detrending effects of Benkő et al. (2014). In
this case we focused on the modulation curve of the ampli-
tude maximum values (Test 2 ). Test data sets are displayed
in Figure 8.

2.4 Return maps

Return maps, i.e. Poincaré sections of phase space trajecto-
ries are very useful to visualize the differences between peri-
odic, chaotic and stochastic data. We choose a characteristic
point of the cycle and we plot the value of the succeeding
point against the previous one. The maximum and mini-
mum points of the amplitudes are ideal for this method. In
a monoperiodic data set the values of the extrema do not
change, they return to the same value, therefore the return
map is single point. An irregular time series manifests itself
as a set of points in the return map: the values of the ex-
trema never repeat, so if we plot every extremum against
the previous ones, the points will scatter in the map. Ac-
cording to the definition of chaos, the trajectories in the
phase space have fractal structure that is also present in the
return maps. However, the chaotic pattern is recognizable
only if a large enough number of cycles populates the map.
Otherwise it can mimic a random scatter which is typical
for stochastic behaviour.

We constructed the return maps of the four modula-
tion curves (Max, O–C, R21 and P1) and the two test data
sets (Test 1 and Test 2 ) derived from the maximum and
minimum values (Figure 9). The diagrams of the modula-
tion curves do not show clear patterns, they practically can
not be distinguished from the stochastic test data set. This
suggests that the length of the data set i.e. the 51 modu-
lation cycles are not satisfactorily long to construct an un-
ambiguous return map. We note that the minimum length
depends on both the amount of noise and the complexity of
the system, therefore it is unclear how many cycles would
be required in this case.

Figure 9. Return maps of the modulation curves (black) and the
two test data sets (blue). Top row: maximum values, bottom row:
minimum values. Given the small number of points, chaotic struc-
ture of the return maps cannot be recognized and distinguished
from stochastic distributions.

3 METHOD

For the nonlinear analysis we used the global flow recon-
struction method that was recently used in the study of the
chaotic nature of RR Lyrae models as well (Plachy et al.
2013). This tool was already proved to be useful to detect
low dimensional chaos not only in artificial but in real ob-
served data too (Buchler et al. 1996, 2004; Kolláth et al.
1998). For the detailed description of the method we refer
to the original paper of Serre, Kolláth & Buchler (1996b).
Here we go through only the basic steps and configurations.

First we resample the data set with equal time
spacing, s(tn), and produce the delay vectors, X(tn) =
(s(tn), s(tn −∆), s(tn − 2∆), ..., s(tn − (de − 1)∆)), where
∆ is the time delay and de is the embedding dimension of
the reconstruction space. Then we search for a map, F, that
connects the neighbouring points, evolving the trajectory in
time: Xn+1 = F(Xn). The existence of such map is a rea-
sonable assumption. We use polinoms to calculate the map
F. After we found the map we are able to iterate synthetic
data sets for arbitrary lengths. There is a reasonable length
were the quantitative properties like the Lyapunov dimen-
sion can be determined with sufficient accuracy. The Lya-
punov dimension characterizes the geometry of the chaotic
attractor and refers to its complexity. It is calculated from
the Lyapunov exponents that give the rate of divergence of
phase space trajectories that were originally infinitesimally
close to each other (Abarbanel et al. 1993). At least one of
the Lyapunov exponents must be positive according to the
definition of chaos. Of course the quantitative properties of
the synthetic data set of the iterated map can be adopted to
the original data set only if great similarity is clearly visible
between them.

The similarity is required in different visualizations si-
multaneously: we compare the synthetic and original data
sets through the time series, the Fourier transforms and
the orthogonal projections of the data sets following the
Broomhead-King method (Broomhead & King 1987) as well.
At this point the method contains a subjective factor. For
this reason, and to check the robustness of the reconstruc-
tion, we work in a large parameter space. We vary the time
delay (∆) and the embedding dimension (de). We also add
a small amount of gaussian noise to the data set and then
we smooth it. This procedure stabilizes the reconstruction
and provides two additional variable parameters: the noise
intensity (ξ) and the spline smoothing parameter (σ). In

c© 2014 RAS, MNRAS 000, 1–??
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Figure 10. Broomhead-King projections of the four modulation
curves and the two test data sets. All projections are very similar
to each other.
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Figure 11. Broomhead-King projections of the best synthetic
signals of the reconstruction of the four modulation curves and
the two test data sets. The projections display a good similarity
to the original ones in Figure 10, and slight differences can be
noticed between the various reconstructions.

this manner we can expand the search for the map in the
close neighbourhood of the phase space trajectory. If we can
identify a whole region of synthetic signals in the parame-
ter space that resemble the original, we consider the recon-
struction to be successful. The Lyapunov dimension of the
original data set is most probably within the interval that
we determined from the large number of synthetic signals.

4 ANALYSIS

We present the analysis of the four modulation curves (Max,
O–C, R21 and P1) and the two test data sets (Test 1 and
Test 2 ). The Broomhead-King projections of the analysed
data sets are displayed in Figure 10. The parameters of the
global flow reconstructions are given as follows: the time
delay parameter, ∆ = 4 − 30, was fitted to the sampling of
the data sets, the noise intensity was ξ = 0−0.00009 and the
smoothing parameter was σ = 0− 0.009. We applied all the
embedding dimension values (de) that our method allows: 4,
5 and 6. This parameter space is relatively large, therefore
we could obtain hundreds of chaotic maps. We used the same
parameter settings for all of our modulation curves and test
data. The curves were normalized and resampled equally to
perform a homogeneous analysis.

We could fit all four modulation curves with chaotic sig-

Table 1. Results of the reconstructions. The columns indicate
the numbers of chaotic maps obtained, the numbers and frac-
tions of acceptable synthetic signals and their average Lyapunov
dimensions for each input data set.

Chaotic maps Acceptable Fraction DL

Max 154 143 93% 2.48±0.47
O–C 207 166 80% 2.63±0.54
R21 647 275 43% 2.43±0.37
P1 500 411 82% 2.46±0.44

Test 1 301 227 75% 2.85±0.43
Test 2 166 139 84% 2.39±0.37

nals. The best synthetic signals from each reconstructions
are displayed in Figure 11. We accepted those synthetic sig-
nals that resembled the original data sets and calculated
their Lyapunov dimensions. Table 1 summarises our find-
ings. (The results of the reconstructions with different em-
bedding dimensions were merged.) We note that the precise
values of the number of synthetic signals are not relevant,
these numbers can be changed by using different initial con-
ditions. It is the magnitude and the fraction of acceptable
synthetic signals that indicate the robustness of the recon-
struction.

We could also fit both test data sets with chaotic signals.
This implies that a periodic data set distorted by noise or
instrumental effects, and which has the same length and
sampling as the observational data set, can be deceptively
similar to a chaotic signal.

We calculated the average Lyapunov dimension values
from the accepted synthetic signals and we used the stan-
dard deviation values as uncertainties. However, the quanti-
tative properties of the chaotic behaviour in the modulation
of this star could be determined with a large scatter only.
This is not surprising from a relatively short data set. It is
undefinable whether the Lyapunov dimension is between 2–3
or 3–4. We tried to constrain the result further by determin-
ing the minimum embedding dimension with an alternative
method.

The minimum embedding dimension, that must be
larger than the Lyapunov dimension, can be easily estimated
by the false nearest neighbour algorithm proposed by Ken-
nel et al. (1992). The number of neighbours of a point along
the trajectory decreases with increasing embedding dimen-
sion. If the embedding dimension is lower than necessary,
the trajectories in the phase space appear entangled and
many of the neighbouring points will be false neighbours,
but in an appropriate dimension (or higher), they will be
separated properly. We plotted the calculated fractions of
false nearest neighbours for each modulation curve in Fig-
ure 12. For noiseless data the fraction of false neighbours
must decrease dramatically, approaching zero at the appro-
priate dimension, but the picture is not so clear in our case.
The minimum embedding dimension of the modulation can-
not be determined unambiguously, it can be anywhere from
de > 2 to de = 5. Therefore we cannot constrain the Lya-
punov dimension with this method either.
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Figure 12. Estimation of the minimal embedding dimension by
the the false nearest neighbour algorithm. The results of the four
modulation curves are displayed with different colors. The value
of the embedding dimension is very uncertain.

5 CONCLUSIONS

We investigated the modulation of the Blazhko RR Lyrae
star V783 Cyg (KIC 5559631), based on four years of obser-
vations from the Kepler space telescope. We found that the
determination of modulation curves is not unambiguous,
several problems affect the nonlinear analysis:

• The flux loss due to the tight pixel aperture has an
unknown effect on amplitudes.
• The amplitudes are highly sensitive to quarter stitching

techniques: scaling and shifting cause significant distortions,
especially if a moving average is used.
• The instrumental and data processing distortions af-

fect the pulsation maximum values, but alters the analytical
functions of the Fourier amplitudes even more so.
• The R21 amplitude ratio of the first harmonic and

the main pulsation frequency is also very sensitive to the
moving-average technique.
• Due to the sparse sampling of long cadence data, the

O–C diagram can be determined with large scatter only,
and even the cycle-to-cycle variation itself cannot be clearly
detected.
• The noise and the data processing effects affect the an-

alytical function of the main pulsation period as well.

We studied the effect of all instrumental problems and
we concluded that even if they cause significant distortions,
a cycle-to-cycle variation definitely exists in the Blazhko
modulation. Our aim was to define whether these irregular-
ities are stochastic or chaotic. We analysed four modulation
curves using the global flow reconstruction method: the vari-
ation of the maxima, the O–C diagram, the R21 amplitude
relation curve, and the analytical function (temporal varia-
tion) of the main period. We could fit all these modulation
curves with chaotic signals. The Lyapunov dimension of the
signals spread out to a wide range: 2.001-3.635. The data
set is too short to determine the quantitative properties of
the chaotic dynamics with higher precision.

On the other hand, we constructed test signals to study
the reliability of the results of the nonlinear analysis. The
effects of stochastic noise and data processing effects were
included. We found that the cycle-to-cycle variation caused
by these effects can be also fitted by chaotic signals similar
to the modulation curves. This clearly shows that our results
from the nonlinear dynamical analysis of V783 Cyg are very
uncertain. Even the unprecedented Kepler data of this star

is not precise and long enough to analyse the irregular na-
ture of the modulation with nonlinear methods. Thus in this
case we cannot confirm that the underlying dynamics of the
modulation is governed by chaotic processes.

We have now started to explore whether more poten-
tial Blazhko targets for nonlinear analysis exist. Other stars
in the Kepler sample have higher modulation amplitudes
and therefore provide less noisy data for the analysis, but
at the cost of less modulation cycles covered. Based on our
estimates only one or two more stars are potentially suitable
for a similar analysis.

The coverage, length and precision of the Kepler mea-
surements will be unmatched for years to come. Ground-
based observations produce inferior data: in the best case,
several more years of observations will be required be-
fore a similar nonlinear analysis could be attempted. Long-
duration, quasi-continuous observations will be produced
only in the Continuous Viewing Zones of the TESS space
telescope (Ricker et al. 2014) and later by the PLATO space
telescope (Rauer et al. 2014), allowing for a renewed effort
to detect chaos in the Blazhko effect a few years from now.
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