
Routing on the Shortest Pairs of Disjoint Paths
Péter Babarczi∗, Gábor Rétvári∗, Lajos Rónyai†, and János Tapolcai∗

∗Department of Telecommunications and Media Informatics, Faculty of Electrical Engineering and Informatics,
Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

†Institute for Computer Science and Control, Eötvös Loránd Research Network; and Department of Algebra, Institute of
Mathematics, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

E-mail: {babarczi, retvari, tapolcai}@tmit.bme.hu, ronyai@sztaki.hu

Abstract—Recent trends point towards communication net-
works will be multi-path in nature to increase failure resilience,
support load-balancing and provide alternate paths for con-
gestion avoidance. We argue that the transition from single-
path to multi-path routing should be as seamless as possible in
order to lower the deployability barrier for network operators.
Therefore, in this paper we are focusing on the problem of
routing along the shortest pairs of disjoint paths between each
source-destination pair over the currently deployed link-state
routing architecture. We show that the union of disjoint path-
pairs towards a given destination has a special structure, and
we propose an efficient tag encoding scheme which requires only
one extra forwarding table entry per router per destination. Our
numerical evaluations demonstrate that in real-world topologies
usually only 4 bit tags are sufficient in the packet headers to
route on the disjoint path-pairs. Finally, we show that our tags
automatically encode additional paths beyond the shortest pair
of disjoint paths, including the shortest paths themselves, which
enables incremental deployment of the proposed method.

Index Terms—multi-path routing, Suurballe-Tarjan algorithm,
data-plane scalability, incremental deployment

I. INTRODUCTION

Traditional link-state routing protocols calculate a Short-
est Path Tree (SPT) towards each destination [1], which
provides a single minimum-cost/minimum-delay forwarding
path between each source-destination pair. Single-path routing,
however, tends to concentrate load on certain links of the
network and even a single link failure may disrupt the flow of
traffic between nodes [2]. In contrast, multi-path routing leads
to more efficient utilization of network capacity by allowing
load to be distributed among multiple forwarding paths, and
enables instantaneous failure recovery by letting packets to be
deflected off the failed path either by any router adjacent to
a failure (e.g., IP fast-reroute [3], [4]) or by the source node
(i.e., either the ingress router or end-host [5]–[7]). In fact, by
making end-hosts fully responsible for load-balancing, failure
recovery and traffic optimization, multi-path routing may allow
to eliminate dynamic routing all together, yielding a much
simpler static forwarding scheme [8].

Our main focus in this paper is source-selectable multi-path
routing [9], [10], where the goal is to provide multiple pre-
calculated paths towards each destination from which sources
can select a single path, or simultaneously several paths, for
forwarding traffic. For instance, a source may explicitly encode
the hops of the selected path in the packet header (by using
source-routing, segment-routing, etc. [6]), it may use a tag to

mark packets by setting some pre-defined bits in the header
and then the network would guarantee that marked packets
would be forwarded along the path associated with the tag,
or it may leave the selection of the forwarding path entirely
to the network (e.g., as in equal-cost multi-path where the
“tag” is implicit, e.g., the hash of the IP 5-tuple). Explicit
routing provides finer control over forwarding paths, whereas
tags limit the source to select only from a pre-defined path set
without being aware of the actual nodes the forwarding path
will traverse, which may help mitigate the security concerns
associated with source routing [5].

Source-selectable multi-path routing will inevitably lead to
an increased use of scarce network resources. At the very
minimum the new paths will need to be encoded in the data-
plane, consuming extra entries [9]–[11] in the forwarding
tables that are already stressed by single-path routing [12],
and pinning packets to specific paths will require additional
packet header bits or the introduction of extra shim headers
[6], [7], [13]. In the control plane, distributing the required
routing information may require excessive routing protocol
messaging [14], and calculating the extra forwarding paths will
unavoidably cause additional CPU and memory consumption
in routers. In this paper, we argue that the transition to multi-
path routing should incur as small data-plane and control-plane
overhead as possible, in order to remove the deployability
barrier for multi-path routing.

As a first step towards an incrementally deployable multi-
path routing scheme, we propose to replace the (single)
shortest path used in link-state routing with the shortest pairs
of disjoint paths (SPDP) [15], [16]. We argue that this is a
small departure from the current practice, which maintains
the principle of least-cost/least-delay routing from shortest-
path routing but extends it to two disjoint paths per source-
destination pair, and hence would entail minimal change in the
management of operational networks. At the same time, using
two disjoint paths already admits guaranteed fast recovery
from any single-link/single-node failure and unlocks traffic
optimization in an end-to-end fashion, by enabling sources to
dynamically load-balance traffic among their paths in concert
with congestion feedback. In fact, the idea of routing on
disjoint path-pairs was already proposed (e.g., using indepen-
dent trees [17], [18]), and specifically SPDP has also been
considered in [6], [16]. However, these methods are either
not backward compatible with the least-cost/least-delay policy

[17], [18] or impose considerable data-plane and/or control-
plane overhead [6], [16] (see Table I).

While efficient algorithms exist to calculate the SPDP routes
requiring only the graph of network and link costs as input
[15] – which mitigates the concerns related to control-plane
overhead –, the data-plane encoding of SPDP routes is by
far not trivial. This is because, in contrast to the (single)
shortest paths, the shortest pairs of disjoint paths do not line up
into a single destination-rooted tree. Correspondingly, a naive
SPDP encoding would require source-specific routing at each
intermediate router, yielding quadratic-size routing tables (one
entry per source-destination pair). This would not scale, not
even in the context of a single autonomous system. Our main
contribution in this paper is the first demonstration that an
efficient data-plane encoding scheme exists for implementing
the shortest-pairs of disjoint paths with just one additional
forwarding table entry per destination (on top of the default
entry required by shortest path routing) and small tags. What is
more, a trivial extension of our encoding scheme makes further
high-quality paths available for sources, including the shortest
paths themselves, and this extension comes with no additional
data-plane resource usage. The particular contributions are:

(i) we introduce a data structure to represent SPDPs which
admits destination-based multi-path routing with O(1)
routing table entries, which provides optimal data-plane
scalability [11]; and

(ii) we propose a tagging mechanism and give a theoretical
lower bound on the required tag size, and we show
empirically on real-world topologies that the packet
overhead is negligible.

Our scheme is fully backward compatible with traditional
link-state routing in that it can be deployed only on a subset of
routers to obtain partial gains. We believe that these properties
make our scheme an efficient incrementally deployable source-
selectable multi-path routing scheme.

The rest of the paper is organized as follows. In Section II
we discuss related work. Section III contains the formulation
of the SPDP problem and Section IV presents our main
result, an improved data structure for encoding SPDP routing.
Encoding is discussed together with a general lower bound
on the tag size in Section V. Finally, Section VI presents our
simulations results and the paper is concluded in Section VII.

II. BACKGROUND AND RELATED WORK

In legacy intra-domain routing IP packets are forwarded
along the single shortest path between each source and destina-
tion node in a hop-by-hop scheme, where each router decides
the next-hop (out-link) based on the destination address d in
the packet header and the information stored in the forwarding
table (called rules). In traditional link-state routing protocols
(e.g., Open Shortest Path First) the network topology is dis-
covered by exchanging control messages between neighboring
routers, and Dijkstra’s algorithm [1] is used to calculate the
shortest paths in the resultant graph. Simplicity notwithstand-
ing, the deficiencies associated with single-path routing have
been well-known for quite some time, including the potentially

TABLE I
MULTI-PATH ROUTING METHODS (RULE # IS GIVEN PER d).

Paths Routing Disjoint Rule # Tag size Stretchscheme path # (dbitse)
Single SPT [1] 1 1 - Opt

Double

2-SP [19] 1 ≤ n 1 + logn Any
RDP [6] 2 - O(n logn) Any

RB-trees [17] 2 2 1 Any
SPDP naive (Fig. 1b) 2 ≤ n 1 + logn Opt
SPDP w/ rewrite [16] 2 2 logn Opt
SPDP+SPT w/ TAG 2 2 ≈ 0.5 logn Opt

Multi

Path Splicing [10] 1 k D log k Any
Deflections [9] 1 ≤ δ 16 Any

SPDP+MP w/ segment 2 - O(D logn) Any
SPDP+MP w/ TAG 2 2 ≈ 0.5 logn Any

poor utilization of network resources due to the lack of path
diversity, proneness to grave traffic disruptions even in the
case of a single failure, instability and oscillations, etc. [2].
Below, we summarize the proposals for extending this scheme
to multi-path routing using multiple pre-calculated paths; the
most important references are highlighted in Table I.

A. Routing on Disjoint Path-Pairs

As an early attempt to provide alternative low-delay paths
beyond the shortest path tree (SPT), k-shortest path algorithms
(2-SP in Table I) were proposed [19]. Unfortunately, all the k
paths might share a single link in certain cases and hence k-
shortest path routing is still prone to single failures. The easiest
way to eliminate single points of failure is to provide two
disjoint paths between each source and destination node [20].
Accordingly, red-blue trees (RB-trees) [17], [18] are two
independent trees rooted at each destination d so that the
(unique) path from any node v to d in one of the trees is
disjoint from the path in the other tree. Encoding such the RB-
trees requires two forwarding table entries per destination (one
next-hop along the red and another one along the blue tree)
and packets can be tagged to any of the trees using a single
header bit. Unfortunately, the stretch (the path-length-dilation
compared to the theoretical minimum, i.e., the SPDP) can be
arbitrarily large. In response, [17] asked for the shortest pair
of RB-trees; unfortunately stretch may still be unlimited and
with the introduction of this new objective the computational
complexity becomes NP-complete (from a trivial linear time
as in [18]). Finally, in [6] the goal is to minimize the length of
the longer path of the path-pair, so that the paths are robustly
disjoint (RDP); i.e., they remain disjoint even after a link
fails. Unfortunately, this problem is NP-complete [21], which
would skyrocket control plane overhead by requiring routers
to optimize intractable problems for path calculation.

In contrast to these proposals, routing along the shortest pair
of disjoint paths (SPDP) provides theoretically optimal stretch
and admits a polynomial-time implementation – if the total
length of the paths is minimized – using the Suurballe-Tarjan
algorithm [15]. Unfortunately, a naive data-plane SPDP en-
coding would result in quadratic size (per-source-destination-
pair) forwarding tables. Although [16] proposes a data-plane

SPDP encoding with only two forwarding table entries and a
single node identifier in the packet headers, it does not admit
a trivial implementation in current link-state routing because
it neither automatically delivers the segments to be used in
segment routing nor it is compatible with tagging (because of
identifier rewrites in the packer header at certain hops, referred
to as SPDP w/ rewrite in Table I).

B. Multi-Path Routing Approaches

In source-selectable routing [9], [10] the network provides
multiple (not necessary disjoint) pre-calculated paths to source
nodes, which can select among them by marking packets with
different tags. As the source has no explicit knowledge of the
paths tags describe, no topology information is revealed to the
sources (mitigating security concerns) and the routing can be
changed by the operator any time without the sources being
aware. In [9] deflection routing is proposed, which defines a
set of alternate next-hops at each router so that the resultant
(multiple) paths are loop-free. A fixed sized small (16 bit)
tag is added to the packet headers, and a pseudo-random
operation is used to map the tag to a unique next-hop at each
router. Path splicing [10] improves path stretch and lowers the
number of routing table entries compared to deflection routing
by introducing k routing trees. The first tree is the SPT for
backward compatibility, and each subsequent tree is calculated
as an SPT in the same topology after a degree-based random
perturbation of the link weights. The source explicitly selects
the path by arbitrarily combining next-hops along the trees.

C. Our Routing Methods

As no efficient and scalable implementation exists for
SPDP [6], [16], we introduce a data structure by improving
the recursive construction proposed in [16]. We define SPDP
paths as a sequence of SPDP-segments in Sec. IV, and propose
in Sec. V a tag encoding that does not mandate packet rewrite
at intermediate nodes (SPDP+SPT w/ TAG). We demonstrate
that our scheme inherently encodes the SPT, and also provides
additional low-stretch paths for 20%–40% of source nodes
(SPDP+MP w/ TAG in Table I). This is a significant improve-
ment over prior work [6], [16], [17], [19], restricted to only two
paths. Furthermore, in contrast to previous source-selectable
routing methods [9], [10], our paths provide 100% resilience
against single failures with only two forwarding table entries.
We also discuss a possible segment routing implementation
(SPDP+MP w/ segment) and its limitations in Sec. VI-C.

III. PROBLEM FORMULATION

The input of the destination-based hop-by-hop routing prob-
lem is the network topology G = (V,E) with n = |V | nodes
(routers) connected with m = |E| bi-directional links. Links in
network topology G have an administrative cost ∀e ∈ E : c(e),
corresponding to e.g., physical length or delay. We define
a path P as a set of directed links connecting source node
s ∈ V, s 6= d and destination node d. We refer to minimum
cost paths and path-pairs as shortest. As a disjoint set of entries
is maintained in the forwarding tables for each destination

Problem 1: Routing on Shortest Pairs of Disjoint Paths
Input : Network topology G = (V,E)

Destination node d
Set of SPDP paths P towards d

Output: Match rule and high prior. action ps,∀s ∈ V
Default action ts,∀s ∈ V
Tag values TAG(P) addressing ∀P ∈ P

node d ∈ V , the routing problem can be decomposed per
destination. Hence, in the rest of the paper we fix d and provide
our results for these individual sub-problems.

A. Destination-Based Routing with Tags

The set of all paths from s towards d in the routing problem
is denoted as Ps, while P =

⋃
∀s∈V Ps. To distinguish the

paths in P , h bits in the packet header, denoted as TAG and
represented as an integer in [0, 2h− 1], is used and optionally
consulted at intermediate routers. Since destination d is always
part of the decision from now on we assume forwarding tables
match only on the TAG, but we explicitly allow forwarding
table entries to define wildcard rules on the tags.

Definition 1: The h bit long binary vector TAG ∈ {0, 1}h

matches the wildcard rule w if w[i] ?
= ∗ or w[i] ?

= TAG[i] for
i = 1 . . . h, where operator [i] denotes the ith bit of a string.

The routing table contains an ordered list of rules (entries),
where each rule is composed of a match string w (consisting of
0, 1 and wildcard characters ∗) and an action. For a given TAG

and node d, intermediate routers find the first (highest priority)
matching rule and the corresponding action is executed, i.e.,
the packet will be forwarded along the corresponding out-link.
Let TAG(P) denote the tag assigned to path P ∈ P .

Definition 2: We say that a path P ∈ Ps from a node s to
destination d is addressed with TAG(P), if packets with header
TAG(P) injected at node s into network will be forwarded
exactly along the links of path P ; formally ∀e = (u→ v) ∈ P
the action of the first matching rule at node u is to forward
the packet on out-link u→ v.

Note that, P1, P2 ∈ P might be addressed with the same tag
TAG(P1) = TAG(P2) if they start at different source. The goal
is to address every P ∈ P path with an appropriate TAG(P),
while the tag size h and the number of forwarding table entries
|R| =

∑
∀s∈V \{d} |Rs| are minimal, where |Rs| denotes the

number of entries at node s.
Definition 3: Given network topology G, destination node d

and set of paths P , the efficiency of a routing can be measured
with the following performance metrics:

• average routing table entries ρ :=
∑

∀s∈V \{d} |Rs|
n−1 ,

• tag size h, where 0 ≤ TAG(P) < 2h for ∀P ∈ P .

B. Routing on the Shortest Pairs of Disjoint Paths

Our goal is to propose an efficient routing for link-
disjoint SPDP paths (can be easily extended to node-disjoint
paths [15]), given in Problem 1. It was shown in [15], that from

d

v1

v2

v3

v4

v5

v6

1011

10

11

01

01

P b
v6

:
Pa

v6
:

P b
v5

:
Pa

v5
:

Pa
v4

:

P b
v4

:
Pa

v3
:

P b
v3

:

Pa
v2

:

P b
v2

:

Pa
v1

:

P b
v1

:

(a) Network topology and SPDP paths in Ps towards d. The SPT is shown
with black dotted links, the secondary next hops are shown with solid colored
lines. Values a and b identifies the path within the disjoint path-pair, while the
tag values at secondary links correspond to Fig. 1c. c(v4, d) = c(v6, v1) =
6, c(v5, v3) = c(v2, d) = 3, all other link costs are 1.

Match at v4 Act.src TAG
v6 a v3
v5 a d
v4 a v3
v4 b d
v3 b d

Match at v3 Act.src TAG
v6 a v2
v5 b v2
v4 a v2
v3 a v2
v3 b v4

Match at v2 Act.src TAG
v6 a d
v5 b v1
v4 a v1
v3 a v1
v2 a v1
v2 b d
v1 b d

(b) Naive encoding of Ps requires tag and source address matching, and needs
one entry per traversing path (ρ = 29/6, h = 1 + dlogne).

Match at v4 Act.TAG
11 d
** v3

Match at v3 Act.TAG
11 v4
** v2

Match at v2 Act.TAG
10 d
** v1

(c) Proposed encoding of Ps requires tag matching on the secondary next-hop
and one default entry for the SPT next-hop per destination (ρ = 2, h = 2).

Fig. 1. Example where a naive SPDP path encoding gives O(n) entries,
while the proposed tag encoding based on the SPDP data structure has only
1 extra entry per destination.

an arbitrary source s one path from the SPDP starts on the out-
link ts of the shortest path (denoted as P a

s), while the other
path (P b

s) use a different out-link ps. A directed link is called
t-link (or p-link) if it is ts (or ps) for any node s towards d. As
a direct consequence, the union of links of the SPDP paths in
P , i.e.,

⋃
∀s∈V P

a
s ∪ P b

s contains all ts links of the SPT; thus,
P implicitly always contains all shortest paths P ∗s towards
d besides P a

s and P b
s . An efficient routing for Problem 1 is

shown in Fig. 1 for destination d with ρ = 2, h = 2. Note
that each forwarding table has two entries, i.e., a high-priority
rule w which matches on the TAG value and forwards packets
on the secondary next-hop ps, and a default entry which
forwards packets along the shortest path link ts otherwise. The
shortest pairs of disjoint paths Ps = {P a

s , P
b
s },∀s ∈ V, s 6= d

can be addressed with h = 2 bit tags at each source. For
example, adding TAG = 11 to the packet header at v4 addresses
P b
v4 = v4 → d, while packets with TAG = 01 will be

forwarded along P a
v4 = v4 → v3 → v2 → v1 → d as they

only match the default rule w = ∗∗ at each hop.

IV. STRUCTURE OF THE SPDP PATHS

In this section we introduce a data structure for the SPDP
paths that enables an efficient implementation of Problem 1;

thus, it makes our approach a candidate as an incrementally
deployable source-selectable multi-path routing scheme.

Theorem 1: Let P consist of all the shortest pairs of disjoint
paths P a

s , P
b
s (and the unique shortest paths P ∗s) from every

source ∀s ∈ V \ {d}. There exists an efficient destination-
based hop-by-hop routing with ρ = 2 forwarding table entries
per destination d.

Proof: In a nutshell, we will show that both SPDP paths
P a
s and P b

s consist of t-links and p-links only ∀s ∈ V \ {d},
which results in ρ = 2.

Assume the SPDP is unique for every source, which can be
achieved e.g., by adding a different random epsilon cost to all
links. The result of the ST algorithm [15] is a data structure
that must be traversed in two phases to construct both paths
P a
s and P b

s . The data structure stores two out-links for each
node v 6= d (tv and pv), and a pointer. Because the paths are
built up only using these two (tv and pv) links at each node
v, each router has two out-links which can be encoded in two
entries |Rs| = 2 using a bit map (i.e., each bit corresponds to
a path in P and the rule w has ∗ in the position of the paths
for out-link pv), from which ρ = 2 follows.

Although an important theoretical result, the ST data struc-
ture can not be used to efficiently describe the SPDP paths in
routing. Therefore, Ogier-Rutenburg-Shacham [16] proposed
a distributed data structure and a recursive traversal algorithm
to obtain the SPDP paths P a

s and P b
s at source s in a single

phase. Instead of using the complex pointers and involved
conditions in [16], in this paper we propose a simple traversal
that only stores two path segments for each node v, called
SPDP-segments, see Fig. 2. The first segment of the two
SPDP paths at v start on the pv and tv link denoted as Sv

and S′v , respectively, and traverses (zero or more) t-links until
a p-link (start of another segment) or destination d is reached.
Hence, Sv consists of the link pv and consecutive t-links (zero
or more) along the P b

v path, while the first segment S′v of
P a
v contains only t-links (at least tv) until the first p-link or

destination d (start of another segment). Once we have Sv

and S′v defined for every node v 6= d, based on the previous
constructions [15], [16] we can obtain the two paths for an
arbitrary source s as follows:
• initialize P a

s := S′s; i := v′s, where v′s is the last node
of segment S′s = s → . . . → v′s. P a

s is constructed by
appending Si = i→ . . .→ vi SPDP-segments together:

P a
s := 〈P a

s → Si〉; i := vi , until i = d,

• initialize P b
s := Ss; i := vs, where vs is the last node

of segment Ss = s → . . . → vs. P b
s is constructed by

appending Si = i→ . . .→ vi SPDP-segments together:

P b
s := 〈P b

s → Si〉; i := vi , until i = d,

where 〈Ps → Si〉 means SPDP-segment Si is added to the
path, and node i is replaced by the last node of Si. Note
that, P a

s will traverse S′s first and optionally some other Sv

segments, while path P b
s first traverses Ss and optionally some

other Sv segments. For example, in Fig. 2 P a
a9

= S′a9
→

d

v1

v2

v3

v4 010110
010

1**

v7

v5

v6a1

a2a3

a4

001

a5

a6

100

101

110
100

101

110

a7

a8

a9

001

001

001

001

001

Sa9
:

S′
a9

:
Sa8

:
S′
a8

:
Sa7

:
S′
a7

:

Sa6
:

S′
a6

:
Sa5

:
S′
a5

:
Sa4

:
S′
a4

:

Sa3 :
S′
a3

:
Sa2 :
S′
a2

:
Sa1 :
S′
a1

:

Sv7
:

S′
v7

:
Sv6

:
S′
v6

:
Sv5

:
S′
v5

:

Sv4
:

S′
v4

:
Sv3

:
S′
v3

:
Sv2

:
S′
v2

:
Sv1

:
S′
v1

:

Fig. 2. Topology where multiple TAG values should be matched by wildcard rule w for out-link pv4 . Black links are ts links on the SPT and have unit cost.
ps links are colored according to their TAG values. The ones reverse to the SPT have unit cost, the other ps links have cost one plus their SPT distance,
e.g., c(v7, v1) = 8, except c(v4, d) = 6, c(a6, v5) = 10, and c(a4, v5) = 7. In the small figures the SPDP-segments Sv and S′

v from each node are drawn
with purple and orange, respectively.

Sa2
→ Sv4 , while P b

a9
= Sa9

→ Sv6 . This data structure
gives us an important structural property of the SPDP paths:

Observation 1: If either P a
s or P b

s from source s towards
destination d traverses link pv , it traverses the whole path P b

v .
In other words, once a packet is forwarded along SPDP-

segment Sv , it will follow the same path (same series of SPDP-
segments) towards d, regardless of the source of the packet.
Note that, in Fig. 2 SPDP paths P b

a9
, P b

a8
, P b

a7
and P b

v6 all
traverse SPDP-segment Sv6 , and after using the corresponding
p-link (v6, v3) they will follow the same P b

v6
path until

destination d is reached. This crucial property provides us the
opportunity to propose efficient implementation for routing on
the shortest pairs of disjoint paths. We propose a tag based
encoding in Section V and discuss a possible segment routing
implementation in Section VI-C. However, our result is general
and can fit other routing architectures as well.

V. TAG SIZE BOUND AND FORWARDING RULE ENCODING

In this section we propose a tagging mechanism for the
SPDP paths. In Section V-A we provide a general lower bound
on h for an arbitrary set of paths P . Section V-B shows the
difficulties of tag assignment and wildcard rule construction
to meet the ρ = 2 requirement of Problem 1. Finally, we
discuss the additional path diversity for SPDP+MP w/ TAG in
Section V-C, which comes as a side effect of our rule encoding
and the SPDP data structure in Section IV.

A. Lower Bound on the Tag Size for General Path Sets

First, we define when two paths in an arbitrary path set P
have to be addressed with different TAG(P) values.

Definition 4: Two paths P1, P2 ∈ P are in conflict at node
v if in the union of links P1 ∪ P2 node v has out-degree 2.

When P1 and P2 use different out-links at v (i.e., they are
in conflict), they need to be distinguished from each other
with different TAG(P1) 6= TAG(P2) tags. The conflicts in P
are modeled in an undirected auxiliary graph G′, called the
path conflict graph, constructed as follows. The path conflict
graph G′ has |P| nodes, where each node corresponds to
a unique path in P . We connect two nodes in G′ with an

undirected edge if the corresponding paths P1 and P2 are in
conflict at any node v in G. Recall that the chromatic number
χ(G′) of a graph G′ is the minimal number of colors required
to color its nodes, such that any two adjacent nodes have
distinct colors [22]. By the above construction, there is a full
correspondence between a valid node coloring in G′ and a
valid TAG(P) value assignment which appropriately addresses
all paths in P , that immediately allows us to express the
minimal tag size h in terms of the chromatic number:

Theorem 2: The tag size to address all paths in P is at least
h ≥ dlogχ(G′)e, where χ(G′) is the chromatic number of the
path conflict graph G′.

Proof: Let us color G′ with χ(G′) different colors. As
each node in G′ corresponds to a path in P , we may treat it
as a coloring of paths, too. Recall that each pair of paths in
conflict corresponds to two nodes in G′ which are connected
by an edge. Hence, any two paths in conflict are assigned
different colors. Finally, for each color we assign a unique tag,
which ensures that two paths towards d have different TAG(P)
if they use a different out-link at any v. Match rules w in the
forwarding tables can be assigned accordingly on dlogχ(G′)e
bits. We also need to show that h cannot be smaller. We prove
it indirectly. Assume that there is a solution with a smaller tag
size, then map these tags into colors and assign them to the
nodes of G′. In this case, we have the valid coloring of G′,
because if two nodes are connected in G′ the corresponding
paths in P have two distinct out-links at a given node, which
requires different tags. However, the number of colors is less
than χ(G′), which is a contradiction.

Note that, the above bound is tight for |R| =
∑

P∈P |P |
forwarding table entries. Unfortunately, we have no hope to
find a polynomial-time algorithm for minimizing h in general,
because the graph node coloring problem is NP-hard [23].

B. Encoding Tags into Wildcard Forwarding Rules with ρ = 2

In this section, we focus on the problem of assigning
h ≥ dlogχg(G

′)e bit long tags to the χg(G
′) colors obtained

from the conflict graph coloring with e.g., a greedy algorithm
in order to address all SPDP paths in P with one single

d

v1

v2

v3

v4v7

v5

v6

a1

a2

a3

a4

a5

a6a7 a8 a9

TAG = 001 010 100 101 110

1 ∗ ∗

Fig. 3. SPDP-segment hierarchy (TS) for Fig. 2. The color of the nodes is
computed according to the conflict graph.

(wildcard) rule w for ps at each router besides the default
shortest path entry ts. Fig. 2 shows an example, where
encoding of the colors to appropriate TAG values is not trivial.
Note that, paths P a

a7
= a7 → a6 → v5 → v4 → d,

P a
a8

= a8 → a7 → a6 → a5 → a4 → v5 → v4 → d and
P a
a9

= a9 → a8 → a7 → a6 → a5 → a4 → a3 → a2 →
v5 → v4 → d are in conflict with each other because of node
a6 (P a

a7
with P a

a8
, P a

a9
) and a4 (P a

a8
with P a

a9
). In other words

P a
a7

, P a
a8

and P a
a9

must be assigned a different TAG, but their
binary TAG value should be matched with a single wildcard
rule w at node v4. Therefore, it is not enough to ensure
that different colors are assigned to different TAG values, but
also that certain TAG values can be matched by wildcard rule
w while others are not. For example, tags TAG = 000 and
TAG = 111 cannot be matched by w = ∗∗∗ without matching
all other tag values. These additional constraints will increase
tag size h if we fix ρ = 2.

Next we give a heuristic approach to assign TAG values for
each color. According to Observation 1, if P b

v and P b
u both

traverse the same px link, then the two paths will traverse the
same SPDP-segments from node x till destination d. It means
we can define a segment hierarchy tree TS = (VT , ET) among
the SPDP-segments Sv , where VT = V , and there is a directed
link (v → x) ∈ ET , when x is the end node of segment Sv ,
see Fig. 3. Hence, TS is a rooted tree at d, where the links of
the unique path from v to d in tree TS correspond to the Sx

segments of P b
v . Wildcard rules required at each node (router),

which has child nodes of multiple colors (e.g., v4 in Fig. 3). We
assign the colors to TAG values (binary vectors) incrementally
1, 2, . . . , χg(G

′) in the order of a pre-order traversal of TS .
The traversal in Fig. 3 is v6, v5, a7, a8, a9, v7, v2, v1, v4, a2,
a1, a4, a3, a6, a5 and v3.

Let χ(v) denote the number of different colors the child
nodes of v has in TS . In an ideal case, χ(v) is a power of
2 (say 2i), and the first unused tag j is divisible by 2i. Then
we can assign binary TAG values j, . . . , j+2i−1 which share
the same prefix. However, in practice we might not be able
to assign all TAG values. For example, in Fig. 3 we start with
TAG = 1, and χ(v6) = 1 = 20, thus we can assign the TAG for
all of its children, and also to v7. Next at v2 we have χ(v2) = 1
and we see a new color, thus, its children are assigned to
TAG = 2. The situation is different for v4, because χ(v4) = 3
(i.e., branch a1 → a2; branch a3 → a4; and branches a5 → a6
and v3). To aggregate 3 tags, we need 2 bits. Note that, the

first unused value TAG = 3 is not divisible by 4 = 22. In this
case, there will be some TAG values that cannot be assigned
to any color (they will be 011 and 111). The TAG values we
can use are 4, 5 and 6 that is 100, 101 and 110 in binary
representation and the (prefix) rule is w = 1∗∗ for action pv4 .
The above process is repeated until all colors are assigned with
a binary tag. Surprisingly, in real-world networks the segment
hierarchy tree is small, and we measured h ≤ 4 bits in all
investigated topologies in Section VI.

C. Inherent Path Diversity of the SPDP Data Structure
Our main objective is to propose an efficient source-

selectable routing scheme along the SPDP paths in P . How-
ever, in order to make it a fully fledged multi-path routing
method, further path-diversity is required, which is luckily
enough inherently offered by the SPDP-segments.

We already discussed that P ∗s is always included as a path
on the links in P (i.e.,

⋃
∀s∈V P

a
s ∪ P b

s) for every source s
(either as P a

s or as a third path). For incremental deployment
and backward compatibility, we always require that the SPT
paths can be addressed with TAG = 0 value for all s − d
pairs. Thus, in the example in Fig. 1 TAG = 00 addresses P ∗v4 ,
which is the same as P a

v4 in this case. Moreover, v4 might
find multiple paths on the links of

⋃
∀s∈V P

a
s ∪ P b

s by further
exploring the available tag space, e.g., by sending packets with
the fourth tag value TAG = 10 it can address Pv4 = v4 →
v3 → v2 → d, which is neither the SPT nor one of the SPDP
paths. Note that, using a TAG value other than the SPT TAG =
0 or the ones addressing the SPDP paths, source s replaces
the S′s SPDP-segment with another S′′s ⊂ P ∗s shortest path
segment on t-links until a node v, and use out-link pv and the
corresponding P b

v path afterwards. Therefore, the total number
of paths available in source-selectable routing for a source s
towards d through exploring the whole tag space (referred to
as TAG paths in Section VI) depends both on its depth in the
SPT, and on the tag assignment and wildcard rule encoding.

VI. SIMULATION RESULTS

We conducted thorough simulations on 2-connected small
and medium size real-world and large synthetic topologies
to demonstrate the efficiency of our approach (properties are
summarized in Table II). In real-world Internet Topology
Zoo [24] and SNDLib [25] networks we used the physical
distances of the nodes as the administrative cost c(e) on the
links measured in km, while for the large synthetic planar
topologies [26] we applied unit link costs (∀e ∈ E : c(e) = 1).
In Section VI-A we analyse the efficiency of the proposed
data structure and tag encoding of the SPDP paths. In Sec-
tion VI-B we compare our method to path splicing [10], while
Section VI-C reveals the difficulties of a possible segment
routing implementation of the SPDP paths. Simulations were
performed on a machine running Debian Linux version 4.9,
with four 2.59 GHz Intel processors and with 8 GB RAM.

A. Tag Assignment and Rule Encoding with Greedy Coloring
We present our simulation results for all investigated topolo-

gies in Table II, averaged for all destination d. First, we

TABLE II
QUALITY OF SOURCE-SELECTABLE TAG PATHS, NUMBER OF COLORS AND h TAG SIZE, AND WILDCARD RULE ENCODING ON REAL-WORLD (UPPER

PART: INTERNET TOPOLOGY ZOO [24], MIDDLE PART: SNDLIB [25]), AND SYNTHETIC PLANAR TOPOLOGIES [26] (LOWER PART).

Topology Name |V | |E| Avg SPT Avg Path Max Path Avg Path Avg Max Colors Max Avg Rules Running
Depth Number Number Stretch [km] Colors & Tag Size Colors in w/ Wildcard Time [s]

(D hops) Per s− d Per s− d Per s− d Per d (h bits) Wildcard Per d (All s− d)
Abilene 11 14 2.51 2.07 3 1.72 3.00 3 (2 bits) 1 0.00 0.03
BtEurope 17 30 1.99 2.10 3 3.93 3.06 4 (2 bits) 1 0.00 0.09
BtNorthAmerica 33 70 3.09 2.49 5 3.00 4.12 5 (3 bits) 2 0.79 0.97
Dfn 51 80 3.70 2.77 5 1.68 4.80 6 (3 bits) 3 2.02 10.30
Polska 12 18 2.17 2.17 4 1.49 3.75 5 (3 bits) 2 0.08 0.36
India 35 80 3.29 2.60 5 1.21 4.57 6 (3 bits) 3 0.94 1.30
Janos 39 61 4.39 2.63 6 1.34 4.82 6 (3 bits) 3 1.51 2.25
Germany 50 88 4.46 2.80 7 1.30 5.34 7 (3 bits) 3 2.68 5.52
n100e287 100 287 4.14 3.04 7 1.15 5.80 8 (3 bits) 4 3.81 46.70
n100e145 100 145 5.72 3.18 7 1.34 6.13 7 (3 bits) 4 6.38 68.20
n200e575 200 575 5.95 3.64 9 1.12 7.25 9 (4 bits) 5 11.16 869.00
n200e299 200 299 8.42 3.77 9 1.25 7.51 11 (4 bits) 5 14.63 1650.00

measured the average depth D of source nodes s in the SPTs in
terms of hop count, which bounds the maximum available TAG
paths (addressable S′′s segments). As expected, in topologies
where source nodes are further away from d the maximum
path number available through exploring the TAG space is up
to 9 for certain s−d pairs in SPDP+MP w/ TAG. The average
stretch of all TAG paths is below 1.5 for most topologies
(compared to the shortest path), except for Internet Topology
Zoo [24], where there is a three orders of magnitude difference
(in km) between some link costs c(e), resulting extremely long
detour paths for some s− d pairs.

The average and maximum number of different tag values
(i.e., colors in the path conflict graph G′) and the corre-
sponding tag size h are also shown in Table II. For coloring
the nodes of the path conflict graph G′ we implemented a
greedy algorithm, where in each step the node with the most
uncolored neighbour is colored with the lowest available color
value. Note that, we tried multiple heuristics, but the node
coloring order provided by this greedy algorithm significantly
outperformed the others. As a result, we observed that 11
colors, thus, h = 4 bit tags are sufficient even in larger
networks, which is ≈ 0.5 log n for all investigated topologies.

We analysed the wildcard rule encoding in Table II as
well and measured the number of ps links where exact TAG
matching is not sufficient, i.e., multiple TAG values should be
matched by w (discussed in Fig. 2). One can observe, that
in the Germany network (and other real world topologies) at
most three TAG values should be matched by a single wildcard
rule. On average (per d) 2.68 forwarding table entries require
wildcard match in this network; in other words, 95% of the
rules in the routers are an exact match for action ps.

In order to shed more light on the number of source-
selectable paths we performed further simulations in Fig. 4a.
One can observe that 40% of s − d pairs has at least three
paths in the BTNorthAmerica topology (goes up to 85%
for n200e299). Recall that P a

s , P
b
s are always among these

paths, moreover TAG(P ∗s) = 0 addresses the shortest path.
Furthermore, there are even more TAG paths that can be
addressed by s, e.g., for the Germany topology about 20%

of nodes have access to 4 − 7 paths. Fig. 4b demonstrates
tag space density, i.e., how many unique TAG paths exists
compared to the tag space 2h. High density means that even
when the source is not aware of the TAG values corresponding
to paths, it will frequently find a new path by sending packets
with a different random TAG. Our results show that every fifth
try will result in a new TAG path in worst case, but for more
than 50% of s nodes less than two tries is sufficient on average,
which is important for a prompt reaction.

B. Path Splicing Trees versus SPDP Data Structure

We compare our tag assignment and rule encoding scheme
proposed for Problem 1 to another source-selectable routing
approach, path splicing [10]. We selected it because it provides
higher path diversity, lower path stretch and less routing
table entries than deflection routing [9]. In our path splicing
implementation we used the degree-based perturbation of link
costs to get c′(e) according to Eq. (1) in [10] in the range of
[0, 20] in order to construct the k shortest path trees on the
perturbed c′(e) link costs. In Fig. 5 we allowed D = 20 hops
similarly to [10], which is larger than the maximum depth of
the SPT in the investigated networks. This results in tag size
of 20 header bits for k = 2 and 60 bits for k = 5, compared
to the 4 bits of our tag encoding. For each s−d pair we made
16 random tries to find diverse paths (without any guarantees)
in path splicing, while we explored the whole 4 bit tag space
(guaranteed SPT and SPDP paths) in our tag assignment. We
present the results only for the n200e299 topology where path
splicing had the best performance.

One can observe in Fig. 5a that our method guarantees at
least two paths for 100% of s − d pairs (i.e., the disjoint
path-pair), while with k = 2 path splicing using the same
amount of forwarding table entries about 30% of s nodes only
have access to the shortest path, i.e., an arbitrary single link
failure along the path will disrupt the connection. Although
path splicing with k = 5 outperforms SPDP+MP w/ TAG in
terms of the maximum number of TAG paths (still 10% of s
without second path), it requires five forwarding table entries
per d compared to two of the other two approaches; thus, if

1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

TAG paths

Fr
ac

tio
n

of
s
−
d

pa
ir

s BtNorthAmerica
Germany
n100e145
n200e299

(a) Fraction of s−d pairs versus the unique TAG paths per source s.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

TAG paths/2h

C
um

m
ul

at
iv

e
fr

ac
tio

n

BtNorthAmerica
Germany
n100e145
n200e299

(b) Cumulative distribution function of tag space density. |P |/2h =
0.5 means that s finds a new path for every second try on average.

Fig. 4. The number of TAG paths and the tag space density in SPDP+MP
w/ TAG (h values per topology are in Table II).

the data plane resources are scarce, it is not a viable approach.
In Fig. 5b we also demonstrated that for 80% of s−d pairs our
TAG paths produced similar average path stretch per s as path
splicing with k = 5 (between 1−1.3), while splicing k = 2 has
the lowest stretch owing to its poor path diversity. The worst-
case stretch of SPDP grows to 2.5, while the splicing methods
have 1.5, i.e., this is the price we pay to have the disjoint path-
pairs in P which provide 100% single link failure resilience
in our SPDP+MP w/ TAG implementation.

C. SPDP Data Structure with Segment Routing

Finally, we investigate an alternative implementation of the
introduced SPDP data structure using segment routing (SR)
instead of tags. In order to do so, we need to translate SPDP-
segments into SR labels to address the corresponding TAG

paths. Note that, in [6] the authors measured that addressing
SPDP paths requires up to 26 SR labels in worst case and
around 10 SR labels for several networks. As real routers
support only a maximum stack of three SR labels [27], SPDP
paths did not have an efficient implementation. Note that, with
our proposed data structure each Sv segment can be encoded
with at most two SR labels, i.e., the p-link with an adjacency
segment and t-links (if any) with a shortest path segment.

In Fig. 6a we analyze the number of Sv SPDP-segments
in the P b

s paths. Our results demonstrate that for 70-80% of
s − d pairs the maximum number of SPDP-segments is 2.

1 2 3 4 5 6 7 8 9 10 12 14 16
0

0.1

0.2

0.3

TAG paths

Fr
ac

tio
n

of
s
−
d

pa
ir

s Path Splicing (k = 2)
Path Splicing (k = 5)
SPDP+MP w/ TAG

(a) Fraction of s− d pairs versus the unique TAG paths per source
s after testing 16 different TAG values.

0 0.2 0.4 0.6 0.8 1
1

1.5

2

2.5

Fraction of s− d pairs
A

vg
.p

at
h

st
re

tc
h

[h
op

] Path Splicing (k = 2)
Path Splicing (k = 5)
SPDP+MP w/ TAG

(b) Fraction of s − d pairs with at least y path stretch in hop count
compared to the shortest path, averaged for all TAG paths at s.

Fig. 5. Comparison of our approach with path splicing with two next hops per
destination (k = 2), and with k = 5 trees proposed in [10] on the n200e299
network with unit link costs.

Hence, these paths can be encoded in segment routing with at
most 4 SR labels (two adjacency segments and 0− 2 shortest
path segments), yielding an efficient implementation for the
SPDP paths. However, in larger topologies about 10% of s−d
pairs requires more than 10 SR labels, which is beyond the
capabilities of current routers [6], [27]. If we investigate all
TAG paths in addition to P b

s (which are the combination of
S′s, S′′s and P b

v paths), the number of s − d pairs with short
SR label stack follows a similar tendency for small networks,
while drops below 50% for n200e299, shown in Fig. 6b.
Furthermore, in segment routing our Sv and S′v segments can
be arbitrary combined by the source s, resulting in a huge path
diversity for the price of increased path stretch and an even
deeper SR label stack. Although our data structure lowered
the number of SR labels and offers an efficient routing for
several s− d pairs, our simulations suggest that a general SR
implementation is not viable yet for SPDP. However, if routers
will support larger SR label stacks in the future, segment
routing will be a promising alternative for our tag encoding.

VII. CONCLUSIONS

With the recent increase in delay-critical traffic on the
Internet, source-initiated instantaneous failure recovery and
load balancing have become a must, instead of a nice-to-
have feature. Currently, multi-path routing approaches fulfill
this imminent requirement by pre-calculating multiple paths

1 2 3 4 5 6 7 8 9
0

0.2

0.4

SPDP-segments

Fr
ac

tio
n

of
s
−
d

pa
ir

s BtNorthAmerica
Germany
n100e145
n200e299

(a) Maximum number of Sv SPDP-segments in P b
s per s− d.

1 2 3 4 5 6 7 8 9
0

0.2

0.4

SPDP-segments

Fr
ac

tio
n

of
s
−
d

pa
ir

s BtNorthAmerica
Germany
n100e145
n200e299

(b) Maximum number of Sv SPDP-segments in TAG paths per s−d.

Fig. 6. Number of Sv SPDP-segments in the paths, which equals to the p-
links in the SPDP paths and gives a lower bound on the SR label stack size
in SPDP+MP w/ segment.

from which sources can select. Easily, the simplest approach
to provide failure resilience and path diversity simultaneously
is routing on the shortest pairs of disjoint paths (SPDP), but,
unfortunately, this far no efficient SPDP routing implementa-
tion – subject to the limitations of the current link-state routing
architecture – has been proposed. In this paper, building on
previous results [15], [16], we proposed a new data structure
for encoding SPDP paths and we demonstrated that with
tagging packets and using wildcard rules in routers, SPDP
paths can be addressed with two forwarding table entries per
destination and a 4-bit tag. We showed that our data structure
possesses an inherent property, which makes additional source-
selectable paths accessible to the sources through tag probing,
and thus it yields as an efficient incrementally deployable
source-selectable multi-path routing scheme.

ACKNOWLEDGEMENTS

This work was supported in part by Project no. 134604
and Project no. 128062 that have been implemented with
the support provided by the National Research, Development
and Innovation Fund of Hungary, financed under the FK 20
and K 18 funding schemes, respectively. G. Rétvári was also
funded by the NKFIH/OTKA Project #135606, the MTA-BME
Information Systems Research Group and the MTA-BME
Network Softwarization Research Group. The research of L.
Rónyai was supported in part by the Hungarian Ministry of
Innovation and Technology NRDI Office within the framework
of the Artificial Intelligence National Laboratory Program.

REFERENCES

[1] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numer. Math., vol. 1, no. 1, p. 269–271, Dec. 1959.

[2] J. Qadir, A. Ali, K.-L. A. Yau, A. Sathiaseelan, and J. Crowcroft,
“Exploiting the power of multiplicity: A holistic survey of network-
layer multipath,” IEEE Communications Surveys and Tutorials, vol. 17,
no. 4, pp. 2176–2213, 2015.

[3] M. Chiesa, A. Kamisinski, J. Rak, G. Retvari, and S. Schmid, “A
survey of fast-recovery mechanisms in packet-switched networks,” IEEE
Communications Surveys and Tutorials, pp. 1–50, 2021.

[4] K.-W. Kwong, L. Gao, R. Guérin, and Z.-L. Zhang, “On the feasibility
and efficacy of protection routing in ip networks,” IEEE/ACM Transac-
tions on Networking (ToN), vol. 19, no. 5, pp. 1543–1556, 2011.

[5] K. P. Gummadi, H. V. Madhyastha, S. D. Gribble, H. M. Levy, and
D. Wetherall, “Improving the reliability of internet paths with one-hop
source routing,” in USENIX OSDI, 2004, pp. 13–13.

[6] F. Aubry, S. Vissicchio, O. Bonaventure, and Y. Deville, “Robustly dis-
joint paths with segment routing,” in ACM CoNEXT, 2018, p. 204–216.

[7] A. Cianfrani, M. Listanti, and M. Polverini, “Incremental deployment of
segment routing into an isp network: a traffic engineering perspective,”
IEEE/ACM Trans. on Networking, vol. 25, no. 5, pp. 3146–3160, 2017.

[8] M. Caesar, M. Casado, T. Koponen, J. Rexford, and S. Shenker,
“Dynamic route recomputation considered harmful,” SIGCOMM CCR,
vol. 40, no. 2, pp. 66–71, Apr. 2010.

[9] X. Yang and D. Wetherall, “Source selectable path diversity via routing
deflections,” in ACM SIGCOMM, 2006, pp. 159–170.

[10] M. Motiwala, M. Elmore, N. Feamster, and S. Vempala, “Path splicing,”
in ACM SIGCOMM, 2008, pp. 27–38.

[11] X. Zhao, D. J. Pacella, and J. Schiller, “Routing scalability: an operator’s
view,” IEEE Journal on Selected Areas in Communications, vol. 28,
no. 8, pp. 1262–1270, 2010.

[12] D. Meyer, L. Zhang, and K. Fall, “Report from the IAB workshop on
routing and addressing,” RFC 4984, 2007.

[13] C. Filsfils, S. Previdi, A. Bashandy, B. Decraene, S. Litkowski,
M. Horneffer, R. Shakir, J. Tantsura, and E. Crabbe, Segment Routing
with MPLS data plane, Active Internet-Draft Std., 2015.

[14] Y. Ohara, S. Imahori, and R. Van Meter, “Mara: Maximum alternative
routing algorithm,” in INFOCOM, 2009, pp. 298–306.

[15] J. W. Suurballe and R. E. Tarjan, “A quick method for finding shortest
pairs of disjoint paths,” Wiley Networks, vol. 14, no. 2, pp. 325–336,
1984.

[16] R. G. Ogier, V. Rutenburg, and N. Shacham, “Distributed algorithms
for computing shortest pairs of disjoint paths,” IEEE Transactions on
Information Theory, vol. 39, no. 2, pp. 443–455, 1993.

[17] J. Tapolcai, G. Rétvári, P. Babarczi, and E. R. Bérczi-Kovács, “Scalable
and efficient multipath routing via redundant trees,” IEEE Journal on
Selected Areas in Communications, vol. 37, no. 5, pp. 982–996, 2019.

[18] M. Médard, S. G. Finn, and R. A. Barry, “Redundant trees for
preplanned recovery in arbitrary vertex-redundant or edge-redundant
graphs,” IEEE/ACM Transactions on Networking (ToN), vol. 7, no. 5,
pp. 641–652, Oct. 1999.

[19] J. Y. Yen, “Finding the k shortest loopless paths in a network,”
management Science, vol. 17, no. 11, pp. 712–716, 1971.

[20] P. Babarczi, A. Pašić, J. Tapolcai, F. Németh, and B. Ladóczki, “Instan-
taneous recovery of unicast connections in transport networks: Routing
versus coding,” Computer Networks, vol. 82, pp. 68 – 80, 2015.

[21] C. Li, S. McCormick, and D. Simchi-Levi, “The complexity of finding
two disjoint paths with min-max objective function,” Discrete Applied
Mathematics, vol. 26, no. 1, pp. 105–115, 1990.

[22] B. Bollobás, Modern Graph Theory, ser. Graduate Texts in Mathematics.
Springer-Verlag GmbH, 1998.

[23] M. R. Garey, D. S. Johnson, and L. J. Stockmeyer, “Some simplified
NP-complete problems,” in ACM Symp. on Theory of Computing, 1974.

[24] S. Knight, H. X. Nguyen, N. Falkner, R. Bowden, and M. Roughan,
“The internet topology zoo,” IEEE Journal on Selected Areas in Com-
munications, vol. 29, no. 9, pp. 1765–1775, October 2011.

[25] S. Orlowski, M. Pióro, A. Tomaszewski, and R. Wessäly, “SNDlib 1.0–
Survivable Network Design Library,” in Proc. INOC, 2007.

[26] “LEMON: A C++ library for efficient modeling and optimization in
networks.” [Online]. Available: http://lemon.cs.elte.hu

[27] J. Tantsura, “The critical role of maximum SID depth (MSD) hardware
limitatons in segment routing ecosystem and how to work around those,”
in NANOG71, 2017, pp. 1–21.

