
Astronomy & Astrophysics manuscript no. rszabo˙rev˙corr c© ESO 2014
August 21, 2014

Revisiting CoRoT RR Lyrae stars: detection of period doubling and
temporal variation of additional frequencies ?’ ??
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4 LESIA, Université Pierre et Marie Curie, Université Denis Diderot, Observatoire de Paris, 92195 Meudon Cedex, France
5 Institute of Astronomy, University of Vienna, Türkenschanzstrasse 17, 1180 Vienna, Austria
6 Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge MA 02138, USA
7 Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D, B-3001 Heverlee, Belgium
8 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 Göttingen, Germany
9 Stellar Astrophysics Centre, Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, 8000 Aarhus C,

Denmark
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ABSTRACT

Context. High-precision, space-based photometric missions like CoRoT and Kepler have revealed new and surprising phenomena
in classical variable stars. Such discoveries were the period doubling in RR Lyrae stars and the frequent occurrence of additional
periodicities some of which can be explained by radial overtone modes, but others are discordant with the radial eigenfrequency
spectrum.
Aims. We search for signs of period doubling in CoRoT RR Lyrae stars. The occurrence of this dynamical effect in modulated
RR Lyrae stars might help us to gain more information about the mysterious Blazhko effect. The temporal variability of the additional
frequencies in representatives of all subtypes of RR Lyrae stars is also investigated.
Methods. We preprocess CoRoT light curves by applying trend and jump correction and outlier removal. Standard Fourier technique
is used to analyze the frequency content of our targets and follow the time-dependent phenomena.
Results. The most comprehensive collection of CoRoT RR Lyrae stars, including new discoveries is presented and analyzed. We found
alternating maxima and in some cases half-integer frequencies in four CoRoT Blazhko RR Lyrae stars, as clear signs of the presence
of period doubling. This reinforces that period doubling is an important ingredient for understanding the Blazhko effect – a premise
we derived previously from the Kepler RR Lyrae sample. As expected, period doubling is detectable only for short time intervals in
most modulated RRab stars. Our results show that the temporal variability of the additional frequencies in all RR Lyrae subtypes is
ubiquitous. The ephemeral nature and the highly variable amplitude of these variations suggest a complex underlying dynamics of
and an intricate interplay between radial and possibly nonradial modes in RR Lyrae stars. The omnipresence of additional modes in
all types of RR Lyrae – except in non-modulated RRab stars – implies that asteroseismology of these objects should be feasible in the
near future.
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1. Introduction

The advent of space photometry has opened up new vistas in in-
vestigating stellar pulsations and oscillations. Pulsating variable
stars located in the classical instability strip are no exception.
RR Lyrae stars in particular have benefited from the continuous
and ultra-precise space photometric data delivered by MOST
(Walker et al. 2003), CoRoT (Baglin et al. 2006), and Kepler
(Borucki et al. 2010).

? The CoRoT space mission was developed and operated by the
French space agency CNES, with participation of ESA’s RSSD and
Science Programs, Austria, Belgium, Brazil, Germany, and Spain.
?? Follow-up observations were obtained at Piszkés-tető, the
Mountain Station of Konkoly Observatory.

One of the surprising findings was the period-doubling phe-
nomenon (hereafter PD) in the ultra-precise Kepler RR Lyrae
light curves (Kolenberg et al. 2010; Szabó et al. 2010), which
shows up as the alternating height of maximum brightness and
alternating light curve shape from cycle to cycle in the photomet-
ric light curve and half-integer frequencies (HIFs) between the
dominant pulsation mode and its harmonics in the frequency do-
main. So far only the Kepler stars have been investigated to de-
scribe the phenomenon, but such a detailed analysis is still miss-
ing for CoRoT RR Lyrae stars. This prompted us to re-examine
the published CoRoT RR Lyrae light curves and extend the study
by adding new ones, as well.

This PD is found only in the case of modulated (Blazhko)
RR Lyrae stars, though a thorough search was done on unmod-
ulated Kepler RRab stars, too (Szabó et al. 2010; Nemec et al.
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Table 1. Basic parameters of the CoRoT RR Lyrae stars. The columns contain the CoRoT ID number, the coordinates, V magnitude, the CoRoT
run, RR Lyrae subtype, the amplitude of the dominant mode(s), the Blazhko period in case of modulated stars, the pulsation period, and references.

CoRoT ID R.A. (2000) Dec. (2000) V [mag] Run Type f0,1 ampl. [mag] PBl [days] puls. period [days] Ref.
0101370131 19 28 14.40 +0 06 02.27 15.60 LRc01 RRab 0.257 - 0.619332 (1)
0101315488 19 27 47.40 +0 58 35.62 16.15 LRc01 RRab 0.029b - 0.4853033 this work
0103800818 18 31 23.80 +9 10 10.45 13.70 LRc04 RRab 0.345c - 0.4659348 this work
0104315804 18 34 28.92 +8 57 00.43 15.94 LRc04 RRab 0.130 - 0.7218221 this work
0100689962 19 24 00.10 +1 41 48.70 14.96 LRc01 RRab Bl 0.201 26.88 0.3559966 (2)
0101128793 19 26 37.32 +1 13 34.90 15.93 LRc01 RRab Bl 0.235 17.86 0.4719296 (3)
0100881648 19 25 05.43 +1 39 23.83 16.16 LRc01 RRab Bl 0.033b 59.77 0.607186 this work
0101503544 19 29 10.12 +0 43 47.14 14.79 LRc01 RRab Bl 0.009b,c 25.60 0.605087 this work
0105288363 18 39 30.86 +7 26 53.95 15.32 LRc02 RRab Bl 0.179 35.6 0.5674412 (4,5,6)
0103922434 18 32 08.55 +8 32 40.78 15.84 LRc04 RRab Bl 0.280 54.5 0.5413828 (7)
0105036241 18 38 09.60 +7 43 56.68 15.58 LRc02 RRc 0.196 - 0.372921 this work
0105735652 18 42 10.13 +6 33 05.15 15.01 LRc02 RRc 0.204 - 0.2791596 this work
0101368812 19 28 13.61 +0 40 42.46 15.86 LRc01 RRd f0 0.053 - 0.4880408 (8)

RRd f1 0.143 - 0.3636016

Notes. The superscript ‘b’ denotes blended pulsators. Superscript ‘c’ denotes a CoRoT target with colors. V magnitude values were taken from
the ExoDat catalog. No good candidates classified as RR Lyrae stars were found in the third runs. References: (1): Paparó et al. (2009), (2): Chadid
et al. (2010), (3): Poretti et al. (2010), (4): Guggenberger et al. (2011), (5): Chadid et al. (2011), (6): Guggenberger et al. (2012), (7): Poretti et al.,
in prep., (8): Chadid (2012)

2011). Therefore, it is plausible to assume that either PD plays an
important role as a nonlinear dynamical phenomenon in causing
the Blazhko-modulation (see Smolec et al. 2012 for a hydrody-
namic example of PD causing modulation in BL Herculis stars)
or at least it shows up as a frequent companion effect of the mod-
ulation. In either case, it is important to find well-documented
cases, establish the frequency of the PD occurrence, and inves-
tigate its temporal behavior and other characteristics. In addi-
tion, the physical explanation of PD itself was unambiguously
traced back to a 9:2 resonance between the fundamental pulsa-
tional mode and a high-order radial (strange) overtone (Kolláth
et al. 2011), which opens a new way to study the dynamics of
these high-amplitude variable stars belonging to the horizontal
branch.

In recent years a new picture has started to emerge regarding
the frequency spectrum of RR Lyrae stars. Thanks to dedicated
telescopes (Jurcsik et al. 2009a) and space-based photometry,
additional frequencies have been found in many stars that were
observed with at least millimagnitude precision: AQ Leo (RRd)
(Gruberbauer et al. 2007), MW Lyr (Jurcsik et al. 2008), CoRoT
(Poretti et al. 2010; Chadid et al. 2010), and Kepler stars (Benkő
et al. 2010).

These additional periodicities do not fit the series of ra-
dial pulsational modes (or the occasional half-integer series due
to PD) and present a low-amplitude variability in each case.
Presently, the best explanation for their presence is the excita-
tion of nonradial modes. If this turns out to be true, we may have
another handle on the interior of horizontal branch stars to un-
derstand the stability, pulsation, and evolution of these standard
candles better. In some cases we unexpectedly found frequen-
cies with low amplitudes at or near the radial overtones (e.g.,
Benkő et al. 2010) that might correspond to radial modes ex-
cited by resonances or nonradial modes with frequencies in 1:1
resonance with the corresponding radial mode (Dziembowski &
Mizerski 2004; Van Hoolst et al. 1998). The era of exploiting the
power of nonlinear seismology using radial modes in RR Lyrae
stars is imminent (Molnár et al. 2012).

In this work we embarked on investigating all the known
CoRoT Blazhko RR Lyrae stars up to LRc04 in order to detect
period doubling. The detection or nondetection would help for
finding out how frequent this phenomenon is, further strengthen-

ing its role in and connection to the mysterious Blazhko effect.
Our second aim is to investigate the recently found new peri-
odicities in all types of RR Lyrae stars. This kind of research is
only possible with the photometric precision of CoRoT for these
stars. We are especially interested in the temporal stability of
these additional frequencies.

The structure of this paper is the following. In Sec. 2 we
introduce the original space-borne and ground-based follow-up
data we use in this analysis. In Sec. 3 we discuss the methods
for finding period doubling and to detecting the variations in
low-amplitude periodicities. In Sec. 4 we present our results,
then in Sec. 5 we discuss them and draw our conclusions fol-
lowed by a short summary in Sec. 6. Hitherto unpublished fre-
quency tables and other complementary results can be found in
the Appendices.

Throughout this work we use the notations f0, f1, f2, etc.
to denote the frequency of the radial pulsation modes (funda-
mental, first overtone, second overtone, etc.), while f ′ and f ′′
stand for additional, independent frequencies. We refer to the
CoRoT stars with the last three digits of their ID number for a
brief notation, which provides a unique identification, e.g. 962
for CoRoT 0100689962.

2. Observations

2.1. CoRoT observations

CoRoT has conducted long-duration, continuous, very-high-
precision relative photometry on a few very bright stars and on a
large number of faint ones (Baglin et al. 2006). As an attempt to
review the CoRoT RR Lyrae stars, we investigate 13 stars listed
in Table 1. Table 1 gives the CoRoT ID, the coordinates, the V
magnitude, the CoRoT run in which the object was observed and
discovered, its pulsation and modulation parameters (if applica-
ble), as well as references if the star has been already analyzed.

The brightness of the targets that were observed in the ex-
ofield of CoRoT are measured through a prism that creates im-
ages that contain red, green, and blue fluxes. The color fluxes
are not available for all stars, and in some cases only the sum
of them (white light) is retained. Though these fluxes are not re-
lated to any photometric systems, they are still useful, such as
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Table 2. Observations of the CoRoT LRc01 RR Lyrae stars at the
Konkoly Observatory that were used in this paper. The CoRoT ID, the
night of the observations, total number of the scientific frames (Nf), the
ID of the primary comparison stars from the USNO-A2.0 are given.

CoRoT ID DATE Nf Comp.

100881648 2008-07-28/29 55 0900-14969350
2008-07-29/30 30

101503544 2008-06-20/21 49 0900-15291694
2008-06-21/22 68

100689962 2008-06-09/10 57 0900-14903871
2008-06-19/20 58
2008-07-08/09 38
2008-07-11/12 57

101370131 2008-06-22/23 110 0900-15209129
2008-06-25/26 33
2008-07-10/11 85
2008-07-11/12 36
2008-07-12/13 38

101128793 2008-07-27/28 63 0900-15077950
2009-06-29/30 47

comparing the amplitudes of variability in some of our cases.
The interested reader can find an example for the use of CoRoT
color fluxes in Paparó et al. (2011).

The CoRoT RR Lyrae group analyzed those stars that were
classified as such by the CoRoT Variability Classifier (CVC)
(Debosscher et al. 2009) up to the fourth pointing (LRc04).
We note that one of these stars, CoRoT 1027817750 (observed
during LRa01, originally classified as an RR Lyrae star with a
67% probability), is found to be non-RR Lyrae by Paparó et al.
(2011). We took those targets that were classified as RRab pul-
sators with non-zero probability and found eight bona fide RRab
stars out of 14. In addition to that sample we found CoRoT
RR Lyrae star 648 early in the mission. Furthermore, we added
one more object to the classified RR Lyrae stars that was found
by Affer et al. (2012) while investigating stellar rotation peri-
ods in CoRoT light curves in runs LRc01 and LRa01. Upon
inspecting the published light curves manually, we confirmed
that 488 is a new RRab variable. Light curve characteristics, fre-
quencies, epoch, and more details on this target can be found in
Appendix A.

RRc classification is more problematic, since eclipsing bina-
ries (e.g. W UMa stars) can exhibit similar light curve shapes,
thus the contamination of a sample originating from automated
classification is much higher. Therefore we chose the > 80%
probability level assigned by CVC and found only two genuine
RRc stars out of 17 candidates. We note that decreasing the prob-
ability limit to 50% or 10% did not help to find more RRc stars,
but increased the number of eclipsing binaries and other types
enormously.

Interestingly, we have RR Lyrae stars only in the direction of
the Galactic center. This obviously might be a selection effect
because we observe mostly disk-population stars when the satel-
lite points in the anticenter direction. The length of observations
varies from 158 days (LRc01) and 150 days (LRc02) to 88 days
(LRc04), in all cases the duty cycle being over 90%. Time is
given in heliocentric Julian date throughout the paper; however,
when showing light curves we use the CoRoT Julian date (CJD).
The relation between the Heliocentric Julian Date and the CJD
is

HJD = CJD + 2451545.0. (1)

Table 3. Ground-based, multi-color observations of CoRoT RR Lyrae
stars taken with the 1m RCC telescope of the Piszkés-tető Mountain
Station of the Konkoly Observatory. This table is published in its en-
tirety in the electronic edition of the journal. A portion is shown here
for guidance regarding its form and content.

CoRoT ID HJD magnitude filter

100881648 2454676.34320 16.903 B
100881648 2454676.35783 16.919 B
100881648 2454676.36861 16.913 B
100881648 2454676.37939 16.933 B
100881648 2454676.39017 16.913 B

... ... ... ...

We used the N2 level calibrated CoRoT light curves. We ap-
plied trend and jump filtering and outlier removal as described
in detail in Chadid et al. (2010). Because we usually deal with
relatively faint targets, only two RR Lyrae in our sample have
CoRoT colors (544 and 818), but we use only the integrated
(white) light to increase the signal-to-noise ratio. The nominal
sampling is 512 sec for all the stars, except these two targets,
where the initial part of the light curves were observed with the
512 sec mode, while the rest of the light curve was observed with
the much denser short cadence mode (32 sec).

2.2. Ground-based follow-up observations

Ground-based multi-color observations on some of the CoRoT
RR Lyrae stars discussed in this paper were collected in 2008
and 2009 with the 1-m Ritchey-Chrétien-Coudé (RCC) tele-
scope mounted at Piszkés-tető Mountain Station of the Konkoly
Observatory. These observations were especially helpful in de-
termining the true pulsational nature in the cases where our tar-
gets are heavily blended in the CoRoT apertures.

A Versarray 1300B camera with an UV-enhancement coating
constructed by Princeton Instruments was used. This device con-
tains a back-illuminated EEV CCD36-40 1340×1300 chip that
corresponds to a 6.′6×6.′8 field of view (FOV) with 0.303′′/pixel
scale. Standard Johnson BV and Kron-Cousins RC filters were
used in the observations. The typical exposure times were 300,
180, 100 s for bands B, V, and RC, respectively. Each night dome
flats, bias, and dark frames were taken as main calibration im-
ages.

We used the iraf/ccdred1 package for the standard reduc-
tion procedures: bias, dark, and flat-field correction. The bright-
ness of stars was determined by using the aperture photometry
task daophot/phot of iraf. We carried out differential photome-
try with carefully selected comparison stars. These were found
to be constant and fit the target stars both in their brightness and
colors. The telescope constants were obtained using the standard
stars of the open cluster M67 (Chevalier & Ilovaisky 1991). The
typical errors of the individual observations were between 0.01
and 0.02 mag in BVRC. The log of the observations is presented
in Table 2, while the ground-based BVRC light curves are avail-
able in electronic form via the website of the journal. A sample
of this file is shown in Table 3 for guidance.

1 IRAF is distributed by the National Optical Astronomy
Observatory, which is operated by the Association of Universities
for Research in Astronomy (AURA) under cooperative agreement with
the National Science Foundation.
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Fig. 1. Test results for detection of the temporal variation of low-amplitude frequencies. Left panel: The amplitude of the constant, 3 mmag
amplitude frequency injected at ftest = 3.0 d−1 into the light curve of 241, a CoRoT RRc star (see Sec. 4.3). Right panel: A more complex case:
we added a constant (3 mmag) amplitude frequency to the light curve of the strongly modulated Blazhko RR Lyrae, 962. We chose ftest = 3.4 d−1.
Horizontal lines show the amplitude of the injected signal, points with error bars come from our method. The upper row shows the shape and the
vicinity of the recovered frequency in the applied eight bins.

3. Methodology

We applied standard packages, such as MuFrAn (Kolláth 1990)
and Period04 (Lenz & Breger 2005), to perform Fourier analy-
sis.

3.1. Detection of period doubling

There is no obvious, strongly alternating pattern in the CoRoT
RR Lyrae maxima that could have triggered a thorough analysis
earlier, though in some cases a detailed inspection does show
period doubling persisting through a few pulsational cycles as
we show later in this work.

CoRoT light curves are shorter than the Kepler ones and have
lower precision at the same apparent brightness. The typical er-
ror of the individual data points for a 16th-magnitude RR Lyrae
is 0.006 – 0.012 mag for the CoRoT observations, and 0.0008
– 0.003 mag for an RR Lyrae of the same brightness observed
by Kepler. In addition, since period doubling is usually only
temporarily noticeable in the light curves (but see Le Borgne
et al. 2014), we do not expect to see PD signs in both the light
curve and the frequency spectrum in each case. The strength of
PD is not correlated with the Blazhko phase, as we saw earlier
in the example of RR Lyrae itself and other modulated RRab
stars. Therefore here we need to relax the strict criteria applied
in Szabó et al. (2010), where we required the presence of PD
signs in both the time and the frequency domains. Consequently,
in this work we investigate both the Fourier spectrum between
the dominant mode and its harmonics, aiming at finding HIFs at
exactly between two consecutive harmonics and the light curves
themselves, looking for suspicious alternating pattern. We report
tentative detection in those cases where PD is present in either
or both domains.

For detecting PD in the Fourier spectrum we set a conserva-
tive limit, i.e. 3σ detection for the HIFs. The rms for half-integer
frequencies ((2k + 1)/2 · f0) was computed in the intervals be-
tween consecutive harmonics of the dominant pulsational mode
[k · f0; (k + 1) · f0] after prewhitening with significant additional
frequencies and the Blazhko side peaks. The [ f0;2 f0] frequency
interval is the most interesting one, because all the known stars
undergoing the period-doubling bifurcation found in the Kepler

sample show the highest half-integer frequency amplitude in this
particular interval (Szabó et al. 2010).

To investigate the alternating nature of the pulsational cycles,
the photometric maxima were fitted with seventh or ninth-order
polynomials (Chadid et al. 2010) to get rid of the detrimental
effects of missing photometric points or (in the case of blended
Blazhko stars) large scatter. For more details of this process, we
refer to Chadid et al. (2010).

3.2. Frequency analysis and time-dependent frequencies

To get the time dependence of the properties of a frequency peak,
we cut the photometric data into chunks of equal length, and
the respective amplitudes and frequencies and their uncertainties
were obtained from these shorter data sections with Period04.
We tried to cut the light curve into two-four-eight, etc., pieces,
and stopped where the uncertainties (primarily due to the short-
ening of the data sections) precludes the derivation of any mean-
ingful information. In most of the cases, eight bins were used
for uniformity. This is a compromise between the time resolu-
tion of the variabilities and the frequency resolution permitted
by the lengths of the data chunks, which could not be deterio-
rated arbitrarily, because close-by frequency peaks often occur.
We performed simulations to make sure that any arbitrary time
shift (i.e. the exact starting epoch of the subsections) does not
have a significant effect on the amplitudes of the studied fre-
quencies.

In all cases the main pulsation mode(s), their harmonics,
the Blazhko frequency, its harmonics, and the modulation side
peaks (where applicable) were subtracted before we embarked
on computing the time variable amplitude of the additional
peaks. Error bars were derived by a Monte Carlo method avail-
able in Period04.

To check whether the successive prewhitening, the strong
Blazhko modulation and other time-dependent features have an
appreciable effect on the method we used to detect temporal vari-
ation of low-amplitude frequency peaks, we designed a series of
tests. First we added a 3.0 mmag, constant amplitude sinusoidal
signal with a frequency of 3.0 d−1 to the light curve of 241, an
RRc star (see Sec. 4.3). The vicinity of 3.0 d−1 in the Fourier
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Fig. 2. Jump- and trend-filtered, phased light curves of CoRoT non-Blazhko RRab stars. Left panel: The newly found RR Lyrae, 488. The small
amplitude and the relatively large scatter indicate a blended CoRoT target. Middle panel: The new, unmodulated RR Lyrae, 818. Having over
177 000 data points, we plot only every 10th data point for visualization purposes. Right panel: Light curve of the new, unmodulated RR Lyrae,
804.
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Fig. 3. Left: 2.6’ x 2.6’ DSS image showing the neighborhood of 488.
Right: A larger surroundings of the star 488 showing the applied aper-
ture as well. Several faint stars are shown within the aperture. North is
up and east to the left in both images.

spectrum is relatively clean, i.e. free of contaminating frequen-
cies. This light curve was subjected to the same procedure as
all the CoRoT targets, namely the light curve was cut into eight
bins, and the main pulsation frequency and its harmonics were
subtracted in each bin. As we see in the left hand panel of Fig. 1,
the injected constant amplitude signal was preserved, the error
introduced by the process is a few percent, and it does not ex-
ceed 10% in any case. This means that in a sparse frequency
spectrum we can confidently detect the time dependence of low-
amplitude signals without introducing amplitude variability with
our methods.

The right hand panel of Fig. 1 shows a more complex case.
We chose 962, a strongly modulated Blazhko star. The frequency
spectrum of this star contains more frequencies (Chadid et al.
2010), making the analysis more complicated. This time we
squeezed an ftest = 3.4 d−1 signal with 3-mmag constant ampli-
tude in between other frequencies. As suspected, in this case we
got higher scatter around the constant amplitude. A ten percent
deviation from the nominal value is not unusual, and even larger
excursions occur in some cases. The computed error bars more
or less capture this scatter, and the deviation rarely exceeds the
assigned sigma. Evidently, in case of a dense frequency spectrum
with evidence of strong temporal variations (such as a Blazhko
modulation and period doubling), one has to exercise extra care
when interpreting amplitude variability of low-amplitude sig-
nals. It is reassuring, however, that the structure of the frequency
peaks does not deform because of the procedure, as long as there
are no close immediate frequency peaks in the vicinity of our test
signal.

4. Results

In the next sections we discuss our targets one by one, focusing
on those stars and features that have not been discussed earlier.
In the case of previously published results or those in prepara-
tion, we refer to the corresponding paper(s). However, for the
sake of completeness, we decided to list all CoRoT objects reli-
ably classified as RR Lyrae stars up to LRc04. First we describe
unmodulated RRab stars followed by Blazhko stars, then RRc
stars are listed, finally the only double-mode (RRd) star is dis-
cussed.

4.1. Non-Blazhko RRab stars

CoRoT 0101370131: This mono-periodic RRab star was ana-
lyzed in detail in Paparó et al. (2009). In the course of this work
we checked again that no additional frequencies, including signs
of HIFs, can be found in the frequency spectrum. We give an up-
per limit of 0.30 mmag for the latter (Table 4). We also checked
whether the maxima show any periodicity or pattern, as a sign
of a thus far hidden, low-amplitude Blazhko-effect, but failed to
find any significant periodicities.

CoRoT 0101315488: Affer et al. (2012) found 169 pulsating
stars while investigating stellar rotation periods and ages in
CoRoT light curves of spotted stars in runs LRc01 and LRa01.
Upon inspecting the published light curves manually, we en-
countered a new RR Lyrae-like object, 488, besides finding
other, already known RR Lyrae variables.

As this is a new finding, we discuss the properties of this
object in detail. The coordinates of the new variable are RA=
19h 27m 47.s40, Dec = 0◦ 58’ 35.”652. For the brightness of the
main target, the ExoDat database gives the following values:
B=17.163, V=16.152, R=15.740, I=15.072. Based on the con-
tamination index (0.222), blending can be considered to be se-
vere.

The light curve shape is of a typical RRab, but the total am-
plitude is rather small (0.m1). We therefore suspect that this vari-
able star is indeed blended. The relatively high scatter also cor-
roborates this argument (see Fig. 2, left panel). The pulsation
period is constant during the CoRoT run.

Figure 3 shows the DSS and the EXODAT images of our tar-
get. EXODAT lists six close-by stars of magnitude 17.5 – 20.5,
within the CoRoT aperture. It is conceivable that one of these
might be the RR Lyrae, but based on the available data, we can-
not tag the exact source of variation. The pulsation parameters,
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Fig. 4. Phase-folded CoRoT Blazhko light curves. Left: folded by the Blazhko-period, right: folded by the pulsational period. Representative
averaged light curves are shown in two extreme modulation phases in each case in the right panels.

frequency table, epoch, and discussion of the frequency spec-
trum can be found in Appendix A. We note here only that no PD
was found in the spectrum with an upper limit of 0.10 mmag for
any half-integer frequencies.

CoRoT 0103800818: This star was observed by CoRoT in
LRc04, and it is described here for the first time. It started to
be observed with nominal cadence (512 s) but soon after it was
switched to short cadence (32 s) observations in color mode.
To enhance the signal-to-noise here we only use the integrated
(white) light curve. With a period of 0.4659348 days it is a un-
modulated RRab star. We did not detect period doubling with
an the upper limit of 0.10 mmag set for the half-integer frequen-
cies. The phase-folded light curve is shown in the middle panel
of Fig. 2.

Owing to the early switch to high cadence observations,
fifty-six harmonics has been found in the frequency spectrum.
So far this is the largest number we are aware of. The amplitude
distribution is very similar to 131 (Paparó et al. 2009), i.e. there
is a local minimum in the amplitudes of the harmonics around
the 15th harmonics (32 d−1). The harmonics in the higher fre-
quency range come with a different slope after this trough in
the distribution. While we cannot confirm this behavior with the
other two unmodulated CoRoT RRab stars (488 and 804) be-
cause of the lower cadence observations, it would be interesting
to see the amplitude distribution in the case of other RRab stars
observed from space with high cadence.

Apart from that, only the CoRoT orbital frequencies and
some residuals around the main frequency peaks are visible in
the frequency spectrum. We could identify neither regular fre-
quency side peaks that would signal the presence of the Blazhko
effect nor half-integer or any other frequencies. The frequency
table is given in Appendix B.

CoRoT 0104315804: This star was also observed in LRc04, and
it has not been published yet. It was monitored with nominal ca-
dence (512s) and only in white light. It is a non-Blazhko star with
a period of 0.7218221 days. We could not detect period dou-
bling with an upper limit of 0.30 mmag. The frequency spectrum
is also devoid of statistically significant additional periodicities.
The frequency table is given in Appendix C, while the phase-
folded light curve is plotted in the right hand panel of Fig. 2.

4.2. RRab stars showing the Blazhko effect

CoRoT 0100689962 is identical with V1127 Aql. It has a
strongly modulated light curve, with a high pulsational ampli-
tude and a pronounced phase modulation as is easily seen in
the left hand panel of Fig. 4. The modulation is not sinusoidal
(Benkő et al. 2011) and is asymmetric in the sense that the max-
imum of the maxima and the minimum of the minima shows
considerable shift. A detailed study has been published on this
object by Chadid et al. (2010).

We found alternating cycles in the light curve of 962 (see
the right hand panel of Fig. 5.) Half-integer frequencies between
the fundamental mode and its harmonics up to 11/2 f0 are also
found, demonstrated in the left panel of Fig. 5. A forest of peaks
can be found around the HIFs. This may be a consequence of
the excitation of additional (nonradial) modes, or due to the in-
terplay of the time-variable PD and the modulation itself (see a
simulation suggesting this scenario in Szabó et al. (2010)), or
both. The amplitude distribution of the HIFs is very similar to
other cases (see Szabó et al. 2010): the highest peak is at 3/2 f0,
then there is a monotonous decrease with the order, however,
at 9/2 f0 there is a local maximum (a standstill in the case of
962), which is the consequence of the 9:2 resonance with the
ninth overtone (Kolláth et al. 2011). We could identify HIFs up
to 11/2 f0 above the 3σ significance level. The alternating cycles
in the light curve and the presence of the half-integer frequencies
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in the frequency domain constitute an unambiguous detection of
the period doubling phenomenon in 962. It is evident that the PD
is not always present with the same strength throughout the 142-
day CoRoT observations. Instead, we see it in the light curve for
short time intervals, e.g. CJD[2750:2754] as shown in Fig. 5 or
CJD[2794:2798] (not shown).

In the frequency spectrum of 962 there is another, indepen-
dent frequency peak, f ′ = 4.03265d−1. This is quite close to the
3/2 f0 frequency value, and there is a dense region of frequencies
around them (Fig. 7 of Chadid et al. 2010), which makes the de-
tection of the temporal variation of these frequencies extremely
challenging. We made a series of tests to take the effects of the
decreased frequency resolution due the splitting of the original
data set into account, and we found variation in the amplitude in
both the 3/2 f0 HIF and f ′ (upper left panel of Fig. 6), although
this conclusion is quite weak and may be a consequence of con-
tamination from other close-by frequencies.

CoRoT 0101128793 is a CoRoT RR Lyrae star with a low
Blazhko modulation amplitude (the amplitude of the highest side
peak due to the modulation is 4.6 mmag) and a Blazhko period
of 18.66 d (see Fig. 4). This star shows one of the lowest mod-
ulation amplitudes detected so far (Jurcsik et al. 2006; Skarka
2014). Poretti et al. (2010) studied this object in detail. In the
course of this work we find clear sign of period doubling in
the frequency spectrum in the form of half-integer frequencies
(see Fig. 7). Poretti et al. (2010) interpreted f2 = 3.159 d−1 and
f0 + f2 = 5.279 d−1 as combination frequencies, but in our con-
text the period-doubling interpretation seems to be more plausi-
ble, especially that it is found in all possible places from 1/2 f0
to 17/2 f0 2. In our interpretation these frequencies are located
closer than 1% to 3/2 f0 = 3.178 d−1 and 5/2 f0 = 5.297 d−1, so
we identify them as HIFs.

We note that there is another additional frequency, f1 =
3.63088 d−1, which might be the second radial overtone (Poretti
et al. 2010). Its combinations with the fundamental mode fre-
quency and its harmonics ( f1 + k f0, k = 0, 1, 2...) are clearly vis-
ible in Fig. 7 with high amplitudes in between the main harmon-
ics and the HIFs. As in the previous cases, temporal variability is

2 We make an exception here and retain the original designation of f1
and f2 from Poretti et al. (2010)

easily seen for both the 3/2 f0 half-integer frequency and the ad-
ditional frequency f1 = 3.63088 d−1 (upper right panel of Fig. 6).

CoRoT 0100881648 is a Blazhko star exhibiting a typical asym-
metric RR Lyrae light variation with a pulsation period of
0.607186 d and a Blazhko cycle of 59.77 d (Szabó et al. 2009).
The modulation is sinusoidal and symmetric (Fig. 4).

The typical RRab light variation is diluted by a string of
three close stellar companions to west-northwest and a fainter
star to the north (Fig. 8). The flux from these stars are con-
tained by the CoRoT aperture together with that of the star 648,
and their presence is revealed by our ground-based observations
that easily resolved the near-by contaminating sources. These
follow-up observations allow us to make a crude estimate of the
intrinsic light variation amplitude of this Blazhko star. One V
image was taken in July 2008 (HJD 2454676.44742) with the
Konkoly Observatory 1m RCC telescope which corresponds to a
pulsational minimum and is slightly past the Blazhko-maximum
(ψ = 0.06, where ψ denotes the Blazhko phase). Based on the
fluxes of the contaminating stars (assumed to be constant) and
the variable in its minimum and using the apparent total am-
plitude we calculate the true light variation to be 0.m36 in the
Blazhko maximum and 0.m30 in the Blazhko minimum. This is
still a bit lower than the amplitude of the light variation of a nor-
mal, unblended Blazhko RRab star, but to reconstruct the undi-
luted light variation more precisely, much longer follow-up ob-
servations would be necessary. Other fainter stars have negligi-
ble effect on our estimate.

We detect ten harmonics of the 1.64694d−1 frequency and a
triplet around f0 and 2 f0. The right peaks are much higher and
are detected around all the harmonics. No additional frequency
is detected above the 3σ level. Also, we could not detect any
signs of the period doubling phenomenon. The frequency table
is available at Appendix D.

CoRoT 0101503544 is a Blazhko star with an asymmetric light
variation. Its pulsation period is 0.605087 d, and a Blazhko-
variation of 25.60 d is clearly seen (Fig. 4). The color light curves
are preserved for this object. The star exhibits a typical skewed
RRab light curve, with its amplitude diminished to 0.m021 in
red, 0.m045 in green, and 0.m052 in blue passbands. Based on the
CoRoT data this object is most probably an intrinsically high-
amplitude RR Lyrae star. This conclusion is supported by the rel-
atively high modulation (e.g., 0.m028 in the green light compared
to the overall light variation amplitude 0.m045). We note that the
color amplitude ratios are typical of an RR Lyrae variable. The
L1 (level-1) contamination value given by the ExoDat catalog is
0.13871 ± 0.00663, which might be too low an estimate.

CCD frames taken by one of us (J. Benkő) with the Konkoly
Observatory 1m RCC telescope and a Johnson V filter allowed
us to reconstruct the true light variation of this heavily blended
object. The contaminating star is brighter by 2.m0 in V compared
to the brightest phase of 544. One image was taken in June 2008
(HJD 2454639.49092), which corresponds to a pulsational max-
imum and is slightly past the Blazhko-maximum (ψ = 0.10).
Using a similar process that was applied in the case of 648 (and
assuming that the Johnson V filter is reasonably close to the
CoRoT green passband), we calculated the true light variation
to be 0.m39 in the Blazhko maximum and 0.m23 in the Blazhko
minimum in the V passband. The frequency content of 544 can
be found in Appendix E.

After a few days of normal sampling (8-min), the observa-
tions were switched to the oversampling mode (32-sec). Before
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Fig. 8. Left: EXODAT image showing the aperture applied to 648 (up-
per panel) and 544 (lower panel). Right: 1’ x 1’ V image of the targets
taken by the 1m RCC telescope at Piszkés-tető. North is to the right
and east to the bottom. The variable star is located between the thick
lines. We transformed our frames to match the EXODAT images ex-
cept a slight (30 degrees) rotation. 648 was caught around pulsational
minimum, and 544 around pulsational maximum.

embarking on the frequency analysis we resampled the oversam-
pled data to normal sampling to get a more tractable number of
points (23 915 vs. 351 086). We checked that no information was
lost in the relevant low-frequency range, which is the main focus
of this study.

High-precision space-based observations frequently show
additional frequencies in RR Lyrae stars. This Blazhko star is
no exception, it also has additional periodicities in the frequency
spectrum. One of them is f ′ = 2.389287 d−1. The lower left hand
panel of Fig. 6 shows the temporal variation of the f ′. Again,
one can easily recognize the time-variability of the appearance
of this frequency peak during the CoRoT observations.

We have not found any signatures pointing to period dou-
bling in the frequency spectrum, whether in the white light or in
the color observations, which is not surprising, given the blended
nature of our target. However, a close inspection of the light
curve reveals that there are sections where the alternating pul-
sating cycles are clearly visible (Fig. 9). We checked that the
frequency spectrum does not contain any other additional fre-
quency peaks with high enough amplitude to cause the observed
variation in the maxima from cycle to cycle. Clearly, the 0.15
mmag f ′ cannot cause fluctuation exceeding several mmag as
seen in Fig. 9. Interestingly, CoRoT’s detection capability al-
lowed us to reveal the temporary nature of the period doubling
phenomenon in this heavily blended CoRoT Blazhko RR Lyrae
star.

CoRoT 0105288363 is an RR Lyrae star showing a strong
Blazhko modulation with a period of 35.06 d. The lower right
hand panel of Fig. 4 shows that the maxima of the pulsational
cycles do not move considerably in sharp contrast with 962.
The amplitude of the Blazhko modulation is not constant. A

detailed study was presented by Guggenberger et al. (2011).
After analyzing the CoRoT light curve again, we saw no sign
of period doubling either in the light curve or in the frequency
spectrum down to 0.35 mmag in accordance with Guggenberger
et al. (2011). There is an additional frequency in the star ( f ′ =
2.98400 d−1) with a frequency ratio of 0.591, which can be iden-
tified as the second radial overtone. Despite its low amplitude
and the cluttered frequency spectrum, we tried to analyze its
temporal variation (Fig. 6, lower right panel). Although there
are hints that the amplitude of this frequency peak varies in
time as well, we cannot draw firm conclusions about its tempo-
ral variability because of the difficulties mentioned. Also, there
is a non-negligible chance that this periodicity comes from a
different, nearby source (Guggenberger et al. 2011). According
to Guggenberger et al. (2012), the star also shows a frequency
around its first radial overtone ( f1 = 2.3793 d−1, frequency ratio
0.741) and another one that is most probably a nonradial mode3

( fnr = 2.4422 d−1, f0/ fnr = 0.722). Owing to their low amplitude
we did not try to analyze their temporal behavior in this study.

CoRoT 0103922434: This is a new Blazhko RRab star (also
known as V922 Oph) that will be discussed in detail in Poretti et
al. (in prep). Its period is 0.5413828 days and shows a Blazhko-
modulation of roughly 54.5 days, so CoRoT LRc04 observations
cover two modulation cycles.

Here we only note that even though we do not see half-
integer frequencies in the frequency spectrum of this star, there
are hints that the period doubling might be present temporarily.
Namely, we find six to ten consecutive pulsational cycles in the
light curve that are alternating (Fig. 10). One is found around
CJD 3490 and lasts only for ten pulsational cycles. The other
one is at the end of the CoRoT observations (starting from CJD
3548). Such regularity cannot be seen in any of the other RRab
stars that do not show PD. The amplitudes of the additional fre-
quencies are not sufficient to cause as large as many hundredths
of a magnitude alternation from maximum to maximum even
in the most favorable (constructive interference) case. In addi-
tion, finding alternating maxima by chance more than once has
a very low probability.4 We also note that in RR Lyrae and other
Kepler PD-stars, the temporal nature of the period doubling is
also clearly demonstrated (Szabó et al. 2010). Thus, we conclude
that 434 is a Blazhko RRab star showing the period doubling
temporarily. One can notice that there are switches between the
different branches connecting even and odd maxima (Fig. 10).
The switch between the two branches of the lower and higher
maximum strings is a definite sign of more complex dynami-
cal behavior besides the high-order resonance causing the period
doubling. It points to the presence of additional resonances (see,
e.g., Molnár et al. (2012)) or low-dimensional chaos (Plachy
et al. 2013).

Although there are indications that the second radial over-
tone is excited in this star with f2 = 3.165859 d−1, we examined
only the strongest additional frequency f ′ = 2.612196 d−1 and
the result is presented in the upper right hand panel of Fig.11.
There is a clear amplitude variation (lower panel). The figure
was made after prewhitening with the fundamental mode f0, its

3 Denoted by fN in the original paper.
4 To be more specific: in a very simplistic approach, the probability

of n jump (up or down) is 1/(2n − 1), since the random variable X of
the height of the pulsational maximum follows a binomial distribution
assuming an equal probability (p = 1/2) of an up or down jump. Thus,
the chance configuration of n = 8 switches in the left panel of Fig. 10 is
1/127 ≈ 0.0079.
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Fig. 9. Sections of light curve where period doubling is present in the blended Blazhko CoRoT RRab star 544. Even and odd maxima are marked
with different symbols. Original data points are denoted by small black points.

harmonics and the modulation side peaks. A large number of
combination frequencies (k f0 + n fm) are present as well, sug-
gesting that these signals come from the star itself. The fre-
quency ratio is f0/ f ′ = 0.707091, thus f ′ cannot be a radial
mode.

4.3. RRc stars

CoRoT 0105036241: We have found two RR Lyrae stars pre-
dominantly pulsating in the first radial overtone (RRc) by
CoRoT, one of them is 241. The phased light curve can be seen
in the left hand panel of Fig. 12. Besides the first overtone mode
( f1 = 2.68153 d−1), this RRc star has an additional frequency
f ′ = 4.37783 d−1 with a frequency ratio f1/ f ′=0.613. This fre-
quency ratio occurs surprisingly often in overtone RR Lyrae and
Cepheid stars, as in Moskalik (2013). 241 represents another
member of this class of classical pulsators. If – as it is conceiv-
able – f1 belongs to the first radial overtone, then f ′ cannot be a
radial mode, it is most probably a nonradial one.

The Fourier spectrum and sequential prewhitening with the
highest amplitude frequencies in 241 are displayed in Fig. 13.
After successively removing the dominant pulsation frequency,
its harmonics, and the additional f ′ frequency, two sets of side
peaks appear. We denote the corresponding frequency differ-
ences with fm and fb in Fig. 13 and in Appendix F. The first one
( fm) may be a long-period (longer than the length of our data
set) Blazhko modulation, although more data would be needed
to establish its exact nature, while the second one ( fb) most prob-
ably appears because a clear amplitude variability is seen in the
additional frequency, f ′ (see below).

After removing all the previously mentioned frequencies,
there are still a lot of remaining peaks in the spectrum, the high-
est among them is f ′′ = 2.345174 d−1 with an amplitude of 0.57
mmag. However, instead of (over)interpreting the data we pre-
fer to stop at this level. The average of the residual frequency
spectrum is 0.09 millimagnitude. A detailed discussion of the
frequency spectrum can be found in Appendix F.

We computed the temporal variation of the amplitude of f ′
by using eight bins. The lower left hand panel of Fig. 11 shows
that the amplitude of f ′ very clearly varies on long time scales.
In the same figure we also plotted the close neighborhood of f ′
in the frequency spectrum corresponding to the bins for which
the amplitude was calculated (upper panel). It is interesting to
see the structural variation of the peak. Sometimes the frequency

peak is split into two separate peaks. The variation over the 145
day-interval is striking.

CoRoT 0105735652 is similar to 241 in many aspects. Its phased
light curve is shown in the right hand panel of Fig. 12. However,
this star has a B5 II spectrum in the CoRoT observation log
Release 13 (COROT Team 2014). This and the presence of many
low-amplitude frequencies (that may be nonradial modes) might
imply a βCep scenario. On the other hand, the light curve shape
resembles that of an RRc star with the characteristic bump just
before maximum light, though some βCep variables show a sim-
ilar feature (Sterken et al. 1987). The CoRoT classification algo-
rithm (Debosscher et al. 2009) assigns a probability of more than
80% for an RRc variable, while giving less than a 10% chance
for the βCep variation. In addition, the frequency ratio f1/ f ′=
0.615 is seen frequently in recent space-based photometric ob-
servations (e.g., Moskalik 2013), which makes it likely that the
star is a first-overtone RR Lyrae star, so we stick to this scenario.

The temporal variation of the amplitude of the f ′ frequency
is plotted in lower right hand panel of Fig. 11. The f ′ fre-
quency shows similar structural variations as its sibling, the other
CoRoT RRc star, 241, that we discussed above. Although this
star does not show as large an amplitude variation as 241, the
change in the structure of this secondary frequency is obvious.
While the time scale of the variation is similar, the variations
in the two stars are not identical, and other frequencies do not
show the same effect, so we conclude that they cannot come
from instrumental effects. We also checked the well-behaved
spectral window to see whether the first side lobe is able to
cause any trouble in combination with f ′, but this possibility
can be safely excluded. The frequency table of the star is shown
in Appendix G.

4.4. CoRoT RRd star

CoRoT 0101368812: While the original Kepler field does not
contain any classical double-mode RR Lyrae stars, this RRd star
has been found in CoRoT’s LRc01 run and analyzed by Chadid
(2012). The period of the fundamental mode is 0.4880408 d,
while that of the first overtone is 0.3636016 d. The period ra-
tio is 0.7450 and the amplitude ratio A1/A0 2.7055, with the first
overtone the dominant mode. We note in passing that RR Lyrae,
the eponym of its class, is an example of a modulated RR Lyrae
pulsating in the fundamental mode and exhibiting the first over-
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Fig. 10. Same as Fig. 9, but for the Blazhko CoRoT RRab star 434. The switch back and forth between the two branches in the right panel is a
clear signal pointing to more complex dynamical behavior.
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Fig. 11. Temporal variability of additional frequencies in RRab, RRd, and RRc stars. Upper left: Lower panel: Amplitude variation of the addi-
tional f ′ = 2.61219586 d−1 frequency of CoRoT Blazhko RR Lyrae star 434. The fundamental mode frequency, its harmonics, and the side peaks
related to the modulation (and the modulation frequency itself) were removed. Upper panels: the vicinity of f ′ in the frequency spectrum, lower
panels: amplitude variation. Upper right: The same for the temporal variability of f ′ = 4.4786159 d−1 CoRoT RRd star 812. The first overtone
frequency and its harmonics were removed. Lower left: Temporal variation of the f ′ = 4.37783 d−1 frequency of CoRoT RRc star 241. The first
overtone frequency and its harmonics were removed. Lower right: The same as for the RRc star 241, but for 652. The amplitudes are smaller
than in 241, but the variation in the structure of the f ′ = 5.82484 d−1 peak is strikingly similar.

tone mode in addition (Molnár et al. 2012), with an exceedingly
tiny amplitude (non-classical double-mode RR Lyrae).

It is of interest to investigate whether classical double-mode
RR Lyrae show the period doubling, because of the lack of RRds
in the original Kepler field. Based on the CoRoT data, we see
no half-integer frequencies in the Fourier-spectrum of 812 down

to 0.07 mmag. We mention here that MOST observations of
AQ Leo, another classical RRd star, do not show any PD fre-
quencies, either (Gruberbauer et al. 2007).

We examined the additional frequency f ′ = 4.4786159 d−1

(Chadid 2012) ( f2 in the original paper) and the result is pre-
sented in the upper right hand panel of Fig.11. The figure was

11
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Fig. 12. Phased light curves of two CoRoT RRc stars. Left: 241. Right: 652.

made after prewhitening with the fundamental mode f0 (and its
harmonics), the first overtone f1 (along with all harmonics), and
all the visible linear combinations of these. The f ′ periodicity
shows a clear amplitude variation. We tested that the same varia-
tion is present in the original (unprewhitened) spectrum as well,
so the effect is not caused by the prewhitening process. We also
checked that the observed change is not caused by any variation
in the f0 or f1 themselves or by an interaction with the spectral
window sidelobes.

4.5. Brief summary of the results

After discussing individual objects it is worth summarizing the
most important results. We discovered signs of period doubling
in four CoRoT RR Lyrae stars by reanalyzing their light curves.
These are 962, 793, 544, and 434. Although these stars were
known before, the presence of period doubling has not been rec-
ognized. These objects are all Blazhko RRab stars showing ei-
ther characteristic alternating maxima (or pulsating cycles) in
the time domain, half-integer frequencies between the dominant
pulsation mode and its harmonics (Szabó et al. 2010), or both
(see Table 4 for a summary).

In Table 4 we list additional frequencies reported here for the
first time, as well as a few previously found ones. These frequen-
cies can be interpreted as

– the second radial overtone in Blazhko RRab stars (or at least
frequencies around its expected location with a frequency
ratio ≈ 0.58) in case of 962, 793, and 434. Here we investi-
gated only the one belonging to 793 in detail;

– the well-known frequency with a frequency ratio of 0.61
most probably corresponding to a nonradial mode in RRc
and RRd stars: 241, 652, 812 (we use the notation fX
throughout this work); and

– other nonradial modes in 962, 544 and 434.

We emphasize that the list in Table 4 is by no means exhaus-
tive or complete, since we do not investigate and discuss all
the significant additional frequencies here, only the most promi-
nent ones. Interestingly, based on this work and Nemec et al.
(2011), non-Blazhko RRab stars do not show additional period-
icities down to the exquisitely low-amplitude limits provided of
CoRoT and Kepler.

Another interesting conclusion of this work is that in many
cases the amplitudes of additional frequencies vary over time on
shorter time scales than the typical length of the CoRoT runs,
irrespective of their nature (HIF, second radial overtone, or hy-
pothesized nonradial modes). We found clear temporal variabil-

ity of the amplitudes of a frequency peak close to the second
radial overtone of 793, the probable nonradial modes with a fre-
quency ratio of 0.61 in 241 (RRc) and 812 (RRd), and other
possibly nonradial modes in 544 and 434. Variability is also ob-
vious in the structure of the frequency peak f ′ = 5.82484 d−1

in 652 (another RRc, f ′/ f = 0.615). Only marginal evidence
is found for temporal variability of the amplitudes of a possibly
nonradial mode and the second radial overtone in the Blazhko-
modulated RRab stars 962 and 363, respectively.

5. Discussion and conclusions

5.1. Period doubling

We confirm earlier results (Szabó et al. 2010) that period dou-
bling occurs only in Blazhko-modulated RR Lyrae stars, and
none of the non-modulated RRab stars shows this phenomenon.
In this work we added four non-modulated RRab stars to the list
of RR Lyrae not showing PD with CoRoT’s precision.

Although the amplitude of the HIFs is empirically expected
to be highest in the [ f0;2 f0] frequency interval, we neverthe-
less checked the whole frequency spectrum of each object when
searching for the PD. Indeed, the HIFs are significant up to
11/2 f0 in case of 962 and 17/2 f0 in 793. In two cases (544
and 434), only the alternating maxima betray the presence of
PD. In 434 the reason may be twofold: the PD is rather weak
and it is only present for a very brief time period. THe star
544 is heavily blended, and we had not expected to see any-
thing in the frequency spectrum beyond a few harmonics of
the fundamental mode and some modulation side peaks. On the
contrary, with CoRoT data we were able to uncover PD in this
blended Blazhko RR Lyrae star (its total amplitude is only about
0.m02), nicely demonstrating the capabilities of high duty-cycle,
extreme-precision space photometry. We checked the frequency
spectrum of 544 and 434 to see whether any single additional
frequency or a combination of them can cause this conspicuous
alternation of consecutive maxima. It turned out that the ampli-
tudes of these frequencies are much lower than what would be
required to cause the observed effect, so we conclude that the
hypothesis of the presence of PD is plausible in these cases.

As seen in the Kepler RR Lyrae sample, the strength of pe-
riod doubling is changing with time in the CoRoT PD stars
as well, and in most cases it crops up only temporarily for a
few pulsational cycles. For estimating of the occurrence rate of
the period-doubling effect in Blazhko and possible non-Blazhko
stars, it is very important to monitor RR Lyrae stars with high-
precision photometry (preferably from space) for a long time
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Fig. 13. Frequency spectrum of the star 241 with sequential prewhitening. Some characteristic frequencies are labeled with their identification. Sat
refers to frequencies connected to the orbit of the CoRoT satellite. a.) The original spectrum dominated by the first overtone pulsation mode ( f1).
b.) After prewhitening with f1 and its harmonics. c.) The result of removing f ′ and all combination terms involving f1 and f ′. d.) Prewhitening
with all f1 ± k ∗ fm and f ′ ± k ∗ fm frequencies. e.) After removing all significant f1 ± k ∗ fb and f ′ ± k ∗ fb frequencies. f.) Removing another 13
frequencies including those from the satellite and third order linear combinations of { f1, f ′, fm, fb}.

(several Blazhko-modulation periods, meaning several months
or years), and uninterrupted because of the time variability of the
phenomenon. CoRoT and Kepler data sets are ideal for this pur-
pose, because both missions delivered many month- and year-
long, high-precision, uninterrupted observations, respectively.
The four stars with PD out of six modulated RRab targets is
entirely consistent with the results of Benkő et al. (2014) who
found PD in nine out of 15 Blazhko-modulated Kepler stars.
This can be augmented to 10/16, if RR Lyrae, the prototype, is
accounted for (Szabó et al. 2010). This means that roughly two
Blazhko-modulated RRab stars out of three show the period-
doubling phenomenon. One is tempted to speculate that because
of the finite length of space data (60-150 days in case of CoRoT,
4 years for Kepler) and the temporary presence of PD, it is pos-
sible that the occurrence rate can be higher. To take this argu-
ment to the extreme, it is possible that all Blazhko-modulated
stars would show period doubling if long enough time series data
were taken.

The connection between the Blazhko modulation and the
period doubling is obvious. The high occurrence rate of PD in
Blazhko-modulated stars stresses the possible underlying physi-
cal connection of the two dynamical phenomena. Indeed, the 9:2
resonance between the fundamental mode and the 9th overtone
which explains the period doubling (Szabó et al. 2010; Kolláth
et al. 2011), might be the culprit for causing the Blazhko modu-
lation itself, as well (Buchler & Kolláth 2011). Given that the
resonance paradigm is partly based on hydrodynamic models
and partly on the successful and simple amplitude equation for-
malism, in our opinion this is currently the most plausible ex-
planation for the century-old Blazhko enigma. It is backed up by
the results of this paper.

Interestingly, alternating cycles are found in other pulsating
star types, such as RV Tauri where the alternating deep and shal-
low minima are characteristic, and also in BL Her stars (Smolec
et al. 2012). Surprisingly, white dwarfs may show alternating
cycles, as well (Paparó et al. 2013). Although in some cases this
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Table 4. Summary of the main results: period doubling search and additional frequencies that were investigated in detail along with their most
probable identification. ‘<’ denotes upper amplitude limit. For the only RRd star in the sample, half-integer frequencies corresponding to both
radial pulsation modes were searched for.

CoRoT ID Ampl. of 1.5 f0 alternating Type PD f0 or f1 additional freq. frequency ratio identification
[mmag] maxima yes / no [d−1] f ′ [d−1] f / f ′

0101370131 < 0.30 n RRab n 1.61464
0101315488 < 0.10 n RRab n 2.06057
0103800818 < 0.07 n RRab n 2.14622
0104315804 < 0.15 n RRab n 1.38538
0100689962 3.21 y RRab Bl y 2.80902 4.03265 0.697 nr
0101128793 2.44 y RRab Bl y 2.11895 3.63088 0.584 O2
0100881648 < 0.10 n RRab Bl nb 1.64694
0101503544 < 0.05 y RRab Bl yb 1.65266 2.38929* 0.692 nr
0105288363 < 0.35 n RRab Bl n 1.76230 2.98400 0.591 O2
0103922434 < 0.30 y RRab Bl y 1.84712 2.61220* 0.707 nr
0105036241 < 0.20 n RRc n 2.68153 4.37783* 0.613 fX
0105735652 < 0.13 n RRc n 3.58218 5.82484* 0.615 fX
0101368812 < 0.20 n RRd f0 n 2.04901 - - -

< 0.15 n RRd f1 n 2.75026 4.47862 0.614 fX

Notes. The superscript ‘b’ denotes blended pulsators, a configuration that prevents detection of low-amplitude features. Identifications: O2:
second radial overtone; nr: nonradial mode; fx: ubiquitous frequency in RRc stars with a frequency ratio ≈ 0.61 (Moskalik 2014). ‘*’ denotes new
discoveries, other frequencies were reported in previous publications, see Table 1 for the relevant references.

may be a result of an interaction of several independent modes
in the frequency spectrum, at least in one case a period-doubling
bifurcation event seems to be well-documented (Goupil et al.
1988), showing close resemblance of RR Lyrae star pulsational
dynamics (Kolláth et al. 2011).

5.2. Time-dependent additional frequencies

With the thorough analysis of CoRoT RR Lyrae data, we confirm
earlier emerging trends that additional periodicities are ubiqui-
tous in RR Lyrae stars. RRd stars were the first type of object
where frequencies not fitting in the radial eigenspectrum were
found (Gruberbauer et al. 2007), but soon - with the advent
of regular space photometric observations - Blazhko-modulated
RRab (Chadid et al. 2010; Guggenberger et al. 2012) and RRc
stars (Moskalik 2013, 2014) followed. It is especially interest-
ing that most of the RRc stars that were observed from space
show periodicities with a frequency ratio of f1/ f ′≈ 0.61 with
the first radial overtone mode (Moskalik 2014). These addi-
tional frequencies seem to be present in all stars in our sam-
ple showing normal amplitude first-overtone pulsation, i.e. RRc
and RRd stars (see Table 4, where we identified them with
fX). The most plausible explanation for their origin is nonra-
dial modes (Dziembowski 2012). Interestingly, modulated RRab
stars also show various, low-amplitude additional periodicities
(Benkő et al. 2010; Chadid et al. 2010; Molnár et al. 2012;
Guggenberger et al. 2012).

In this work we attempted to unveil the temporal behavior of
the ubiquitously seen additional, low-amplitude frequencies that
are usually attributed to nonradial oscillations by the virtue of the
extended coverage and high duty cycle provided by CoRoT. We
found that in almost all cases, where the brightness of the star,
the data coverage, and the crowdedness of the frequency spec-
trum allowed a detailed analysis, these frequencies showed am-
plitude variation over time, followed by a variation in the shape
of the frequency peak. The structure of the peaks already sug-
gests temporal variability of the amplitude and/or frequencies,
since amplitude and/or frequency modulation manifests itself as
side peaks around the corresponding frequency peaks (Benkő

et al. 2011). This is exactly what we see around the HIFs in many
cases (Szabó et al. 2010, see also Fig. 5 in this work). This same
variation maybe occur in other additional frequencies, as well.
It is possible that the amplitude and the structure of these addi-
tional frequency peaks vary because there are close, unresolved
frequencies around them. We consider this possibility unlikely
based on our experiences with the Kepler RR Lyrae data that
have better frequency resolution.

Finding a physical explanation for ubiquitous time variabil-
ity of the additional frequencies, which at the same time does
not affect the dominant pulsational mode, is challenging. We are
tempted to think that the additional frequencies might be non-
radial modes. (i) Maybe these modes are not self-excited and
are only present when they experience resonances. That would
explain nonstationarity, if resonance conditions governed by the
stellar structure are not always met. This might be the case in
Blazhko-modulated stars, where the period and stellar structure
also vary (quasi)periodically (Jurcsik et al. 2009b; Sódor et al.
2009; Szabó et al. 2010; Kolláth et al. 2011). The typical time
scale of the variation we found is several tens of days, although
the variation may be seriously undersampled because of the at-
tainable frequency resolution. This might be compared to typ-
ical theoretical mode growth rates or the time scale of interac-
tions, as we see in stars showing period doubling (Kolláth et al.
2011). The variation is most probably a consequence of the inter-
action with the large-scale, long-term modulation, which may be
a plausible explanation for the observed phenomena. However,
this explanation is challenged by the fact that the amplitude,
hence non-linearity in RRc stars is much lower than in RRab
stars, still the same variation also occurs in these stars. (ii) If not
only one, but several closely spaced nonradial modes are excited
(Van Hoolst et al. 1998), they can interact causing a complex be-
havior in the frequency space. In this case not only the time scale
of the excitation, but also that of the nonlinear interaction be-
comes relevant. While the found variations are quite diverse, the
magnitude and the time scale of the newly found variations of the
additional frequencies suggest a common origin. (iii) Rotational
splitting is less likely, since we would not expect temporal varia-
tion unless an other mechanism is at work. Invoking some other
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modes might come to the rescue if further nonlinear interactions
are assumed, hence creating a complex, unresolvable (even with
continuous CoRoT observations) pattern in the frequency do-
main. Detailed investigation of these mechanisms is beyond the
scope of this paper, but we may conclude that the discovery of
these variations leads us to an unexplored territory of fine details
of RR Lyrae pulsation.

5.3. Interpretation of the frequency spectra of Blazhko RRab
stars

In Chadid et al. (2010) and Poretti et al. (2010), the frequency
spectrum of the Blazhko-modulated 962 and 793 were inter-
preted as the result of the presence of independent, additional
frequencies (presumably nonradial modes) and their combina-
tions besides the well-known pulsational frequency, harmonics,
modulation multiplets, the modulation frequency itself, and its
harmonics. Here, we offer a simpler explanation, since the pres-
ence of half-integer frequencies, as a result of the period dou-
bling, removes one independent frequency, together with all the
related combination terms.

In many Blazhko RR Lyrae stars, peaks appear around the
expected frequencies of the second (and first) radial overtone
(Benkő et al. 2010). This is the case for 962 and 793, as well.
Here we identify the frequencies with a frequency ratio of 0.58
with the radial second overtone, while keeping in mind that the
excitation of nonradial modes in the vicinity of radial overtones
is also predicted and plausible (Dziembowski 1977; Van Hoolst
et al. 1998).

Other significant frequencies were found by previous stud-
ies and this work (see in Table 4. denoted by ‘nr’) which do
not fit the above described picture. Their frequency ratio ( f0/ f ′)
is about 0.7. As we mentioned it in Benkő & Szabó (2014),
these frequencies can also be interpreted as linear combination:
2( f2− f0). Indeed, the components and the simplest combination
( f0, f2, and f2 − f0) of these frequencies are detectable for all
Blazhko RR Lyrae stars except for the heavily blended 544 and
648 .

The linear combination assumption simplifies the mathemat-
ical description, but is it a plausible physical explanation? Do
these frequencies belong to radial modes? Not necessarily, since
the amplitudes seem to contradict this scenario. For example,
the amplitudes of f2 − f0 and f2 in 962 are about three times
smaller than the amplitude of 2( f2 − f0). Such behavior is highly
unlikely for simple linear combinations. It is possible, however,
that f2 and f0 excite a nonradial mode ( fnr) through a three-mode
resonance fnr≈ 2( f2 − f0), in which case the amplitude of the ex-
cited mode can be higher. A similar effect has been detected for
δScuti stars, B,A,F stars, and a peculiar roAp star (Balona et al.
2013; Breger 2014; Breger & Montgomery 2014). All of these
papers suggest the presence of coupled nonradial modes show-
ing quasi-periodic amplitude and frequency variations similar to
our presented results. Further developments of multi-dimension
hydrocodes, such as Geroux & Deupree (2011) and Mundprecht
et al. (2013), will eventually make it possible to test this scenario.

6. Summary

The main results of this work can be summarized as follows.

– The most comprehensive collection to date of CoRoT
RR Lyrae variables was presented, including new discover-
ies. The sample consists of all RR Lyrae subtypes: Blazhko
and unmodulated RRab stars, two RRc, and one RRd star.

We publish epochs, periods, frequency tables, and phased
light curves for those object that have not been analyzed ear-
lier.

– Thanks to the CoRoT high cadence observations, we could
detect 56 harmonics of the pulsation frequency correspond-
ing the fundamental mode in the case of non-modulated 818
RRab star. To our knowledge this is the highest number of
observed Fourier terms describing an RR Lyrae light curve,
hence the most precise one that will serve as a benchmark
for model computations.

– Period doubling is detected in CoRoT Blazhko RRab stars
for the first time. We discovered brief sections of alternating
maxima typical of PD effect in four CoRoT RR Lyrae stars.
It means that two out of three modulated RR Lyrae show
this dynamical phenomenon, at least temporarily, in accor-
dance with the Kepler RR Lyrae statistics. Given the usually
short time intervals where PD is detectable, the percentage
can be even higher. The strong correlation of the PD occur-
rence with the Blazhko phenomenon and the fact that no PD
was detected in unmodulated CoRoT and Kepler RR Lyrae
suggests a causal relation, such as the ‘resonance paradigm’
proposed by Buchler & Kolláth (2011). In some cases the
presence of PD offers a simpler explanation of the frequency
spectrum of Blazhko-modulated RR Lyrae.

– Our work corroborates those recently found trends toward
additional frequencies (most probably higher radial over-
tones and nonradial modes) being ubiquitous in all subtypes
of RR Lyrae stars (RRc, RRd, Blazhko RRab), except the
unmodulated RRab pulsators. This is an extremely strict
rule, since none of the non-Blazhko RRab stars observed
by Kepler and CoRoT shows any additional frequency peaks
beyond the dominant pulsational mode and its harmonics,
while all the other types - except some blended objects - do
show this feature with high-precision space-based photomet-
ric observations. If the additional frequencies proved to be
nonradial modes, then we anticipate that asteroseismology
of RR Lyrae stars should be feasible in the near future.

– We analyzed the temporal variability of additional frequen-
cies for the first time in all subtypes of RR Lyrae stars based
on the CoRoT sample. The amplitude or the shape of these
frequencies vary in time in most cases where we could draw
firm conclusions. This variability can be connected to the
Blazhko cycle in modulated stars, much like the half-integer
frequencies signaling the period doubling are strongly vari-
able. A physical explanation in this case may be the changes
in the stellar structure during the Blazhko cycle and the con-
sequent close or near-miss encounters with different reso-
nances between radial and/or nonradial modes. That would
explain the temporal excitation of nonradial modes (Kolláth
et al. 2011). In unmodulated stars, such as RRd and RRc
stars, however, a different mechanism should be at work, and
it is not clear at this point whether a common mechanism
can explain the temporal variability of additional frequencies
in all RR Lyrae subtypes. Through investigations similar to
this work, we may get closer to understanding the excitation
mechanism and origin of these periodicities.

Future high-precision photometric missions will multiply the
number of interesting RR Lyrae stars to be investigated in de-
tail. NASA’s continuing Kepler Mission (dubbed K2), (Howell
et al. 2014), TESS (Ricker et al. 2014), and PLATO (Rauer
et al. 2013) will provide hundreds-to-thousands of continuous
RR Lyrae light curves spanning from a few weeks (TESS), to
couple a of months (K2), and to several years (PLATO) cov-

15
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erage. Prospective data sets from upcoming missions will shed
new light on the occurrence of the Blazhko effect, period dou-
bling, additional radial, nonradial modes, and other dynamical
phenomena as a function of a broad range of stellar parameters.
In light of these prospects, we are entering a golden era of clas-
sical variable stars, and our observational data presented in this
work will provide ample examples for detailed theoretical anal-
ysis.
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Benkő, J. M., Kolenberg, K., Szabó, R., et al. 2010, MNRAS, 409, 1585
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Appendix A: Frequency content of the new CoRoT
RR Lyrae star: 0101315488

Table A.1 contains the frequencies that we found during the
frequency analysis. The star pulsates with a period of 0.485299
days. The following epoch for maxima was found:
2454236.8709 HJD + 0.d4853033(15) · E. (A.1)

Digits in parentheses denote the uncertainties. Nine harmon-
ics can be found in the frequency spectrum. No additional fre-
quencies were found.

Appendix B: Frequency table of the new CoRoT
RRab star: 0103800818

Table B.1 enumerates the frequencies of the unmodulated
RR Lyrae, 818. The period of this star is 0.4659348 days. No
modulation was found in this RRab star. We found the following
epoch for maxima:
2455029.3049 HJD + 0.d4659348(6) · E. (B.1)

After prewhitening, ‘forests’ of peaks remain around the har-
monics. These do not show any obvious modulation pattern, so
we decided not to list them in Table B.1.

Appendix C: Frequency table of the new CoRoT RR
Lyrae star: 0104315804

In Table C.1 we give the frequency content of 804. The star pul-
sates with a period of 0.7218221 days. No signs of modulation or
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additional frequencies were found in this object. The following
epoch for maxima was obtained:

2455019.8524 HJD + 0.d7218221(36) · E. (C.1)

Appendix D: Frequencies of 0100881648

In Table. D.1 we present the result of the Fourier analysis of the
blended CoRoT Blazhko RRab star, 648. The following epoch
for maxima was found:

2454236.9472 HJD + 0.d6071863(48) · E. (D.1)

This is a heavily blended Blazhko RRab star. The spectrum
shows the frequency corresponding to the fundamental mode
pulsation ( f0) and nine harmonics. In addition, the right compo-
nents of the modulation triplets are seen prominently around the
harmonics after prewhitening. In a few cases, the left hand side
peaks are also detected. The remaining spectrum consists of the
known orbital frequencies of CoRoT, their linear combinations
with the sideral day, many peaks due to low-frequency varia-
tions in the frequency interval 0.1 − 0.7 d−1, and some residuals
around the main frequency and around the low-order harmon-
ics. The residual peaks are at the level of 73 µmag. The am-
plitude and frequency variation of the star due to the Blazhko-
modulation was already presented in Szabó et al. (2009).

Appendix E: Frequencies of the blended Blazhko
RRab star 0101370544

Table E.1 lists the result of the Fourier analysis of the second
blended CoRoT Blazhko RRab star, 544. This object was ob-
served in the color mode of CoRoT, but we chose to present the
co-added (white) light frequencies, because this data set is su-
perior to the individual color observations. The following epoch
for maxima was found:

2454237.1010 HJD + 0.d6050870(43) · E. (E.1)

Despite the heavy blending, the spectrum shows the fre-
quency corresponding to the fundamental mode pulsation ( f0),
and ten harmonics. In addition, the triplet components of the
modulation found around f0 are revealed around most of the
harmonics after pre-whitening. The right side-lobes (k ∗ f0 + fm)
are present with higher amplitudes than their left hand coun-
terparts. The remaining spectrum consists of the known orbital
frequencies of CoRoT, and their linear combinations with the
sideral day, many peaks due to low-frequency variations in the
frequency interval 0.2 − 0.8 d−1, some residuals around the main
frequency and low-order harmonics, and a few remaining peaks
close to or below the significance level between f0 and 2 f0. The
residual peaks are at the level of 28 µmag. The amplitude and fre-
quency variation due to the Blazhko-modulation was presented
in Szabó et al. (2009).

Appendix F: Frequencies of the CoRoT RRc star
0105036241

Besides the dominant first overtone frequency ( f1 =
2.68153 d−1) and its harmonics, we see f ′ in the spectrum with

a characteristic 0.613 frequency ratio with the first-overtone ra-
dial pulsation (Table F.1). In addition, several frequencies were
found in the [0.5;1.5] d−1 frequency range. Upon inspecting the
data, we found that their origin can be traced back to two re-
maining discontinuities, therefore these portions of the data set
CJD [3046.0-3048.0] and [3156.5-3157.5] were removed. In the
following we analyze the remaining data set.

We found high left-hand side peaks around the main fre-
quency and its harmonics. If we suppose that fm = 0.00585 d−1

is a modulation frequency, the period of the modulation would
be longer than the data set. According to that this star may
show a long-period Blazhko-modulation, but more data would
be needed to confirm this finding. Another set of modulation-like
frequency difference appears in the data set (Fig. 13, Table F.1).
We denote the corresponding frequency fb. Neither fm, nor fb
can be found in the frequency spectrum, but they only appear
through combination frequencies. Even combination frequen-
cies involving both fm and fb can be identified. We note here
that as we demonstrated in Sec. 4.3, f ′ has temporal amplitude
variation, and this is the most probable culprit causing the ap-
pearance of the fb modulation frequencies. The strongest argu-
ment favoring this scenario is that fb appears only close to and
in combination with f ′, and is not seen around the main pulsa-
tion frequency, f1. In addition, frequencies associated with the
orbital period of the satellite and its daily aliases are seen at
f = 13.967924, 14.974027, 12.969585 d−1 as usual in CoRoT
data. We omitted these peaks from Table F.1. The following
epoch for maxima was found:
2454572.6300(7) HJD + 0.d3729214(2) · E (F.1)

or taking a gradual period change into account:

2454572.6300(7) HJD+0.d3729214(2) ·E−1.d4(7) ·10−7 ·E2.(F.2)

Appendix G: Frequencies of the CoRoT RRc star
0105735652

We detect the main frequency f1 = 3.58218 d−1 and its har-
monics, but also many other frequencies with lower amplitude.
Among them we found a highly significant frequency at f ′ =
5.82484 d−1 with several peaks around it, then additional peaks
around f1. The frequencies are available in Table G.1. The fol-
lowing epoch for maxima and period were found:

2454572.7323 HJD + 0.d2791596(38) · E. (G.1)

After prewhitening with the frequencies enumerated in
Table G.1, a dense forest of frequencies remains around f1. We
also see similar residual power around the second and third har-
monics, frequencies around 5.9, 9.4, 16.5, 20.1 d−1, and frequen-
cies related to the orbital frequency of CoRoT.

The large number of side frequencies seen around fre-
quencies f ′ and 9.470874 d−1 may be the result of their non-
stationary nature (modulation). We gave an example in Szabó
et al. (2010) where the frequency forest found around the the
half-integer frequencies was modeled and explained by the vary-
ing amplitude of these frequencies. We see a very similar situa-
tion here.
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Table B.1. Frequency table of the unmodulated CoRoT RRab star, 818.
We refrain from listing the CoRoT orbital frequencies and a large num-
ber of residual frequencies around the harmonics.

ID freq. ampl. phase
[d−1] [mag] [rad]

f0 2.146223 0.34509 3.195
2 f0 4.292446 0.17020 2.449
3 f0 6.438669 0.12905 1.966
4 f0 8.584893 0.08415 1.563
5 f0 10.731116 0.06027 1.171
6 f0 12.877339 0.03956 0.803
7 f0 15.023562 0.02415 0.333
8 f0 17.169785 0.01659 6.033
9 f0 19.316008 0.01289 5.518

10 f0 21.462232 0.00980 5.128
11 f0 23.608468 0.00639 4.784
12 f0 25.754666 0.00353 4.380
13 f0 27.900991 0.00184 3.722
14 f0 30.047044 0.00102 3.146
15 f0 32.193767 0.00030 2.846
16 f0 34.339850 0.00051 4.970
17 f0 36.485549 0.00110 4.983
18 f0 38.631887 0.00139 4.690
19 f0 40.777791 0.00147 4.351
20 f0 42.924600 0.00152 3.732
21 f0 45.070642 0.00158 3.280
22 f0 47.216924 0.00163 2.834
23 f0 49.363091 0.00161 2.429
24 f0 51.509352 0.00156 1.989
25 f0 53.655410 0.00146 1.558
26 f0 55.801814 0.00139 1.085
27 f0 57.948115 0.00132 0.649
28 f0 60.094089 0.00120 0.284
29 f0 62.240271 0.00110 6.150
30 f0 64.386660 0.00103 5.672
31 f0 66.532893 0.00093 5.188
32 f0 68.679352 0.00086 4.709
33 f0 70.825334 0.00075 4.368
34 f0 72.971610 0.00072 3.945
35 f0 75.117668 0.00063 3.607
36 f0 77.264339 0.00056 2.980
37 f0 79.410227 0.00052 2.709
38 f0 81.556746 0.00048 2.243
39 f0 83.703001 0.00041 1.847
40 f0 85.849075 0.00039 1.373
41 f0 87.995504 0.00034 0.962
42 f0 90.141755 0.00031 0.570
43 f0 92.287719 0.00030 0.102
44 f0 94.433877 0.00027 5.992
45 f0 96.580393 0.00025 5.741
46 f0 98.727051 0.00022 4.954
47 f0 100.872457 0.00020 4.753
48 f0 103.020019 0.00016 3.993
49 f0 105.164947 0.00015 4.051
50 f0 107.311097 0.00015 3.692
51 f0 109.456036 0.00013 3.666
52 f0 111.604225 0.00011 2.343
53 f0 113.749783 0.00008 2.633
54 f0 115.896231 0.00011 1.962
55 f0 118.041414 0.00010 1.920
56 f0 120.189737 0.00010 0.893
57 f0 122.334629 0.00007 1.414

Table C.1. Frequency table of the non-modulated CoRoT RRab star,
804. We only list the dominant fundamental mode pulsation frequency
and its harmonics.

ID freq. ampl. phase
[d−1] [mag] [rad]

f0 1.385383 0.12961 2.944
2 f0 2.770767 0.05177 2.608
3 f0 4.156150 0.02263 2.573
4 f0 5.541534 0.00878 2.853
5 f0 6.926917 0.00592 3.223
6 f0 8.312300 0.00524 3.217
7 f0 9.697684 0.00423 3.031
8 f0 11.083067 0.00330 2.748
9 f0 12.468451 0.00242 2.489

10 f0 13.853834 0.00166 2.207
11 f0 15.239217 0.00139 1.930
12 f0 16.624601 0.00105 1.759
13 f0 18.009984 0.00070 1.513
14 f0 19.395368 0.00055 1.244
15 f0 20.780751 0.00042 0.810
16 f0 22.166134 0.00030 0.915
17 f0 23.551518 0.00033 0.438
18 f0 24.936901 0.00019 0.808
19 f0 26.322285 0.00021 6.203

Table D.1. Frequency table of the blended Blazhko RRab star, 648.

ID freq. ampl. phase
[d−1] [mag] [rad]

f0 1.646941 0.03280 0.911
2 f0 3.293434 0.01208 6.160
3 f0 4.940375 0.00504 3.919
4 f0 6.586869 0.00163 3.594
5 f0 8.233809 0.00094 2.063
6 f0 9.880303 0.00084 1.410
7 f0 11.527244 0.00067 5.489
8 f0 13.173737 0.00048 4.474
9 f0 14.821125 0.00032 0.821

10 f0 16.467619 0.00020 6.190
f0 − fm 1.633088 0.00065 0.490
f0 + fm 1.663030 0.00437 0.759

2 f0 − fm 3.275110 0.00033 3.656
2 f0 + fm 3.309971 0.00215 3.767
3 f0 + fm 4.956911 0.00168 1.290
4 f0 + fm 6.603405 0.00062 0.828
5 f0 + fm 8.250346 0.00021 5.675
6 f0 + fm 9.898180 0.00029 0.681
7 f0 + fm 11.543333 0.00028 4.654
8 f0 + fm 13.190274 0.00027 2.231
9 f0 + fm 14.836320 0.00019 2.538

10 f0 + fm 16.482814 0.00014 1.552
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Table E.1. Frequency table of the white band light curve of the blended
Blazhko RRab star, 544.

ID freq. ampl. phase
[d−1] [mag] [rad]

f0 1.652655 0.00930 5.137
2 f0 3.305310 0.00323 0.437
3 f0 4.957965 0.00162 2.316
4 f0 6.610620 0.00051 4.400
5 f0 8.263275 0.00016 0.517
6 f0 9.915930 0.00017 3.025
7 f0 11.568585 0.00013 5.008
8 f0 13.221240 0.00013 0.456
9 f0 14.873895 0.00010 2.244

10 f0 16.526550 0.00007 4.090
11 f0 18.179205 0.00007 5.635

f0 + fm 1.691938 0.00163 0.917
2 f0 + f m 3.344600 0.00083 1.996
3 f0 + f m 4.997249 0.00067 3.691
4 f0 + f m 6.649602 0.00033 5.857
5 f0 + f m 8.302697 0.00014 1.593
6 f0 + f m 9.955316 0.00009 4.047
7 f0 + f m 11.608022 0.00013 6.247
8 f0 + f m 13.260818 0.00011 1.749
9 f0 + f m 14.913797 0.00010 3.478

10 f0 + f m 16.566175 0.00008 5.297
11 f0 + f m 18.219099 0.00006 0.945

f0 − f m 1.613977 0.00028 2.873
2 f0 − f m 3.266438 0.00015 4.474
3 f0 − f m 4.919052 0.00015 5.969
4 f0 − f m 6.571116 0.00013 1.999
5 f0 − f m 8.224252 0.00007 3.496
6 f0 − f m 9.877031 0.00007 5.558
7 f0 − f m 11.529681 0.00004 0.594
8 f0 − f m 13.182138 0.00004 3.375

10 f0 − f m 16.487827 0.00004 0.997
f ′ 2.389287 0.00015 4.079

Table F.1. Frequency table of the CoRoT RRc star, 241.

ID freq. ampl. phase
[d−1] [mag] [rad]

f1 2.68153 0.19610 0.337
2 f1 5.36271 0.01186 4.704
3 f1 8.04458 0.01409 2.349
4 f1 10.72611 0.01120 5.662
5 f1 13.40729 0.00728 2.976
6 f1 16.08882 0.00454 6.118
7 f1 18.77035 0.00288 2.850
8 f1 21.45187 0.00177 5.771
9 f1 24.13375 0.00105 1.973

10 f1 26.81493 0.00065 5.299
11 f1 29.49611 0.00044 2.292
12 f1 32.17764 0.00027 5.439

f ′ 4.37783 0.00332 2.953
f ′ − f1 1.69630 0.00052 3.322
f ′ + f1 7.05901 0.00304 5.886

2 f1 + f ′ 9.74054 0.00147 1.980
2 f1 − f ′ 0.98488 0.00039 5.187
3 f1 + f ′ 12.42241 0.00035 4.613

f1 − fm 2.67601 0.00415 0.369
f1 + fm 2.69084 0.00151 5.743

f1 − 2 fm 2.67015 0.00147 4.535
f1 + 2 fm 2.69946 0.00055 5.690
f1 − 3 fm 2.66256 0.00026 3.728
2 f1 + fm 5.35823 0.00060 2.256
2 f1 − fm 5.36823 0.00036 4.349
3 f1 + fm 8.03906 0.00054 1.887
3 f1 − fm 8.05286 0.00025 2.841
4 f1 + fm 10.72025 0.00063 5.756
4 f1 − fm 10.73232 0.00025 1.842
5 f1 − fm 13.40143 0.00043 2.244
6 f1 − fm 16.08296 0.00029 5.635
7 f1 − fm 18.76414 0.00026 2.625
8 f1 − fm 20.44610 0.00032 5.533

f ′ − fm 4.37266 0.00035 1.050
f ′ + fm 4.38472 0.00186 2.572
f1 − fb 2.64290 0.00044 1.131

f1 − 2 fb 2.60014 0.00038 3.784
2 f1 − fb 9.69881 0.00039 4.512

f ′ − fb 4.33852 0.00172 1.475
f ′ + fb 4.41852 0.00026 2.532

f ′ − 2 fb 4.30265 0.00074 5.346
f ′ − 3 fb 4.25989 0.00024 5.469

f ′ + f1 + fm 7.06625 0.00159 5.015
f ′ + f1 − fm 7.05418 0.00062 3.355

2 f1 + f ′ + fm 9.74743 0.00084 1.622
f ′ + f1 − 2 fb 6.98383 0.00036 2.248
f ′ + f1 + 2 fb 7.14379 0.00043 3.320
f ′ − fb − fm 4.33369 0.00069 2.981
f ′ + fb − fm 4.34472 0.00043 4.744
f ′ + fb + fm 4.42611 0.00053 4.089

f ′ + 2 fb + fm 4.46197 0.00098 5.216
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Table G.1. Frequency table of the CoRoT RRc star, 652.

ID freq. ampl. phase
[d−1] [mag] [rad]

f1 3.58218 0.20403 0.548
2 f1 7.16435 0.03209 4.309
3 f1 10.74653 0.01666 1.496
4 f1 14.32871 0.01356 5.530
5 f1 17.91088 0.00992 2.685
6 f1 21.49306 0.00671 5.825
7 f1 25.07541 0.00420 2.693
8 f1 28.65754 0.00240 5.670
9 f1 32.23960 0.00145 2.291

10 f1 35.82177 0.00074 5.136
11 f1 39.40394 0.00054 1.507
12 f1 42.98612 0.00039 4.327
13 f1 46.56830 0.00033 0.575
14 f1 50.15047 0.00023 0.712

f ′ 5.82484 0.00216 5.731
f ′ + fm 5.88925 0.00144 5.090
f ′ − fm 5.76587 0.00084 3.699

f ′ + 2 fm 6.00000 0.00073 2.904
f ′ − 2 fm 5.71282 0.00035 1.072

5.93520 0.00043 6.179
5.87227 0.00054 2.259
5.77659 0.00075 0.001
9.47087 0.00089 2.479
9.40747 0.00064 0.961
9.58200 0.00048 5.982
9.34758 0.00037 0.292
9.29643 0.00023 3.506
9.62932 0.00017 1.606

f1 + fm 3.64669 0.00087 2.133
2.66379 0.00064 3.466
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