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Abstract. We open a new perspective on the sup-norm problem and propose a version
for non-spherical Maaß forms when the maximal compact K is non-abelian and the di-
mension of the K-type gets large. We solve this problem for an arithmetic quotient of
G = SL2(C) with K = SU2(C). Our results cover the case of vector-valued Maaß forms as
well as all the individual scalar-valued Maaß forms of the Wigner basis, reaching sub-Weyl
exponents in some cases. On the way, we develop analytic theory of independent interest,
including uniform strong localization estimates for generalized spherical functions of high
K-type and a Paley–Wiener theorem for the corresponding spherical transform acting on
the space of rapidly decreasing functions. The new analytic properties of the generalized
spherical functions lead to novel counting problems of matrices close to various manifolds
that we solve optimally.

1. Introduction

1.1. The spherical sup-norm problem. The sup-norm problem on arithmetic Riemann-
ian manifolds is a question at the interface of harmonic analysis and number theory that
intrinsically combines techniques from both areas. Let X = Γ\G/K be a locally sym-
metric space of finite volume, where Γ is an arithmetic subgroup. Arithmetically and
analytically, the most interesting functions in L2(X) are joint eigenfunctions φ of all in-
variant differential operators and the Hecke operators: these are precisely the functions
that arise from (spherical) automorphic forms. The sup-norm problem asks for a quanti-
tative comparison of the L2-norm ‖φ‖2 and the sup-norm ‖φ‖∞, most classically in terms
of the Laplace eigenvalue λφ, but depending on the application also in terms of the vol-
ume of X or other relevant quantities. Upper bounds for the sup-norm in terms of the
Laplace eigenvalue are a measure for the equidistribution of the mass of high energy eigen-
functions which sheds light on the question to what extent these eigenstates can localize
(“scarring”). Besides the quantum mechanical interpretation, the sup-norm problem in its
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various incarnations has connections to the multiplicity problem, zero sets and nodal lines
of automorphic functions, and bounds for Faltings’ delta function, to name just a few. See
[Sar04, Rud05, GRS13, JK04].

If X is compact, the most general upper bound is due to Sarnak [Sar04]:

(1.1) ‖φ‖∞ �X λ
(dimX−rkX)/4
φ ‖φ‖2,

a bound which does not use the Hecke property and is in fact sharp (for general X)
under these weaker assumptions. Sarnak derives this bound from asymptotics of spherical
functions. A slightly different but ultimately related argument proceeds via a pre-trace
inequality that bounds ‖φ‖2∞ by a sum of an automorphic kernel over γ ∈ Γ. If the test
function is an appropriate Paley–Wiener function, only the identity contributes to this
sum, and one obtains as a (“trivial”) upper bound for ‖φ‖∞ the square-root of the spectral
density as given in terms of the Harish-Chandra c-function. If the Langlands parameters
of φ are in generic position, this coincides with (1.1).

To go beyond (1.1), one uses a test function that localizes not only the archimedean
Langlands parameters, but in addition the parameters at a large number of finite places
(where “large” means a function tending to infinity as a small and carefully chosen power of
λφ). This is called the amplification technique and leads, after estimating the automorphic
kernel, to a problem in the geometry of numbers: count the elements of G which appear in
Hecke correspondences and lie in regions of G according to the size of the kernel (such as
counting rescaled integer matrices lying close to K). It has been implemented successfully
in a variety of cases, see e.g. [IS95, HT13, BP16, BM16, Mar14, Tem15, Sah17, BHMM20]
and the references therein.

1.2. Automorphic forms with K-types. In this paper we open a new perspective on
the sup-norm problem and propose a version of higher complexity. The sup-norm problem
makes perfect sense not only on the level of symmetric spaces, but also on the level of
groups, and a priori there is no reason why one should restrict to spherical, i.e. right K-
invariant automorphic forms. Let τ be an irreducible unitary representation of K on some
finite-dimensional complex vector space V τ , and consider the homogeneous vector bundle
overG/K defined by τ . A cross-section may then be identified with a vector-valued function
f : G→ V τ which transforms on the right by K with respect to τ :

f(gk) = τ(k−1)f(g), g ∈ G, k ∈ K.

It is now an interesting question to bound the sup-norm of f or, more delicately, its
components as the dimension of V τ gets large. Such a situation cannot be realized in the
classical case G = SL2(R), since K = SO2(R) is abelian, hence each V τ is one-dimensional.
In this paper, we offer a detailed investigation of the first nontrivial case G = SL2(C). For
concreteness, we choose the congruence lattice Γ = SL2(Z[i]), although our results extend
to more general arithmetic quotients of G using the techniques in [BHMM20].

Nontrivial irreducible unitary representations of G are principal series representations
parametrized by certain pairs (ν, p) ∈ a∗C ×

1
2Z, where as usual a is the Lie algebra of the

subgroup of positive diagonal matrices; see §2.2. (By a small abuse of notation we will later
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interpret ν simply as a complex number.) Each representation space V of G decomposes
as a Hilbert space direct sum

(1.2) V =
⊕
`>|p|

`≡p (mod 1)

V ` =
⊕
`>|p|

`≡p (mod 1)

⊕
|q|6`

q≡` (mod 1)

V `,q,

where V `,q is one-dimensional. Here and later, ` ∈ 1
2Z>0 parametrizes the K-type, i.e. the

(2` + 1)-dimensional representation τ` of K, and the diagonal matrix diag(ei%, e−i%) ∈ K
acts on V `,q by e2qi%. (The upper index ` in V ` should not be mistaken for an `-th power.)

Representations occurring in L2(Γ\G) consist of even functions on G and have p ∈ Z.
A representation contains a spherical vector if and only if p = 0. In particular, the forms
with p 6= 0 are untouched by any of the spherical sup-norm literature. For p 6= 0, no
complementary series exists, so ν ∈ ia∗.

1.3. Main results I: vector-valued forms. As explained above, we are interested in
“big” K-types which occur for all representation parameters |p| 6 `, but arguably the
most interesting case is when the K-type is “new” and no lower K-types appear in the
same automorphic representation space. Hence from now on we restrict to p = `. The
sup-norm problem for large ν was studied in detail in [BHMM20], so here we keep ν in a
fixed compact subset I ⊂ iR and let ` vary. The spectral density is a constant multiple
of p2 − ν2. In particular, for a given K-type τ`, there are OI(`

2) cuspidal automorphic
representations V ⊂ L2(Γ\G) with spectral parameter ν ∈ I and p = ` (see [DM21]),
and in the light of the trace formula this bound is expected to be sharp. In each of these
we consider the (2` + 1)-dimensional subspace V `. Let us choose an orthonormal basis
{φq : |q| 6 `} of V `, with φq ∈ V `,q as in (1.2). The function G→ C2`+1 given by

(1.3) g 7→ (φ−`(g), . . . , φ`(g))>

is a vector-valued automorphic form for the group Γ with spectral parameter ν and K-type
τ`. The Hermitian norm of this function,

Φ(g) :=
(∑
|q|6`

|φq(g)|2
)1/2

, g ∈ G,

is independent of the choice of the orthonormal basis, and it satisfies ‖Φ‖2 = (2` + 1)1/2.
Let us fix a compact subset Ω ⊂ G. Our remarks on spectral density and dimension suggest
that

(1.4) ‖Φ|Ω‖∞ :=
∥∥∥∑
|q|6`

|φq|Ω|2
∥∥∥1/2

∞
�I,Ω `3/2

should be regarded as the “trivial” bound; this is made precise in Remark 2 below. Our
first result is a power-saving improvement.

Theorem 1. Let ` > 1 be an integer, I ⊂ iR and Ω ⊂ G be compact sets. Let V ⊂ L2(Γ\G)
be a cuspidal automorphic representation with minimal K-type τ` and spectral parameter
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νV ∈ I. Then for any ε > 0 we have

‖Φ|Ω‖∞ �ε,I,Ω `4/3+ε.

We will explain some ideas of the proof in a moment, but we remark already at this
point that the exponent is the best possible, given that we sacrifice cancellation of the
terms on the geometric side of the pre-trace formula and given our current knowledge on
the construction of the most efficient amplifier. In other words, under these conditions
we solve the arising matrix counting problem optimally. Since we trivially have ‖Φ‖∞ �
`1/2, the above bound is one-sixth of the way from the trivial down to the best possible
exponent (absent the possibility of some escape of mass into a cusp). This matches (after
a renormalization) the original and still the best available subconvexity exponent 5/24 of
Iwaniec–Sarnak [IS95] for the sup-norms of spherical Maaß forms of large Laplace eigenvalue
on arithmetic hyperbolic surfaces.

1.4. Main results II: individual vectors. It is a much more subtle endeavor to inves-
tigate the sup-norm of the individual basis elements φq. Here one must contend with
the inherent high multiplicity, a known serious barrier in the sup-norm problem. In-
deed, a straightforward construction [Sar04] shows that some scalar-valued L2-normalized
form φ ∈ V ` (essentially the projection of the vector-valued form (1.3) in the modulus-
maximizing direction) has sup-norm on Ω as large as ‖Φ|Ω‖∞ in Theorem 1. However, our

natural basis {φq : |q| 6 `} of V ` is distinguished by consisting of eigenfunctions under the

action of the group {diag(eiθ, e−iθ) : θ ∈ R} of diagonal matrices in K. This is the classical
basis with respect to which the representation τ` is given by the Wigner D-matrix. By a
similar heuristic reasoning as for (1.4), one might expect that the baseline bound should
be ‖φq|Ω‖∞ �I,Ω `. Indeed, we prove this bound in considerable generality up to a factor
of `ε (cf. Remark 2 below), noting that it is not “trivial” in any sense other than that it
does not require arithmeticity. Moreover, in the situation of Theorem 1, we are in fact able
to break this barrier uniformly for all q, as shown by the next theorem.

Theorem 2. Under the assumptions of Theorem 1, we have

max
|q|6`

‖φq|Ω‖∞ �ε,I,Ω `26/27+ε.

For special values of q we can improve on the exponent considerably. The central vector
φ0 is distinguished as the “archimedean newvector” [Pop08] in the sense that its Whittaker
function determines the archimedean L-factor of the underlying representation. Another
interesting situation is the extreme case of the vector φ±`.

Theorem 3. Keep the assumptions of Theorem 1.

(a) For q = 0 we have

‖φ0|Ω‖∞ �ε,I,Ω `7/8+ε.

(b) Suppose that V lifts to an automorphic representation for PGL2(Z[i])\PGL2(C).
For q = ±` we have

‖φ±`|Ω‖∞ �ε,I,Ω `1/2+ε.
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The strong numerical saving in the case q = ±`, going far beyond the Weyl exponent, is
quite remarkable, in particular in view of the seemingly weaker saving in Theorem 1 which
might be regarded as an easier case. We will discuss this in §1.7. The assumption that V
is associated to a representation of PGL2 rather than SL2 is only for technical simplicity
and not essential to the method, cf. §2.7. This assumption holds if and only if the elements
of V are fixed by the Hecke operator Ti (which is an involution on L2(Γ\G)).

Remark 1. In the case of the spherical sup-norm problem, Sarnak [Sar04] put forward
the purity conjecture that the accumulation points of the set{

log ‖ψ‖∞
log λψ

: ψ is a joint eigenfunction

}
lie in 1

4Z. It would be very interesting to see if an analogous conjecture may be expected
in the K-aspect, and even if there may be examples exhibiting different layers of power
growth as in [Mil11, Blo20, BM20]. In particular, the savings in Theorem 3 produce already
a considerable “exponent gap”.

Remark 2. We record that our essentially best possible estimates on the spherical trace
function in §1.5, which are of purely analytic nature, coupled with the formalism of the
pre-trace inequality, yield what might be considered “trivial” geometric estimates: for any
co-finite Kleinian subgroup Γ 6 G, without any arithmeticity assumption, we have

‖Φ|Ω‖∞ �I,Ω,Γ `
3/2 and max

|q|6`
‖φq|Ω‖∞ �ε,I,Ω,Γ `

1+ε

for any L2-normalized vector-valued Maaß eigenform (φ−`, . . . , φ`)
> with spectral param-

eter ν ∈ I and K-type τ` (with φq ∈ V `,q as before).

Our Theorems 1–3 above, and the non-spherical sup-norm problem in general, come
with several novelties of representation theoretic, analytic and arithmetic nature that we
discuss briefly in the following subsections.

1.5. Generalized spherical functions. The classical pre-trace formula features on the

geometric side the Harish-Chandra transform qh of the test function h on the spectral
side. This transform is a bi-K-invariant function obtained by integrating h against the
elementary spherical functions (which themselves are bi-K-invariant, and hence in the case
of G = SL2(C) simply a function of one real variable). In typical applications there is no
cancellation in this integral, so an asymptotic analysis of spherical functions is the first key
step (see [BP16] for a general result in this direction). Our set-up requires a generalized
version for homogeneous vector bundles over G/K. For G = SL2(C), the corresponding
spherical trace function equals (see §2.4 for details)

(1.5) ϕ`ν,`(g) = (2`+ 1)

∫
K
ψ`(κ(k−1gk)) e(ν−1)ρ(H(gk)) dk,
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where dk is the probability Haar measure on K, ρ is the unique positive root, κ (resp. H)
is the KAN Iwasawa projection onto K (resp. a), and

(1.6) ψ`

((
α β
−β̄ ᾱ

))
:= ᾱ2`,

(
α β
−β̄ ᾱ

)
∈ K.

The trivial bound is |ϕ`ν,`(g)| 6 2` + 1, which is sharp for g = ±id, and the key question

is how quickly ϕ`ν,`(g) decays, uniformly in `, as g ∈ G moves away from ±id. We observe

that ϕ`ν,`(g) is invariant under conjugation by K, hence it suffices to investigate it for upper

triangular matrices g ∈ G. We shall use the Frobenius norm ‖g‖ :=
√

tr(gg∗), and we note

that for g ∈ G this is always at least
√

2. The following bound is new and most likely sharp
for fixed ν ∈ iR (up to factors `ε and powers of ‖g‖, which we did not try to optimize).

Theorem 4. Let ` > 1 be an integer, and let g = ( z u
z−1 ) ∈ G be upper triangular. Then

for any ν ∈ iR, k ∈ K, ε > 0, we have

ϕ`ν,`(k
−1gk)�ε min

(
`,

`ε‖g‖6

|z2 − 1|2
,
`1/2+ε‖g‖3

|u|

)
.

The proof shows that the factors `ε can be replaced with a suitable power of log 2`. The
same remark applies to Theorems 5 and 6 below.

The spherical trace function ϕ`ν,` can be used to analyze the vector-valued function

(1.3). It is, unfortunately, unable to identify the individual components φq, and there
does not seem to exist a general theory of spherical functions covering such cases. As the
components are eigenfunctions of the action of the diagonal elements, we can single out φq
by considering

(1.7) ϕ`,qν,`(g) :=
1

2π

∫ 2π

0
ϕ`ν,`

(
g diag(ei%, e−i%)

)
e−2qi% d%.

The function ϕ`,qν,` is an interesting object that does not seem to have been considered

before. It is not conjugation invariant anymore, so it needs to be analyzed on the entire
6-dimensional group G = SL2(C), and little preliminary reduction is possible. When

restricted to K, it is not hard to see that ϕ`,qν,`(k), for k = k[u, v, w] ∈ K written in terms

of Euler angles (cf. (2.1)), is essentially a Jacobi polynomial in cos 2v. We refer to §5.4 for

a more detailed discussion. In particular, ϕ`,qν,`(±id) = 1. Therefore, at least heuristically,

a safe baseline bound should be

(1.8) ϕ`,qν,`(g)�ε `
ε.

Unlike in the bi-K-invariant case, where the trivial bound is just an application of the
triangle inequality and hence is indeed trivial, the expected baseline bound (1.8) turns out
to be hard to prove. It requires very strong cancellation in the %-integral, along with the
decay properties of ϕ`ν,`. Taking (1.8) for granted, we wish to investigate in what directions
and with what speed we can identify decay as we move away from ±id ∈ G. Interestingly,
this is extremely sensitive to the value of q.
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Let D ⊂ G be the set of diagonal matrices, S the normalizer of A in K (which consists
of the diagonal and the skew-diagonal matrices lying in K), and

(1.9) N :=

{(
a b
c d

)
∈ G : |a| = |d|, |b| = |c|

}
.

It is clear that S ⊂ K ⊂ N ⊂ G. For g ∈ G and non-emptyH ⊂ G, we shall write dist(g,H)
for their distance infh∈H ‖g− h‖. For later reference, we note that ‖g− h‖ = ‖g−1− h−1‖,
hence also

(1.10) dist(g,H) = dist(g−1,H−1).

As an alternative to dist(g,N ), we shall also use

(1.11) D(g) :=
∣∣|a|2 − |d|2∣∣+

∣∣|b|2 − |c|2∣∣ .
For orientation, we remark the elementary inequality

dist(g,N )2 6 D(g) 6 2‖g‖ dist(g,N ).

In the following theorem, we show that ϕ`,qν,`(g) decays away from K and D in generic

ranges, for all |q| 6 `, and with considerable uniformity.

Theorem 5. Let `, q ∈ Z be such that ` > max(1, |q|). Let ν ∈ iR and g ∈ G. Then for
any ε > 0 and Λ > 0, we have

(1.12) ϕ`,qν,`(g)�ε,Λ `
ε min

(
1,

‖g‖√
`dist(g,K)2 dist(g,D)

)
+ `−Λ.

The proof of Theorem 5 uses a soft argument that provides some decay for all |q| 6 `,

despite the substantial dependence of ϕ`,qν,` on this parameter. In the special case q ∈
{−`, 0, `}, we use more elaborate arguments for stronger bounds.

Theorem 6. Let ` > 1 be an integer, ν ∈ iR and g ∈ G. Let ε > 0 and Λ > 0 be two
parameters.

(a) We have

(1.13) ϕ`,0ν,`(g)�ε,Λ `
ε min

(
1,

1√
`dist(g,S)

)
+ `−Λ.

Moreover, ϕ`,0ν,`(g)�Λ `
−Λ holds unless D(g)�Λ ‖g‖2(log `)/

√
`.

(b) We have

(1.14) ϕ`,±`ν,` (g)�ε ‖g‖−2+ε`ε.

Moreover, ϕ`,±`ν,` (g)�Λ `
−Λ holds unless dist(g,D)�Λ ‖g‖

√
log `/

√
`.

We expect that the bounds in Theorem 6 are essentially best possible, possibly up to
powers of `ε and ‖g‖. The proof requires detailed analysis that could in principle be applied
to all values of q and would detect, for instance, further Airy-type bumps in certain regions
and for certain choices of parameters.
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Remark 3. Less precise results but in a more general setting were obtained by Ra-
macher [Ram18] using operator theoretical methods. Combined with an argument of
Marshall [Mar14], these were applied by Ramacher–Wakatsuki [RW21] to the sup-norm
problem with K-types. For compact arithmetic quotients of SL2(C), and for φ ∈ V ` as

before, [RW21, Th. 7.12] yields ‖φ‖∞ � `5/2−δ with an unspecified constant δ > 0; this
does not even recover the baseline bound.

1.6. Paley–Wiener theory. For a reductive Lie group G, Paley–Wiener theory char-
acterizes the image of C∞c (G) under the Harish-Chandra transform. For bi-K-invariant
functions, this is a famous result of Gangolli [Gan71]: the image consists of entire, Weyl
group invariant functions satisfying certain growth conditions. For general K-finite func-
tions, the picture is much more complicated: any linear relation that holds for the matrix
coefficients of generalized principal series also needs to hold for the matrix coefficients of the

operator-valued Fourier transform (and hence for the τ -spherical transforms for τ ∈ K̂). A
complete list of these “Arthur–Campoli relations” requires a full knowledge of all the irre-
ducible subquotients of the non-unitary principal series, which in general is not available.
Arthur [Art83] describes them as a sequence of successive residues of certain meromorphic
functions; see also [Cam80]. Needless to say, a good knowledge of available functions on
the spectral side is crucial for the quantitative analysis of the pre-trace formula in the
sup-norm problem.

For the case of G = SL2(C), in a somewhat neglected paper, Wang [Wan74] devised
an elegant argument to establish a completely explicit Paley–Wiener theorem for the τ`-
spherical transform acting on C∞c (G): in addition to the Weyl group symmetry, we have
the additional symmetry (ν, p) ↔ (p, ν) whenever ν ≡ p (mod 1) and |ν|, |p| 6 `; see
Theorem 11 in §2.4. The additional symmetry is counter-intuitive at first (the pairs (ν, p) 6=
(0, 0) satisfying ν ≡ p (mod 1) correspond to a discrete set of non-unitary representations),
but it enters the picture as it fixes the eigenvalues ν2 + p2 and νp of two generators of
Z(U(g)), and hence the infinitesimal character. See [Wan74, Cor. 2] and its proof. A more
conceptual explanation, along the lines of irreducible subquotients, can be found after (2.7).
Wang’s remarkable result is that these are all relations.

The extra symmetry makes the application of the pre-trace formula more delicate. For
instance, it appears impossible to single out an individual value of p by a manageable test
function on the spectral side. We circumvent this problem by employing a carefully chosen
Gaussian (3.14) that at least asymptotically singles out our preferred value p = `. The
price to pay for this maneuver is that we lose compact support. As a result of independent
interest, we prove a new Paley–Wiener theorem for K-finite Schwartz class functions on
G = SL2(C). For the notation, see §2.4.

Theorem 7. For f ∈ H(τ`), the following two conditions are equivalent (with implied
constants depending on f).

(a) The function f(g) is smooth, and for any m ∈ Z>0 and A > 0 we have

(1.15)
∂m

∂hm
f(k1ahk2)�m,A e

−A|h|, h ∈ R, k1, k2 ∈ K.
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(b) The function f̂(ν, p) extends holomorphically to C× 1
2Z such that

(1.16) f̂(ν, p) = f̂(p, ν), ν ≡ p (mod 1), |ν|, |p| 6 `,

and for any B,C > 0 we have

(1.17) f̂(ν, p)�B,C (1 + |ν|)−C , |<ν| 6 B, p ∈ 1
2Z.

The Schwartz space offers a lot more flexibility in applications. A less precise result for
more general groups is given in [DFJ91, Th. 3], and we refer the reader to the introduction
of that paper for additional discussion and motivation of Paley–Wiener type theorems for
rapidly decaying functions.

1.7. Beyond the pre-trace formula: a fourth moment. We still owe an explanation
for the sub-Weyl exponent in Theorem 3(b), where q = ±`. The proof of this bound is
different from the other results: it is inspired by a brilliant recent idea of Steiner and
Khayutin–Steiner [Ste20, KS20] in the weight aspect for the groups SO3(R) and SL2(R).
The starting point is the desire to choose the amplifier so long that it works as self-
amplification. In this way, the amplifier can be made independent of the well-known but
inefficient trick of using the Hecke relation λ2

p−λp2 = 1. A self-amplified second moment is
in effect a fourth moment, and the key observation is that it can be realized as the diagonal
term in a double pre-trace formula. This only has a chance to work if the corresponding
geometric side can be analyzed sufficiently accurately, and to this end, two extra features
are necessary: a special behavior of spherical functions with rapid decay conditions (such
as, for instance, the Bergman kernel for SL2(R)) and the possibility for a second moment
count on the geometric side, i.e. pairs of matrices, in a best possible way.

For the proof of Theorem 3(b), we implement this idea for the first time in the context
of principal series representations. Our proof proceeds differently than both of [Ste20] and
[KS20]. We avoid the theta correspondence and instead detect the diagonal term in the
double pre-trace formula by an argument that is reminiscent of the Voronoi formula for
Rankin–Selberg L-functions over Q[i], cf. §2.8. As we lose positivity, we have to use the full
power of the pre-trace formula, unlike our other results where the softer pre-trace inequality
suffices. The argument is analytically subtle, since we also lose the possibility to choose
the test function in the pre-trace formula freely: part of it is now given to us by the gamma
kernel in the Voronoi summation formula (one of several new features compared to [Ste20]
and [KS20]). At this point we need a very precise understanding of the Harish-Chandra
transform in Theorem 7 with complete uniformity in the auxiliary complex parameters,
and the reader may observe that in the end only the strong g-dependence in (1.14) saves
the final bound.

1.8. Matrix counting. Having discussed some of the analytic and representation the-
oretic novelties, we finally comment briefly on the arithmetic part. In all previous in-
stances of the sup-norm problem, the analysis of the geometric side of the pre-trace for-
mula amounts to counting matrices close to K, because the elementary spherical function
is bi-K-invariant and decays away from K. Given the results on spherical trace functions
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in §1.5, it is clear that from an arithmetic point of view the sup-norm problem with big
K-types is conceptually very different from the spherical sup-norm problem.

The localization behavior of generalized spherical functions has distinct features as re-
flected by Theorems 4 and 6. The spherical trace function ϕ`ν,` concentrates close to the

identity. The functions ϕ`,±`ν,` localize sharply around diagonal matrices (but not necessarily

within K). For ϕ`,0ν,`, there is localization on diagonal and skew-diagonal matrices within K,

then there is a gradual transition to a second layer in a neighborhood of the 4-dimensional
manifold N defined by (1.9), and outside this neighborhood we see sharp decay. Theo-
rem 5 is in some sense a combination of these two extreme cases. Correspondingly, the
counting techniques in §§6–8 are still based on the geometry of numbers, but they differ
conceptually and technically from the earlier treatment of the spherical sup-norm problem.
In particular, as mentioned in §1.7, for the proof of Theorem 3(b) we have to achieve a
best possible double matrix count, cf. Lemma 11.

1.9. Notation. The group G = SL2(C) and its arithmetic subgroup Γ = SL2(Z[i]) are
fixed throughout the paper. We use the ε-convention in that ε > 0 denotes a number that
may be different from line to line but may in each instance be taken to be as small as
desired. As usual, we write f � g or f = O(g) to denote that |f | 6 Cg, where the implied
constant C > 0 may be different from line to line; it is absolute unless otherwise indicated
by a subscript, except that we occasionally allow it to depend on the (fixed) quantities
I and Ω as well as on ε. We also write f � g for f � g � f , and, when used as an
asymptotic notation, f ∼ g for lim f/g = 1, where the direction of the limit is clear from
the context.

1.10. Acknowledgements. This work began during D.M.’s term as Director’s Mathe-
matician in Residence at the Budapest Semesters of Mathematics program in the summer
of 2018; D.M. would like to thank BSM, the Alfréd Rényi Institute of Mathematics, as well
as the Max Planck Institute for Mathematics for their hospitality and excellent working
conditions.

2. Preliminaries

2.1. Representations of SU2(C). In this subsection, we review the representation theory
of the maximal compact subgroup

K = SU2(C) =

{
k[α, β] :=

(
α β
−β̄ ᾱ

)
: |α|2 + |β|2 = 1

}
of G = SL2(C). We use [LG04, §2.1.1,2.2] as a convenient reference.

For u, v, w ∈ R, we parametrize K using essentially Euler angles (2u, 2v, 2w) as follows:

(2.1) k[u, v, w] :=

(
eiu

e−iu

)(
cos v i sin v
i sin v cos v

)(
eiw

e−iw

)
.

Generating an equivalence relation ∼ on R3 by

(2.2) (u, v, w) ∼ (u+ 2π, v, w), (u, v, w+ 2π), (u+ π, v+ π,w), (u+ π/2,−v, w− π/2)
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we may parametrize SU2(C) by R3/∼, or by a specific fundamental domain such as [0, π)×
[0, π/2]×[−π, π), in which each point in SU2(C) has exactly one pre-image other than those
with v ∈ π

2Z. The probability Haar measure on SU2(C) is given by

(2.3) dk = (2π2)−1 sin 2v dudv dw.

The irreducible representations of K = SU2(C) are classified as (2` + 1)-dimensional
representations τ`, for ` ∈ 1

2Z>0, described explicitly as the space V2` of polynomials of

degree at most 2`, with a basis given by {z`−q : |q| 6 `, q ≡ ` (mod 1)} and SU2(C) action
given by

(2.4) τ`(k[α, β])z`−q = (αz − β̄)`−q(βz + ᾱ)`+q =
∑
|p|6`

p≡` (mod 1)

Φ`
p,q(k[α, β])z`−p.

A K-invariant scalar product on V2` is given by (z`−q, z`−p) = (`− q)!(`+ q)!δq=p, so that

Φ`
p,q are (unnormalized) matrix coefficients of τ`. Moreover,{

Φ`
p,q : p, q, ` ∈ 1

2Z and |p|, |q| 6 ` and p, q ≡ ` (mod 1)
}

is an orthogonal basis of L2(K). In harmony with [War72a, §4.4.2], we denote by ξ` the
character of τ`, by d` = 2` + 1 the dimension of τ`, and by χ` = d`ξ` the normalized

character of τ`. Finally, we denote by K̂ = {τ` : ` ∈ 1
2Z>0} the unitary dual of K.

2.2. Representations of SL2(C). For compatibility with the existing literature, we shall
use the Iwasawa decomposition of G = SL2(C) in two forms, G = NAK and G = KAN ,
where N (resp. A) is the subgroup of unipotent upper-triangular (resp. positive diagonal)
matrices, and K = SU2(C) is the standard maximal compact subgroup.

We fix a Haar measure on G by setting

dg = |dz|dr
r5

dk for g =

(
1 z

1

)(
r

r−1

)
k, z ∈ C, r > 0, k ∈ K,

where |dz| = dx dy for z = x+ iy, x, y ∈ R, and dk is as in (2.3).
We write a ' R for the Lie algebra of A, ρ for the root on a mapping

(
x
−x
)

to 2x,
exp : a → A for the exponential map, and κ : G → K and H : G → a for the projection
and height maps defined by g ∈ κ(g) exp(H(g))N for every g ∈ G. Thus explicitly, for
g =

(
a b
c d

)
∈ G we have

(2.5) κ(g) =

(
a/
√
|a|2 + |c|2 ∗

c/
√
|a|2 + |c|2 ∗

)
, exp(H(g)) =

(√
|a|2 + |c|2

1/
√
|a|2 + |c|2

)
.

Finally, let M ' S1 be the centralizer of A in K, which consists of diagonal matrices in K.
Following [GGV77, Ch. III], we introduce for every pair (ν, p) ∈ C× 1

2Z the (generalized)
principal series representation πν,p. Let us denote by C∞(C) the set of functions C → C
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that are smooth when regarded as functions R2 → C. The representation space Vν,p consists
of those functions v ∈ C∞(C) for which the transformed functions

(2.6) πν,p

((
a b
c d

))
v(z) = |bz + d|2p+2ν−2(bz + d)−2pv

(
az + c

bz + d

)
,

(
a b
c d

)
∈ G,

extend to elements of C∞(C). The above display then actually defines the representation
πν,p : G → GL(Vν,p). The space Vν,p is complete with respect to the countable family of
seminorms

sup
{∣∣v(a,b)(x+ yi)

∣∣+
∣∣v̂(a,b)(x+ yi)

∣∣ : x2 + y2 6 c
}
, (a, b, c) ∈ N3,

where we abbreviate v̂ := πν,p
(( −1

1

))
v for v ∈ Vν,p. The action of G is continuous in the

topology induced by these seminorms; thus, πν,p is a Fréchet space representation.
Using the action of K = SU2(C) and its diagonal subgroup

{
diag(ei%, e−i%) : % ∈ R

}
, we

can decompose the K-finite part of Vν,p into an algebraic direct sum of finite-dimensional
subspaces and further into one-dimensional subspaces:

(2.7) V K-finite
ν,p =

⊕
`>|p|

`≡p (mod 1)

V `
ν,p =

⊕
`>|p|

`≡p (mod 1)

⊕
|q|6`

q≡` (mod 1)

V `,q
ν,p .

Precisely, V `
ν,p is a (2`+ 1)-dimensional subspace on which πν,p|K acts by τ` ∈ K̂.

If ν 6≡ p (mod 1) or |ν| 6 |p|, then πν,p ' π−ν,−p is irreducible, and these are all the
equivalences among the representations πν,p. If ν ≡ p (mod 1) and |ν| > |p|, then πν,p
and π−ν,−p are reducible. Assume ν > 0, say. Then the sum of V `

ν,p with |p| 6 ` < ν
is a closed invariant subspace of Vν,p, and the representation induced on the quotient is

irreducible. The closure of the sum of V `
−ν,−p with ` > ν is an invariant subspace of V−ν,−p,

and the representation induced on it is irreducible. Both of these representations of G are
isomorphic to πp,ν ' π−p,−ν . This observation will become relevant in (2.21) below.

The space Vν,p has a G-invariant Hermitian inner product if and only if ν ∈ iR, or
p = 0 and ν ∈ (−1, 0)∪ (0, 1). In the first case, we say that πν,p belongs to the (tempered)
unitary principal series. In the second case, we say that πν,p belongs to the (non-tempered)
complementary series. In either case, the Fréchet space representation πν,p induces an

irreducible unitary representation on the Hilbert space completion V̂ν,p that we shall still
denote by πν,p. The only equivalences among these unitary representations are πν,p '
π−ν,−p. The equivalence classes, along with the trivial representation, form the unitary

dual Ĝ of G.
For π ' πν,p ∈ Ĝ we write

Vπ := V̂ν,p, V `
π := V `

ν,p, V `,q
π := V `,q

ν,p ,

and then (2.7) is equivalent to the orthogonal Hilbert space decomposition (cf. (1.2)):

Vπ =
⊕
`>|p|

`≡p (mod 1)

V `
π =

⊕
`>|p|

`≡p (mod 1)

⊕
|q|6`

q≡` (mod 1)

V `,q
π .
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The projection Vπ → V `
π is realized by the operator

(2.8) π(χ`) :=

∫
K
χ`(k)π(k) dk ∈ End(Vπ),

where End(Vπ) denotes the Hilbert space of Hilbert–Schmidt operators on Vπ endowed
with the Hilbert–Schmidt norm. This leads to the “block matrix decomposition”

(2.9) End(Vπ) =
⊕

m,n>|p|
m,n≡p (mod 1)

Hom(V m
π , V n

π ),

where the direct sum is meant in the Hilbert space sense. Hence, for f ∈ Cc(G), the
(m,n)-component of the Hilbert–Schmidt operator (cf. [GN47, Th. 2])

(2.10) π(f) :=

∫
G
f(g)π(g) dg ∈ End(Vπ)

equals

(2.11) π(χn)π(f)π(χm) = π(χn ? f ? χm) ∈ Hom(V m
π , V n

π ),

where the convolutions are meant over K.

2.3. Plancherel theorem. In this subsection, we review the Plancherel theorem for G =
SL2(C) pioneered by Gelfand and Naimark, following the original sources [GN47, GN50]
and their translations [GN88, GN57]. We note that the list of unitary representations given
in [GN50] is incomplete for higher rank groups (cf. [Ste67, Vog86, Tad93]), but this does
not affect the results we are quoting. In addition, we warn the reader that the translations
contain some misprints not present in the originals, e.g. in the crucial formulae [GN88,
(137)–(138)].

We identify once and for all (non-canonically) the tempered unitary dual Ĝtemp with the
set {

πit,p : (t, p) ∈
(
R>0 × 1

2Z
)
∪
(
{0} × 1

2Z>0

)}
,

with topology inherited from the standard topology on R2. The Plancherel measure on Ĝ

is supported on Ĝtemp, and it is given explicitly as

(2.12) dµPl(πit,p) :=
1

π2
(t2 + p2) dt dp,

with dt the Lebesgue measure on R>0 and dp the counting measure on 1
2Z. For πit,p ∈

Ĝtemp, the underlying Hilbert space V̂it,p is independent of the parameters: it equals V :=
L2(C). On this common representation space, (2.6) defines the unitary action πit,p : G→
U(V) that agrees with [GN47, (65)] for (n, ρ) = (2p, 2t). The operator-valued spherical

transform of f ∈ Cc(G) is the map Ĝtemp → End(V) given by π 7→ π(f) as in (2.10).
The Plancherel theorem for G concerns the extension of this transform to L2(G), and
characterizes its image.
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Theorem 8 (Gelfand–Naimark). The map given by (2.10) extends (uniquely) to an L2-
isometry

L2(G) −→ L2(Ĝtemp → End(V)),

where the operator-valued L2-space on the right-hand side is meant with respect to the

Hilbert–Schmidt norm ‖ · ‖HS on End(V) and the Plancherel measure µPl on Ĝtemp. In
particular, for every f ∈ L2(G), the following Plancherel formula holds:

(2.13)

∫
G
|f(g)|2 dg =

∫
Ĝtemp

‖π(f)‖2HS dµPl(π).

Proof. The theorem follows from [GN47, Th. 5]; we only need to check that our Plancherel
measure corresponds to the one in [GN47, (137)]. We do this in four steps.
Step 1. We observe that the constant (8π4)−1 in [GN47, (137)] should be (16π4)−1 due to
a small oversight in the derivation of [GN47, (130)] from [GN47, (129)]. The oversight is
that the change of variables

(w1, w2, λ) 7→ (ζ1, ζ2, ζ3) := (w2, w1λ̄+ w2/λ̄, w1)

coming from [GN47, (123)] is not 1-to-1 but 2-to-1.
Step 2. We rewrite the corrected right-hand side of [GN47, (137)] as a sum over p ∈ 1

2Z
and an integral over t > 0, keeping in mind that (n, ρ) in [GN47] is (2p, 2t) in our notation.
Step 3. We observe that the Haar measure dµ(g) used by Gelfand–Naimark is 2π2dg.
Indeed, applying [GN47, (40)] to a right K-invariant test function f ∈ Cc(G), we obtain
by several changes of variables that∫

G
f(g) dµ(g) =

∫
C×C××C

f

((
w−1 z

w

)(
1
v 1

))
|dv| |dw| |dz|

=

∫
C×C××C

f

((
w−1 z

w

)(
1/
√

1 + |v|2 v̄/
√

1 + |v|2√
1 + |v|2

))
|dv| |dw| |dz|

=

∫
C×C××C

f

((
w−1 z

w

))
|dv| |dw| |dz|
(1 + |v|2)2

= π

∫
C××C

f

((
1 z

1

)(
w

w−1

))
|dw| |dz|
|w|6

= 2π2

∫
G
f(g) dg.

Step 4. Putting everything together, the corrected version of [GN47, (137)] yields∫
G
|f(g)|2 2π2dg =

1

16π4

∑
p

∫ ∞
0
‖2π2πit,p(f)‖2HS (4t2 + 4p2) 2dt.

This formula is equivalent to (2.13), hence we are done. �

Remark 4. In the proof above, we claimed that the Plancherel measure in [GN47, Th. 5]
is off by a factor of 2. For double checking this claim, we looked at [Kna01, Th. 11.2],
and we found (to our dismay) that the Plancherel measure there is off by a factor of π.
For example, for the test function f(g) := 1/ tr(gg∗)2, the Fourier transform given by
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[Kna01, (11.14)] equals F Tf (t) = π/ tr(tt∗), hence in [Kna01, (11.17)] the left-hand side

is π2, while the right-hand side is π. For triple checking our claim, we verified that our
Plancherel measure yields the correct inversion formula for the classical spherical transform
(for bi-K-invariant functions), as in [FHMM20, §3.3].

Theorem 9 (Gelfand–Naimark). Let f ∈ C∞c (G). For every π ∈ Ĝtemp, the operator
π(f) ∈ End(V) is of trace class, and the following inversion formula holds:

(2.14) f(g) =

∫
Ĝtemp

tr(π(f)π(g−1)) dµPl(π).

Proof. The theorem follows from [GN50, Th. 19] applied to n = 2 and x = R(g)f , or from
[Kna01, Th. 11.2], with appropriate correction of the Plancherel measure (cf. Remark 4).

�

Remark 5. By a celebrated result of Dixmier–Malliavin [DM78], every f ∈ C∞c (G) can
be written as a linear combination of convolutions w?w∗, where w ∈ C∞c (G) and w∗(g) :=

w(g−1). Hence Theorem 9 also follows from Theorem 8 and [GN47, Th. 2]. In fact for this
implication we only need that w ∈ Cc(G), which is easier to achieve.

2.4. The τ`-spherical transform. For a given ` ∈ 1
2Z>0, it is interesting to see what

Theorems 8 and 9 yield for test functions f ∈ L2(G) with the following property: for

almost every π ∈ Ĝtemp, the operator π(f) acts by a scalar on V `
π and by zero on its

orthocomplement V `,⊥
π . In the light of (2.9), (2.11), (2.13), and Schur’s lemma, these test

functions form the Hilbert subspace H(τ`) ⊂ L2(G) defined by the conditions

• f(g) = f(kgk−1) for almost every g ∈ G and k ∈ K;
• f = χ` ? f ? χ`.

Let Ĝtemp(τ`) be the set of π ∈ Ĝtemp whose restriction to K contains τ`. For f ∈ H(τ`),

the operator-valued function π 7→ π(f) is supported on Ĝtemp(τ`), and there it is simply
determined by the scalar-valued function π 7→ tr(π(f)) via

(2.15) π(f)|V `π =
tr(π(f))

2`+ 1
· idV `π and π(f)|

V `,⊥π
= 0.

In particular, for π ∈ Ĝtemp(τ`) and f ∈ H(τ`),

(2.16) ‖π(f)‖2HS = tr(π(f)π(f)∗) =
| tr(π(f))|2

2`+ 1
.

For (ν, p) ∈ iR × 1
2Z, the condition πν,p ∈ Ĝtemp(τ`) is equivalent to |p| 6 ` and p ≡ `

(mod 1). Moreover, for f ∈ L1(G) ∩ H(τ`), the trace of πν,p(f) can be expressed in terms
of the τ`-spherical trace function

(2.17)
ϕ`ν,p(g) := tr(πν,p(χ`)πν,p(g)πν,p(χ`))

= tr(πν,p(χ`)πν,p(g)) = tr(πν,p(g)πν,p(χ`))



BEYOND THE SPHERICAL SUP-NORM PROBLEM 16

as (cf. (2.10) and (2.11))

(2.18) f̂(ν, p) := tr(πν,p(f)) =

∫
G
f(g)ϕ`ν,p(g) dg.

The function ϕ`ν,p : G → C vanishes unless |p| 6 ` and p ≡ ` (mod 1), for else τ` does

not appear in πν,p, and ϕ`ν,p(id) = 2`+ 1 in this latter case. Moreover, we have the integral
representation of Harish-Chandra [War72b, Cor. 6.2.2.3]:

ϕ`ν,p(g) =

∫
K

(χ` ? ηp) (κ(k−1gk)) e(ν−1)ρ(H(gk)) dk.

Here, ηp : M ' S1 → C× is the unitary character ηp(z) = z−2p, the convolution is over M ,
and κ, ρ, and H are as in §2.2. For computational purposes, we spell out the χ` ? ηp term
explicitly, cf. (2.4), [Wan74, (10) & Lemma 3.2], [HR70, Th. 29.18]:

(χ` ? ηp) (k[α, β]) = (2`+ 1)Φ`
p,p(k[α, β])

= (2`+ 1)

`−|p|∑
r=0

(−1)r
(
`+ p

r

)(
`− p
r

)
α`−p−rᾱ`+p−r|β|2r.

We collect further useful properties of ϕ`ν,p : G→ C in the next lemma, where we write

ah := diag(eh/2, e−h/2), h ∈ R.

Lemma 1. The τ`-spherical trace function ϕ`ν,p(g) extends holomorphically to ν ∈ C, and
it satisfies the bound

(2.19)
∣∣ϕ`σ+it,p(k1ahk2)

∣∣ 6 (2`+ 1)
sinh(σh)

σ sinh(h)
, σ, t, h ∈ R, k1, k2 ∈ K.

(For σ = 0 or h = 0, the fraction on the right-hand side is understood as 1.) The extended
function has the symmetries

(2.20) ϕ`ν,p(g) = ϕ`−ν,p(g) = ϕ`ν,p(g
−1),

(2.21) ϕ`ν,p(g) = ϕ`p,ν(g), ν ≡ p (mod 1), |ν|, |p| 6 `.

Proof. The holomorphic extension of ϕ`ν,p(g) and the bound (2.19) are a straightforward

generalization of [Wan74, Prop. 3.4] and its proof. The identity ϕ`−ν,p(g) = ϕ`ν,p(g
−1) fol-

lows from (2.17) and π(g)∗ = π(g−1) for ν ∈ iR, and then also for ν ∈ C by the uniqueness
of analytic continuation. The identity ϕ`ν,p(g) = ϕ`ν,p(g

−1) is [Wan74, Lemma 3.2], keeping
in mind that πν,p ' π−ν,−p for ν ∈ iR and again invoking analytic continuation. Finally,
the remarkable symmetry (2.21) follows from [Wan74, Cor. 2], or more conceptually from
the discussion below (2.7). �
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As we shall see in Theorem 10 below, the τ`-spherical transform defined by (2.18)

is inverted by the following inverse τ`-spherical transform. For h ∈ L1(Ĝtemp(τ`)) ∩
L2(Ĝtemp(τ`)) and g ∈ G, we define

(2.22) qh(g) :=
1

(2`+ 1)π2

∑
|p|6`

p≡` (mod 1)

∫ ∞
0

h(it, p)ϕ`it,p(g
−1) (t2 + p2) dt.

Theorem 10. The transforms defined by (2.18) and (2.22) extend (uniquely) to a pair of
Hilbert space isometries inverse to each other:

H(τ`)←→ L2(Ĝtemp(τ`)).

In particular, for f ∈ H(τ`), the following Plancherel formula holds:

(2.23)

∫
G
|f(g)|2 dg =

1

(2`+ 1)π2

∑
|p|6`

p≡` (mod 1)

∫ ∞
0
|f̂(it, p)|2 (t2 + p2) dt.

Proof. The fact that ̂ extends to a Hilbert space isomorphism H(τ`) → L2(Ĝtemp(τ`))
follows from Theorem 8 and our discussion above. In particular, (2.23) is a special case of
(2.13) in the light of (2.12), (2.16), (2.18). We are left with proving that q is the inverse
of ̂ , and for this it suffices to verify that q applied after ̂ is the identity on the dense
subset C∞c (G) ∩ H(τ`) of the Hilbert space H(τ`). For f ∈ C∞c (G) ∩ H(τ`), (2.8), (2.10),
(2.12), (2.14), (2.15), (2.17), (2.18) yield

f(g) =

∫
Ĝtemp

tr(π(f)π(g−1)) dµPl =
1

2`+ 1

∫
Ĝtemp

tr(π(f)) tr(π(χ`)π(g−1)) dµPl

=
1

(2`+ 1)π2

∑
|p|6`

p≡` (mod 1)

∫ ∞
0

f̂(it, p)ϕ`it,p(g
−1) (t2 + p2) dt.

The proof is complete. �

Wang [Wan74] proved an analogue of the Paley–Wiener theorem for the τ`-spherical
transform, and in particular characterized the image of H(τ`) ∩ C∞c (G) under the trans-
form. The following is [Wan74, Prop. 4.5] and should be compared to Theorem 7 in the
introduction.

Theorem 11 (Wang). Let f ∈ H(τ`) be a test function, and let R > 0. Then the following
two conditions are equivalent.

(a) The function f(g) is smooth, and

f(k1ahk2) = 0, |h| > R, k1, k2 ∈ K.

(b) The function f̂(ν, p) has a holomorphic extension to C× 1
2Z such that

f̂(ν, p) = f̂(p, ν), ν ≡ p (mod 1), |ν|, |p| 6 `,
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and for any C > 0 we have

f̂(ν, p)�C (1 + |ν|)−CeR|<ν|, ν ∈ C, p ∈ 1
2Z.

We now prove a Schwartz class version of this result as stated in Theorem 7.

Proof of Theorem 7. For harmony of notation with [Wan74], in this proof we use D`
p,q(k)

to denote the matrix coefficients of τ` relative to the basis obtained by normalizing the
orthogonal basis {z`−q : |q| 6 `, q ≡ ` (mod 1)} in the space V2` of §2.1. Thus we explicitly
have the renormalization

D`
p,q(k) =

(
(`− p)!(`+ p)!

(`− q)!(`+ q)!

)1/2

Φ`
p,q(k).

Assume condition (a). The holomorphic extension of f̂(ν, p) follows from (2.19) coupled
with (1.15) for m = 0, and then (1.16) is immediate from (2.21). In order to derive (1.17),

we use an alternate representation of f̂(ν, p). We shall assume that |p| 6 ` and p ≡ `

(mod 1), for else f̂(ν, p) = 0. By the third line of the second display on [Wan74, p. 621]
and [Wan74, Lemma 3.2], we see that the (unique) holomorphic extension is also provided
by

(2.24) f̂(ν, p) =
2`+ 1

2

∫ ∞
−∞

f̆(h, p) eνh dh,

where

(2.25) f̆(h, p) := eh
∫
K

∫
N
f(kahn)D`

p,p(k) dk dn.

We claim that, for any m ∈ Z>0 and A > 0, we have

(2.26)
∂m

∂hm
f̆(h, p)�m,A e

−A|h|, h ∈ R, |p| 6 `, p ≡ ` (mod 1).

For |h| > 1 this follows by writing ahn = k1ah′k2 in (2.25), and then combining (1.15)
with some calculus to keep track of the dependence of h′ ∈ R and k1, k2 ∈ K on h ∈ R.
For |h| 6 1 we proceed similarly for the part of the integral in (2.25) that corresponds to
n =

(
1 z

1

)
with |z| > 1, while we estimate the (h-derivatives of the) remaining integral

directly by the smoothness of f(g). With (2.26) at hand, (1.17) follows from (2.24) via
integration by parts. We proved that (a) implies (b).

Assume condition (b). By Theorem 10,

f(g) =
1

(2`+ 1)π2

∑
|p|6`

p≡` (mod 1)

∫ ∞
0

f̂(it, p)ϕ`it,p(g
−1) (t2 + p2) dt.
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Let us restrict, without loss of generality, to g = k1ahk2 with h > 0. Using the display
below [Wan74, (29)]1, we infer

f(g) =
1

4π2 sinh(h)

∑
|p|,|j|6`

p,j≡` (mod 1)

∫ h

−h
f̃(s, p)D`

−p,j(v
−1
θ )D`

j,j(k2k1)D`
j,−p(vθ′) ds,

where D`
−p,j(v

−1
θ ) and D`

j,−p(vθ′) can be explicated using [Wan74, (5) & (28)], and

(2.27) f̃(s, p) :=

∫ ∞
−∞

f̂(it, p) e−its (t2 + p2) dt, s ∈ R.

By (1.17) and Cauchy’s theorem, it follows for any n ∈ Z>0 and D > 0 that

(2.28)
∂n

∂sn
f̃(s, p)�n,D e−D|s|, s ∈ R.

The smoothness of f(g) is now straightforward, and this automatically verifies (1.15) for
|h| 6 1. From now on we can assume, without loss of generality, that h > 1. From (1.16),
(2.28), and the calculation around [Wan74, (38)–(41)], we see that∑

|p|,|j|6`
p,j≡` (mod 1)

∫ ∞
−∞

f̃(s, p)D`
−p,j(v

−1
θ )D`

j,j(k2k1)D`
j,−p(vθ′) ds = 0,

hence in fact

f(g) =
−1

4π2 sinh(h)

∑
|p|,|j|6`

p,j≡` (mod 1)

(∫ −h
−∞

+

∫ ∞
h

)
f̃(s, p)D`

−p,j(v
−1
θ )D`

j,j(k2k1)D`
j,−p(vθ′) ds.

From here it is straightforward to deduce (1.15) for h > 1, using (2.28) and the remarks
above it. We proved that (b) implies (a). �

We shall denote by H(τ`)∞ the set of functions satisfying the equivalent conditions (a)
and (b) of Theorem 7. It is clear that H(τ`)∞ is a convolution subalgebra of L1(G)∩L2(G).

Remark 6. In the previous display, we may estimate the product of the three matrix
coefficients (recalling that each matrix (D`

p,q(k))p,q is orthogonal) using the trivial bound

|D`
j,j | 6 1 and the Cauchy–Schwarz inequality for the remaining two factors. Combining

this with the observation f̃(s, p) = f̃(−s,−p) yields the following refinement of (1.15) when
m = 0:

(2.29)
∣∣f(k1ahk2)

∣∣ 6 ∑
|p|6`

p≡` (mod 1)

∫ ∞
h

∣∣f̃(s, p)
∣∣ds, h > 1, k1, k2 ∈ K.

1We note that in [Wan74, (29)] the product k2k1 should be conjugated as u−1
ϕ1
k2k1uϕ1 , and the integral

over 0 6 ϕ1 6 2π with normalization factor 1/(2π) is missing. After this correction, the crucial next
display follows as stated, by expanding the matrix coefficient D`

−p,−p (in our notation) via the entry-by-

entry product of three matrices and executing the ϕ1-integral.
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We end this subsection by stating a two-variable version of some of the previous defini-
tions and results. Taking (topological) tensor products of Hilbert spaces, we can identify
H(τ`)⊗̂H(τ`) with the space of functions f ∈ L2(G×G) satisfying

• f(g1, g2) = f(k1g1k
−1
1 , k2g2k

−1
2 ) for almost every g1, g2 ∈ G and k1, k2 ∈ K;

• f = (χ`, χ`) ? f ? (χ`, χ`) almost everywhere.

This can be seen by projecting the isomorphism between L2(G)⊗̂L2(G) and L2(G × G)
(see e.g. [Sim15, Cor. 4.11.9]) to H(τ`)⊗̂H(τ`) and the (closed) subspace of functions in

question. By Theorem 10, this space is isometrically isomorphic to L2(Ĝtemp(τ`)
2) via the

obvious extension of the map (2.18):

(2.30) f̂(ν1, p1, ν2, p2) :=

∫
G1×G2

f(g1, g2)ϕ`ν1,p1(g1)ϕ`ν2,p2(g2) dg1 dg2.

For h ∈ L1(Ĝtemp(τ`)
2) ∩ L2(Ĝtemp(τ`)

2), the inverse transform is given as in (2.22):

qh(g1, g2) :=
1

(2`+ 1)2π4

∑
|p1|,|p2|6`

p1≡p2≡` (mod 1)

∫ ∞
0

∫ ∞
0

h(it1, p1, it2, p2)

ϕ`it1,p1(g−1
1 )ϕ`it2,p2(g−1

2 ) (t21 + p2
1)(t22 + p2

2) dt1 dt2.

(2.31)

It is straightforward to adapt the above presented proof of Theorem 7 to obtain the fol-
lowing variant for H(τ`)⊗̂H(τ`):

Theorem 12. For f ∈ H(τ`)⊗̂H(τ`), the following two conditions are equivalent (with
implied constants depending on f).

(a) The function f(g1, g2) is smooth, and for any m1,m2 ∈ Z>0 and A > 0 we have

∂m1+m2

∂hm1
1 ∂hm2

2

f(k1ah1k2, k3ah2k4)�m1,m2,A e
−A(|h1|+|h2|), h1, h2 ∈ R, k1, k2, k3, k4 ∈ K.

(b) The function f̂(ν1, p1, ν2, p2) has a holomorphic extension to C× 1
2Z×C× 1

2Z such
that

f̂(ν1, p1, ν2, p2) = f̂(p1, ν1, ν2, p2), ν1 ≡ p1 (mod 1), |ν1|, |p1| 6 `,

f̂(ν1, p1, ν2, p2) = f̂(ν1, p1, p2, ν2), ν2 ≡ p2 (mod 1), |ν2|, |p2| 6 `,

and for any B,C > 0 we have

f̂(ν1, p1, ν2, p2)�B,C (1 + |ν1|+ |ν2|)−C , |<ν1|, |<ν2| 6 B, p1, p2 ∈ 1
2Z.

We shall denote byH(τ`, τ`)∞ the set of functions satisfying the equivalent conditions (a)
and (b) of Theorem 12; this is clearly a convolution subalgebra of L1(G×G)∩L2(G×G).
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2.5. Hecke operators. The arithmetic quotient Γ\G comes equipped with a rich family
of Hecke correspondences, which we now describe, referring to [BHM16] for further details
and references. For every n ∈ Z[i] \ {0}, consider the set

Γn :=

{(
a b
c d

)
∈ M2(Z[i]) : ad− bc = n

}
.

In particular, Γ1 = Γ. Then we may define the Hecke operator Tn acting on functions
φ : Γ\G→ C by

(2.32) (Tnφ)(g) :=
1

|n|
∑

γ∈Γ\Γn

φ

(
1√
n
γg

)
=

1

4|n|
∑
ad=n

∑
b mod d

φ

(
1√
n

(
a b
0 d

)
g

)
,

where the result is independent of the choice of the square-root since ±id ∈ Γ. In particular,
since Γ−1 = Γ ·

(−1
1

)
and 1

i

(−1
1

)
=
(
i
−i
)
∈ Γ, we have T−1 = T1 = id. We also observe

that, as γ ranges through a set of representatives of Γ\Γn, nγ−1 ranges through a set of
representatives of Γn/Γ.

These Hecke operators are self-adjoint on L2(Γ\G), commute with each other and the
Laplace operator; thus they act by constants λn(V ) on each irreducible component V ⊂
L2(Γ\G), with non-zero vectors in each V being joint Hecke–Maaß eigenfunctions. They
also satisfy the multiplicativity relation

(2.33) TmTn =
∑

(d)|(m,n)

Tmn/d2 , m, n ∈ Z[i] \ {0},

where it is clear that the right-hand side does not depend on the choice of the generator
d. Finally we have the Rankin–Selberg bound

(2.34)
∑
|n|26x

|λn(V )|2 �V x.

2.6. Eisenstein series and spectral decomposition. In this subsection, we review the
construction and properties of the (not necessarily spherical) Eisenstein series on Γ\G. The
quotient Γ\G has a unique cusp at ∞. For ` ∈ Z>0, p, q ∈ Z with 2 | p and |p|, |q| 6 `,
and ν ∈ C with <ν > 1, we define the Eisenstein series of type (`, q) at ∞ as in [LG04,
Def. 3.3.1] by the absolutely and locally uniformly convergent series

(2.35) E`,q(ν, p)(g) :=
∑

γ∈Γ∞\Γ

φ`,q(ν, p)(γg),

where Γ∞ is the subgroup of upper-triangular matrices in Γ (the stabilizer of∞ in Γ), and

(2.36) φ`,q(ν, p)

((
r ∗

r−1

)
k

)
:= r2(1+ν)Φ`

p,q(k), r > 0, k ∈ K.

These Eisenstein series possess a meromorphic continuation to ν ∈ C, which is holomorphic
along iR [LG04, §5.1]. An easy calculation with (2.32) and (2.4) shows that they are also
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eigenfunctions of the Hecke operators Tn with

(2.37) TnE`,q(ν, p) = λn(E(ν, p))E`,q(ν, p), λn(E(ν, p)) :=
1

4

∑
n=ad

χν,p(a)χ−ν,−p(d),

where χν,p(z) := |z|ν(z/|z|)−p. In particular,

(2.38) λin(E(ν, p)) = (−1)p/2λn(E(ν, p)).

While E`,q(ν, p) for individual ν ∈ iR (barely) fail to lie in L2(Γ\G), their averages against
Cc(iR) weights f(ν) comfortably do, and upon taking the Hilbert space closure of their
span and orthocomplements one obtains the familiar orthogonal decomposition

(2.39) L2(Γ\G) = C · 1⊕ L2(Γ\G)cusp ⊕ L2(Γ\G)Eis.

Let H(ν, p) be the linear span of all φ`,q(ν, p) with |p|, |q| 6 `. By (2.36), the functions
f ∈ H(ν, p) satisfy

f

((
z ∗

z−1

)
g

)
= |z|2χν,p(z2)f(g), z ∈ C×, g ∈ G,

and they are determined by their restriction to K. In fact H(ν, p) as a (g,K)-module is
isomorphic to theK-finite part of Vν,p featured in (2.7). That is, the appropriate completion
of H(ν, p) serves as a model of the Fréchet/Hilbert space representation πν,p, and we shall
denote by H∞(ν, p) the dense subspace of smooth vectors in this completion.

Denoting by CK(Γ\G) the space of K-finite smooth functions on Γ\G, an automorphic
representation of type (ν, p) for Γ\G may be realized as a unitary (g,K)-module homo-
morphism T : H(ν, p) → CK(Γ\G), with the corresponding πν,p an irreducible unitary
representation on the Hilbert space Vν,p, cf. [LG04, §3.4 & §8]. Such a T may arise as
TV for a cuspidal consituent V ' Vν,p occurring discretely in L2(Γ\G)cusp, or from the
Eisenstein series via

TE(ν,p)φ`,q(ν, p) := E`,q(ν, p), |p|, |q| 6 `.

Indeed, by (2.35), the last display defines a (g,K)-module homomorphism for <ν > 1,
hence by analytic continuation for all ν ∈ C where the relevant Eisenstein series have
no pole. Following custom, we lighten the notation by denoting a generic automorphic
representation of type (ν, p), whether of type TV or TE(ν,p), as V , and its associated Hecke
eigenvalues as λn(V ). Finally, we shall use that the above (g,K)-module homomorphism
extends uniquely to a G-module homomorphism H∞(ν, p) → C∞(Γ\G), and its image
consists of functions of moderate growth.

Now (2.39) is explicated by the following two spectral identities. For f in the space
C∞0 (Γ\G) of smooth complex-valued functions on Γ\G with all rapidly decaying derivatives,
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we have

f =
〈f, 1〉

vol(Γ\G)
+

∑
V cuspidal

∑
q,`∈Z
|pV |,|q|6`

〈f, TV φ`,q(νV , pV )〉
‖Φ`

pV ,q
‖2
K

TV φ`,q(νV , pV )

+
1

πi

∫
(0)

∑
p∈2Z

∑
q,`∈Z
|p|,|q|6`

〈f,E`,q(ν, p)〉
‖Φ`

p,q‖
2

K

E`,q(ν, p) dν,

(2.40)

with the obvious interpretation of 〈f,E`,q(ν, p)〉. For f1, f2 ∈ C∞0 (Γ\G), we have with the
same interpretation

〈f1, f2〉 =
〈f1, 1〉〈1, f2〉

vol(Γ\G)
+

∑
V cuspidal

∑
q,`∈Z
|pV |,|q|6`

〈f1, TV φ`,q(νV , pV )〉〈TV φ`,q(νV , pV ), f2〉
‖Φ`

pV ,q
‖2
K

+
1

πi

∫
(0)

∑
p∈2Z

∑
q,`∈Z
|p|,|q|6`

〈f1, E`,q(ν, p)〉〈E`,q(ν, p), f2〉
‖Φ`

p,q‖
2

K

dν.

(2.41)

Compare with [EGM98, Ch. 6, Th. 3.4] and [LG04, Th. 8.1].
We shorten the notation in two ways. First, for an automorphic representation V (cus-

pidal or Eisenstein) of type (ν, p) occurring in L2(Γ\G), we write

φV`,q :=
TV φ`,q(ν, p)

‖Φ`
p,q‖K

, |p|, |q| 6 `.

In particular, when at least one of two such V and V ′ is cuspidal, 〈φV`,q, φV
′

`′,q′〉 equals

δ(`,q,V )=(`′,q′,V ′). Second, while the decompositions in (2.40) and (2.41) are over all auto-

morphic representations V (cuspidal or Eisenstein) occurring in L2(Γ\G), keeping in mind
the τ`-spherical transform of §2.4, it will be useful to introduce the shorthand notation∫

[`] dV for the sum-integral over those V of type (ν, p) such that πν,p ∈ Ĝ(τ`) (that is, with

|p| 6 ` as well as p ∈ 2Z for V Eisenstein). Thus, for example, (2.40) may be rewritten in
the more compact form

(2.42) f =
〈f, 1〉

vol(Γ\G)
+
∑
`>0

∫
[`]

∑
|q|6`

〈f, φV`,q〉φV`,q dV.

2.7. Rankin–Selberg convolutions. In this subsection, we review briefly the properties
of Rankin–Selberg L-functions. We shall restrict to automorphic representations for Γ\G on
which the Hecke operator Ti acts trivially, so that they lift to automorphic representations
for PGL2(Z[i])\PGL2(C). This allows us to refer to the theory of GL2.

The Rankin–Selberg L-function of two automorphic representations Vj of type (νj , pj) ∈
iR× Z for Γ\G is defined by the absolutely convergent series (cf. (2.34))

(2.43) L(s, V1 × V2) =
1

4
ζQ(i)(2s)

∑
n∈Z[i]\{0}

λn(V1)λn(V2)

(|n|2)s
, <s > 1.
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This can be verified by matching the Euler factors on the two sides, using [Jac72, Th. 15.1],
[JL70, Prop. 3.5], [Tat79, (3.1.3)], and [Bum97, Lemma 1.6.1]. In particular,

L(s, V × E(ν, p)) = L(s− 1
2ν, V ⊗ χp)L(s+ 1

2ν, V ⊗ χ−p)

for V cuspidal and (ν, p) ∈ iR× 4Z according to (2.38), as well as

L
(
s, E(ν1, p1)× E(ν2, p2)

)
=

∏
ε1,ε2∈{±1}

L
(
s+ 1

2(ε1ν1 + ε2ν2), χ−ε1p1−ε2p2
)
,

with (νj , pj) ∈ iR× 4Z and χp(z) := (z/|z|)−p. All L-functions are meant over Q(i).
The Rankin–Selberg L-function L(s, V1 × V2) possesses a meromorphic continuation to

the entire complex plane with the exception of finitely many possible poles along the line
<s = 1. It is in fact entire except as follows (cf. [GJ78, Th. 2.2]):

• If V1 = V2 (= V ) is cuspidal of type (ν, p) (that is, (ν1, p1) = ±(ν2, p2)), there is a
simple pole at s = 1 with (strictly) positive residue

(2.44) res
s=1

L(s, V × V ) =
π

4
· L(1, ad2V )�ε

(
(1 + |p|)(1 + |ν|)

)−ε
,

where the lower bound follows from [Mag13, Prop. 3.2].
• If V1 and V2 are both Eisenstein series with p1 = εp2 for some ε ∈ {±1}, there are

simple poles at s = 1 + η(ν1 − εν2)/2 for η ∈ {±1} with residue

(2.45) Lη(V1, V2) :=
π

4
· ζQ(i)(1 + η(ν1 − εν2))L(1 + ην1, χ−2ηp1)L(1− ηεν2, χ2ηεp2),

unless ν1 = ±ν2 or ν1 = 0 or ν2 = 0, in which case, however, the definition still
makes sense as a meromorphic function of ν1 and ν2.

Finally, the associated completed L-function satisfies the familiar functional equation

(2.46) Λ(s, V1 × V2) := 16sL(s, V1 × V2)L∞(s, V1 × V2) = Λ(1− s, V1 × V2),

where the exponential factor 16s coming from the discriminant of Q(i) is included for
convenience, and the factor at infinity is given by

L∞(s, V1 × V2) = Γ(s, ~ν, ~p) : =
∏

ε1,ε2∈{±1}

L∞(s, χε1ν1,ε1p1 · χε2ν2,ε2p2)

=
∏

ε1,ε2∈{±1}

ΓC
(
s+ 1

2(ε1ν1 + ε2ν2) + 1
2 |ε1p1 + ε2p2|

)
.(2.47)

Here we used the abbreviations

ΓC(s) := 2(2π)−sΓ(s), ~ν := (ν1, ν2), ~p := (p1, p2).

Indeed, (2.46)–(2.47) follow from [Jac72, Prop. 18.2], [Tat79, §3], [Wei74, Prop. 6 in §VII-
2] and its proof, upon noting that Vj is isomorphic to the principal series representation
induced from the pair of characters (χ−νj ,−pj , χνj ,pj ).
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Lemma 2. Let f : iR → C be a function decaying as f(ν) � (1 + |ν|)−3, and let p ∈ Z.
Then ∫

(0)

∫
(0)

∑
η∈{±1}

f(ν1)f(ν2)Lη((ν1, p), (ν2, p))
dν1

πi

dν2

πi
> 0.

Proof. First we note that the η-sum cancels the individual poles of Lη((ν1, p), (ν2, p)) at
ν1 = ν2. For ε > 0 and Vj = (νj , p) with j ∈ {1, 2} define

Lη(V1, V2, ε) :=
π

4
· ζQ(i)(1 + ε+ η(ν1 − ν2))L(1 + ην1, χ−2ηp)L(1− ην2, χ2ηp)

and

I(ε) :=

∫
(0)

∫
(0)

∑
η∈{±1}

f(ν1)f(ν2)Lη(V1, V2, ε)
dν1

πi

dν2

πi
.

This function is continuous at ε = 0, so it suffices to show I(ε) > 0 for ε > 0. Inserting
the definition and opening the Dedekind zeta function, we see that

I(ε) =
π

16

∑
η∈{±1}

∑
n∈Z[i]\{0}

1

|n|2+2ε

∣∣∣∣∫
(0)

1

|n|2ην
L(1 + ην, χ−2ηp)f(ν)

dν

πi

∣∣∣∣2 > 0

as desired. �

2.8. Diagonal detection of Voronoi type. In this subsection, we prove a Voronoi-type
formula that allows us to detect equality of two automorphic representations occurring
in L2(Γ\G) in terms of a certain weighted orthogonality relation between their Hecke
eigenvalues. We shall use that only tempered representations occur in L2(Γ\G), e.g. by
[EGM98, Ch. 7, Prop. 6.2].

Lemma 3. Let P > 1 be a parameter. There exists a function

WP : R>0 × C2 × Z2 → C,

given explicitly by (2.50), with the following properties.

(a) WP (x, ~ν, ~p) is an entire function of ~ν = (ν1, ν2) ∈ C2, and it is invariant under

(νj , pj) 7→ (−νj ,−pj) as well as (νj , pj) 7→ (pj , νj) (νj ∈ Z).

(b) Let us abbreviate P̃ :=
(
1+|p1+p2|

)(
1+|p1−p2|

)
. Then for every A > |<ν1|+|<ν2|

we have

(2.48) WP (x, ~ν, ~p)�A,<ν1,<ν2
(
1 + (P̃ /P )2A−2

)(
1 + |ν1|+ |ν2|

)4A
x−A.
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(c) For every two automorphic representations Vj of type (νj , pj) ∈ iR×Z for Γ\G we
have∑
n∈Z[i]\{0}

WP

(
|n|
P
, ~ν, ~p

)
λn(V1)λn(V2)

=


π
4L(1, ad2V1)P 2, V1 = V2 cuspidal;∑
η∈{±1} Lη(V1, V2)P 2+η(ν1−εν2), V1, V2 Eisenstein, p1 = εp2, ε ∈ {±1};

0, otherwise,

(2.49)

where L(1, ad2V1) and Lη(V1, V2) are as in (2.44) and (2.45).

Proof. Let w : R>0 → C be a smooth function supported inside [1, 2], and normalized so
that its Mellin transform ŵ(s) =

∫∞
0 w(x)xs dx/x satisfies ŵ(1) = 1. We define

(2.50) WP (x, ~ν, ~p) :=
1

8πi

∫
(2)
ζQ(i)(2s)

(
ŵ(s)− P 2−4s 162s−1Γ(s, ~ν, ~p)

Γ(1− s, ~ν, ~p)
ŵ(1− s)

)
x−2s ds,

where Γ(s, ~ν, ~p) is as in (2.47).
Shifting the contour to the far right, we see that WP (x, ~ν, ~p) is entire in ~ν. The symmetry

with respect to (νj , pj) 7→ (−νj ,−pj) is obvious from (2.47). For r ∈ 1
2Z we have the

equality

Γ(z + r)

Γ(1− z + r)
=

Γ(z − r)
Γ(1− z − r)

· sin(π(z − r))
sin(π(z + r))

= (−1)2r Γ(z − r)
Γ(1− z − r)

of meromorphic functions in z ∈ C. This shows that (cf. (2.47))

Γ(s, ~ν, ~p)

Γ(1− s, ~ν, ~p)
=

∏
ε1,ε2∈{±1}

ΓC
(
s+ 1

2(ε1ν1 + ε2ν2) + 1
2 |ε1p1 + ε2p2|

)
ΓC
(
1− s− 1

2(ε1ν1 + ε2ν2) + 1
2 |ε1p1 + ε2p2|

)
=

∏
ε1,ε2∈{±1}

ΓC
(
s+ 1

2(ε1ν1 + ε2ν2) + 1
2(ε1p1 + ε2p2)

)
ΓC
(
1− s− 1

2(ε1ν1 + ε2ν2) + 1
2(ε1p1 + ε2p2)

)
is symmetric with respect to (νj , pj) 7→ (pj , νj), completing the proof of (a).

Combining the first line of the previous display with [Har02, Lemma 3.2], we infer for
<(s) > 1

2 |<ν1|+ 1
2 |<ν2| that∣∣∣∣ Γ(s, ~ν, ~p)

Γ(1− s, ~ν, ~p)

∣∣∣∣ =
∏

ε1,ε2∈{±1}

∣∣∣∣∣ ΓC
(
s+ 1

2(ε1ν1 + ε2ν2) + 1
2 |ε1p1 + ε2p2|

)
ΓC
(
1− s− 1

2(ε1ν1 + ε2ν2) + 1
2 |ε1p1 + ε2p2|

)∣∣∣∣∣
�<s,<ν1,<ν2

∏
ε1,ε2∈{±1}

∣∣s+ 1
2(ε1ν1 + ε2ν2) + 1

2 |ε1p1 + ε2p2|
∣∣<(2s+ε1ν1+ε2ν2)−1

�<s,<ν1,<ν2
∏

ε1,ε2∈{±1}

(1 + |ε1p1 + ε2p2|)<(2s+ε1ν1+ε2ν2)−1 (|s|+ |ν1|+ |ν2|)<(2s+ε1ν1+ε2ν2)

= (1 + |p1 + p2|)4<s−2 (1 + |p1 − p2|)4<s−2 (|s|+ |ν1|+ |ν2|)8<s .
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Turning back to (2.50), the singularity of the integrand at s = 1/2 is removable, so we can
shift the contour to <s = A/2. The bound (2.48) follows upon noting that that

• ŵ(s)�C,<s (1 + |s|)−C for all C > 0 and s ∈ C;

• ζQ(i)(2s)� (1 + |s|)2 for <s > 0 and |2s− 1| > 1.

Finally, to show (c), we start from the following identity, a consequence of (2.43):

1

16

∑
m,n∈Z[i]\{0}

w

(
|m|4|n|2

P 2

)
λn(V1)λn(V2) =

1

2πi

∫
(2)
L(s, V1 × V2)ŵ(s)P 2s ds.

We shift the contour to <s = −1; the contribution of the possible poles (on the line
<s = 1) is recorded on the right-hand side of (2.49). In the remaining integral we apply
the functional equation (2.46) and change variables s 7→ 1− s getting

1

2πi

∫
(2)
L(s, V1 × V2)P 2−4s 16sΓ(s, ~ν, ~p)

161−sΓ(1− s, ~ν, ~p)
ŵ(1− s)P 2s ds.

Moving this term to the other side, we obtain the desired formula (2.49), first for (ν1, p1) 6=
±(ν2, p2), but then by analytic continuation everywhere. This completes the proof of
(c). �

3. Pre-trace formula and amplification

In this section, we first implement a pre-trace setup, using integral kernels that are
(by necessity) not bi-K-invariant, first in §3.1 as the full pre-trace formula based on the
theory of Eisenstein series and then as a streamlined pre-trace inequality in §3.2. In
§§3.3–3.5, we couple the pre-trace setup with either amplification by Hecke operators or
self-amplification via diagonal detection of Voronoi type in §2.8 to derive estimates on
pointwise values of automorphic forms in terms of estimates on generalized spherical trace
functions and Diophantine counts.

3.1. Amplified pre-trace formula. In this subsection, we prove an amplified pre-trace
formula based on the theory of Eisenstein series and the spectral decomposition of L2(Γ\G)
(see §2.6). This is a familiar identity between spectral and geometric data, and its full force
will be needed in the proof of Theorem 3(b); in fact, as an even more general version, we
shall use a double pre-trace formula (see §3.4) in two variables.

Let A be a bounded operator on L2(Γ\G) preserving the subspace C∞0 (Γ\G) of smooth
functions with all rapidly decreasing derivatives. Assume that for the basis forms φV`,q,

indexed as in (2.42) by V occurring in L2(Γ\G) (cuspidal or Eisenstein) and `, q ∈ Z
satisfying ` > max(|pV |, |q|), there are constants cV`,q(A) ∈ C such that

(3.1) 〈Aψ, φV`,q〉 = cV`,q(A)〈ψ, φV`,q〉, ψ ∈ C∞0 (Γ\G).

Then (2.41) yields, for every ψ ∈ C∞0 (Γ\G),

(3.2) 〈Aψ,ψ〉 =
〈Aψ, 1〉〈1, ψ〉

vol(Γ\G)
+
∑
`>0

∫
[`]

∑
|q|6`

cV`,q(A)|〈ψ, φV`,q〉|2 dV.
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For f ∈ C0(G) a rapidly decaying continuous function on G, and ψ ∈ L2(Γ\G), we may
consider the function R(f)ψ ∈ L2(Γ\G) defined by

(R(f)ψ)(g) :=

∫
G
f(h)ψ(gh) dh =

∫
G
f(g−1h)ψ(h) dh

=

∫
Γ\G

kf (g, h)ψ(h) dh, kf (g, h) :=
∑
γ∈Γ

f(g−1γh).

Thus R(f) is a bounded integral operator on L2(Γ\G) with kernel kf . It is clear that R(f)
preserves C∞0 (Γ\G), and its adjoint equals R(f)∗ = R(f∗) with

f∗(g) := f(g−1), g ∈ G.

Further, for a finitely supported sequence of complex coefficients x = (xn)n∈Z[i]\{0}, let

Rfin(x) be the operator on L2(Γ\G) given by

(3.3) Rfin(x) :=
∑

n∈Z[i]\{0}

xnTn.

The adjoint of this operator equals Rfin(x)∗ = Rfin(x).
Let us now fix an integer ` > 1. Let f ∈ H(τ`)∞ be such that f = f∗, and let x = (xn)

be as above such that x = x, the self-adjointness conditions serving only to lighten the
notation below. Further, let V be a non-identity (cuspidal or Eisenstein) automorphic
representation of arbitrary type (νV , pV ) occurring in L2(Γ\G), and let `′, q ∈ Z be such
that `′ > max(|pV |, |q|). For V cuspidal, (2.15) and (2.18) show that

(3.4)

R(f)φV`′,q = δ`′=`
f̂(V )

2`+ 1
φV`′,q, f̂(V ) := f̂(νV , pV );

Rfin(x)φV`′,q = x̂(V )φV`′,q, x̂(V ) :=
∑

n∈Z[i]\{0}

xnλn(V ).

For V Eisenstein, these equations are still valid with the obvious extension of R(f) and
Rfin(x) to functions in C∞(Γ\G) of moderate growth, as follows from (2.37) and the dis-
cussion between (2.39) and (2.40). Therefore, following the usual argument that R(f) and
Rfin(x) are self-adjoint, we obtain that A := R(f)Rfin(x) satisfies (3.1) with

cV`′,q(A) = δ`′=`
f̂(V )x̂(V )

2`+ 1
.

Hence (3.2) holds with these coefficients and `-summation replaced by `′-summation. We
note that the coefficients decay rapidly in ν by Theorem 7. Moreover, A(1) = R(f)(1)
vanishes by f = f ? χ` and the orthogonality of characters (recalling that ` > 1).
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Applying (3.2) and recalling our observation below (2.32) about nγ−1 as γ ∈ Γ \ Γn, we
obtain for every ψ ∈ C∞0 (Γ\G) that∫

[`]

∑
|q|6`

cV`,q(A)|〈ψ, φV`,q〉|2 dV =

∫∫
(Γ\G)2

kf (g, h)
∑

n∈Z[i]\{0}

xnTnψ(h)ψ(g) dg dh

=

∫∫
(Γ\G)2

∑
n∈Z[i]\{0}

xn
|n|

∑
γ∈Γn

f(g−1γ̃h)ψ(g)ψ(h) dg dh,

where γ̃ abbreviates γ/
√

det γ. Letting ψ range through smooth, nonnegative, L1-nor-
malized functions supported in increasingly small open neighborhoods of a fixed point
Γg ∈ Γ\G, and taking limits using the rapid decay of cV`,q(A), we obtain the desired amplified
pre-trace formula

(3.5)

∫
[`]

f̂(V )x̂(V )

2`+ 1

∑
|q|6`

|φV`,q(g)|2 dV =
∑

n∈Z[i]\{0}

xn
|n|

∑
γ∈Γn

f(g−1γ̃g).

The pre-trace formula (3.5) isolates forms φV`,q with a specific value of ` (thus, forms in

the chosen constituent V ` in the decomposition (1.2) for various V ’s), a starting point for
a proof of Theorem 1. To further isolate eigenforms in the specific constituent V `,q (for a
fixed |q| 6 `), starting from our earlier f ∈ H(τ`)∞ satisfying f = f∗, we define a smooth
function fq ∈ C0(G) by

(3.6) fq(g) :=
1

2π

∫ 2π

0
f
(
g diag(ei%, e−i%)

)
e2qi% d% =

1

2π

∫ 2π

0
f
(

diag(ei%, e−i%)g
)
e2qi% d%.

We note that fq = f∗q , but fq need not lie in H(τ`)∞. By the orthogonality of characters
on R/Z, we have

(3.7) R(fq) = R(f)Πq = ΠqR(f),

where Πq is the projection onto the closed subspace consisting of ψ ∈ L2(Γ\G) such that
ψ(g diag(ei%, e−i%)) = e2qi%ψ(g). In particular, R(fq) is a bounded, self-adjoint operator,
which preserves C∞0 (Γ\G). Moreover, by (3.4) and the surrounding discussion,

R(fq)φ
V
`′,q′ = δ(`′,q′)=(`,q)

f̂(V )

2`+ 1
φV`′,q′

holds for V cuspidal, and also for V Eisenstein with the obvious extension of R(fq) to
functions in C∞(Γ\G) of moderate growth. Thus, applying as above (3.2) with A =
R(fq)Rfin(x), we obtain the following amplified pre-trace formula for individual forms:

(3.8)

∫
[`]

f̂(V )x̂(V )

2`+ 1
|φV`,q(g)|2 dV =

∑
n∈Z[i]\{0}

xn
|n|

∑
γ∈Γn

fq(g
−1γ̃g).

We proved (3.5) and (3.8) for every f ∈ H(τ`)∞ and finitely supported x = (xn) under
the assumption that f = f∗ and x = x. In fact (3.5) and (3.8) hold without this assumption,
because both sides are C-linear in f and x. Alternatively, one can modify the above proof
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to work without the self-adjointness assumption, starting with the analogue of (3.4) for
R(f∗)φV`′,q and Rfin(x)φV`′,q.

3.2. Positivity and amplified pre-trace inequality. In many situations, the coeffi-
cients on the left-hand (spectral) side of (3.5) and (3.8) are nonnegative, and the pre-trace
formula is simply used as an inequality, by dropping all but the terms of interest. This
is the case for the proofs of Theorems 1, 2 and 3(a). In this subsection, we derive such
amplified pre-trace inequalities in a streamlined way with substantially less heavy machin-
ery, drawing inspiration from [BHMM20, §3]. For example, here we do not even need to
mention Eisenstein series.

Let A be a positive operator operator on L2(Γ\G), and let B be a finite orthonormal
system of eigenfunctions φ of A with (not necessarily distinct) eigenvalues (cφ(A))φ∈B.

Then, A preserves the orthodecomposition L2(Γ\G) = Span(B)⊕ Span(B)⊥, and for any
ψ ∈ L2(Γ\G) the corresponding decomposition ψ = ψ1 + ψ2 with

ψ1 :=
∑
φ∈B
〈ψ, φ〉φ and ψ2 := ψ − ψ1

gives

(3.9) 〈Aψ,ψ〉 = 〈Aψ1, ψ1〉+ 〈Aψ2, ψ2〉 > 〈Aψ1, ψ1〉 =
∑
φ∈B

cφ(A)|〈ψ, φ〉|2.

We will apply this positivity argument to the operators A = R(f)Rfin(x) and A =
R(fq)Rfin(x), where f ∈ H(τ`)∞ and x = (xn) are as in the previous subsection. Posi-
tivity is achieved by making the operators R(f) and Rfin(x) individually positive, because
Hecke operators commute with integral operators, and Πq in (3.7) is a positive operator
commuting with R(f). For the positivity of R(f), it suffices that

(3.10) f = u ? u for some u ∈ H(τ`)∞ satisfying u = u∗.

For the positivity of Rfin(x), it suffices that

(3.11)

Rfin(x) =
(∑
l∈P

ylTl

)
?
(∑
m∈P

ymTm

)
+
(∑
l∈P

zlTl2
)
?
(∑
m∈P

zmTm2

)
,

xn :=
∑
l,m∈P

(d)|(l,m)
lm/d2=n

ylym +
∑
l,m∈P

(d)|(l2,m2)
l2m2/d2=n

zlzm,

where (yl)l∈P and (zl)l∈P are arbitrary complex coefficients supported on a finite set P ⊂
Z[i] \ {0}. Here we used that each Hecke operator Tn is self-adjoint.

Now, let V be a cuspidal automorphic representation that occurs in L2(Γ\G) and con-
tains τ`-type vectors. Let B = {φq : |q| 6 `} be an orthonormal basis of V `, with φq ∈ V `,q.
As in the previous subsection, we evaluate the left-hand side of (3.9) geometrically, and
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then apply a limit in ψ to both sides. This way we obtain the following amplified pre-trace
inequalities in place of (3.5) and (3.8):

f̂(V )x̂(V )

2`+ 1

∑
φ∈B
|φ(g)|2 6

∑
n∈Z[i]\{0}

xn
|n|

∑
γ∈Γn

f(g−1γ̃g),(3.12)

f̂(V )x̂(V )

2`+ 1
|φq(g)|2 6

∑
n∈Z[i]\{0}

xn
|n|

∑
γ∈Γn

fq(g
−1γ̃g).(3.13)

3.3. Test functions and amplifier. The main idea of the amplified pre-trace inequality
(3.12) is that it can provide a good upper bound for

∑
φ∈B |φ(g)|2 as long as the test

function f ∈ H(τ`)∞ and the amplifier x = (xn) in §3.2 are chosen so that f̂(V ) and x̂(V )
are sizeable while the right-hand side is not too large. In this subsection, we make these
choices.

As in Theorems 1, 2 and 3, let ` > 1 be an integer, I ⊂ iR and Ω ⊂ G be compact sets.
Let V ⊂ L2(Γ\G) be a cuspidal automorphic representation with minimal K-type τ` and
spectral parameter νV ∈ I. Let us introduce the spectral weights

(3.14) h(ν, p) :=

{
e(p2−`2+ν2)/2, ν ∈ C, p ∈ 1

2Z, |p| 6 `,
0, ν ∈ C, p ∈ 1

2Z, |p| > `.

According to Theorems 10 and 7, the inverse τ`-spherical transform f := qh given by (2.22)

belongs to H(τ`)∞, and it satisfies f̂ = h. Moreover, if we set u := qv with

v(ν, p) :=

{
(2`+ 1)1/2e(p2−`2+ν2)/4, ν ∈ C, p ∈ 1

2Z, |p| 6 `,
0, ν ∈ C, p ∈ 1

2Z, |p| > `,

then u ∈ H(τ`)∞, u = u∗ by (2.20) and (2.22), and f̂ = û2/(2` + 1) = û ? u. This shows
that (3.10) is satisfied. Hence R(f) is the kind of positive operator considered in §3.2, and
by (3.4) we have

(3.15) f̂(V ) = h(νV , `)�I 1.

With the notation (2.27), we have

f̃(s, p) =
√

2π(p2 + 1− s2)e(p2−`2−s2)/2,

whence by (2.29), (2.22), and the trivial bound
∣∣ϕ`ν,p(g−1)

∣∣ 6 2`+ 1, we have

(3.16) f(g)� `2e− log2 ‖g‖.

We shall also use the following supplement, a consequence of (2.20) and (2.22):

(3.17) f(g)� ` sup
ν∈iR

∣∣ϕ`ν,`(g)
∣∣+ `−50.
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We now choose our amplifier, which we do as in [BHM16, §5]. Let L > 7 be a parameter,
to be chosen at the very end of the proof of Theorems 1, 2 and 3, and set

P (L) :=
{
l ∈ Z[i] prime : 0 < arg(l) < π

4 and L 6 |l|2 6 2L
}

;

yl := sgn(λl(V )), zl := sgn(λl2(V )), l ∈ P (L).

It follows from the result of Breusch [Bre32, Teil II] (or from the prime number theorem for
arithmetic progressions, for sufficiently large L) that P (L) 6= ∅, while in (3.3) and (3.11)
we have

(3.18) xn =


∑

l∈P (L)(y
2
l + zl

2)� L/ logL, n = 1;

(1 + δl1 6=l2)yl1yl2 + δl1=l2zl1zl2 � 1, n = l1l2 for some l1, l2 ∈ P (L);

(1 + δl1 6=l2)zl1zl2 � 1, n = l21l
2
2 for some l1, l2 ∈ P (L);

0, otherwise.

This formula is the analogue of [BHMM20, (9.16)], except that we forgot to insert the
factors 1 + δl1 6=l2 there. In particular, by the inequality |λl(V )| + |λl2(V )| > 1/2 that
follows from (2.33), we have

(3.19) x̂(V ) =
( ∑
l∈P (L)

|λl(V )|
)2

+
( ∑
l∈P (L)

|λl2(V )|
)2
� L2

log2 L
.

Let B be an orthonormal basis of V `. Entering the lower bounds (3.15) and (3.19) into
the amplified pre-trace inequality (3.12), we obtain

(3.20)
L2−ε

`

∑
φ∈B
|φ(g)|2 �ε,I

∑
n∈Z[i]\{0}

|xn|
|n|

∑
γ∈Γn

|f(g−1γ̃g)|.

Let us assume that g ∈ Ω. A straightforward counting combined with the divisor bound
shows that

(3.21) #
{
γ ∈ Γn : ‖g−1γ̃g‖ 6 R

}
�ε,Ω R4+ε|n|2+ε,

so that, splitting into dyadic ranges for ‖g−1γ̃g‖ and using (3.16), we obtain∑
γ∈Γn

log ‖g−1γ̃g‖>8
√

log `

|f(g−1γ̃g)| �ε,Ω `−50|n|2+ε.

Thus from (3.17) and (3.20) we conclude that

(3.22)

∑
φ∈B
|φ(g)|2 �ε,I,Ω L−2+ε`2

∑
n∈Z[i]\{0}
γ∈Γn

log ‖g−1γ̃g‖68
√

log `

|xn|
|n|

sup
ν∈iR
|ϕ`ν,`(g−1γ̃g)|+ L2+ε`−48.

The bound (3.22) explicitly reduces the non-spherical sup-norm problem of estimating∑
φ∈B |φ(g)|2 via the amplification method to two ingredients:

• estimates on ϕ`ν,`(g
−1γ̃g) for g−1γ̃g ∈ G of moderate size;
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• counting γ ∈ Γn according to the size of ϕ`ν,`(g
−1γ̃g).

We now also derive a version of (3.22) adapted to estimating a single form |φq(g)|2 for
some |q| 6 `. With the specific f ∈ H(τ`)∞ provided by (2.22) and (3.14), we obtain by
averaging as in (3.6) the test function

fq(g) :=
1

(2`+ 1)π2

∑
|p|6`

∫ ∞
0

e(p2−`2−t2)/2 ϕ`,qit,p(g
−1) (t2 + p2) dt,

where

ϕ`,qν,p(g) :=
1

2π

∫ 2π

0
ϕ`ν,p

(
g diag(ei%, e−i%)

)
e−2qi% d%.

In particular, this definition generalizes (1.7), and by (2.20) we have the symmetry

(3.23) ϕ`,−qν,p (g) = ϕ`,q−ν,p(g) = ϕ`,qν,p(g
−1).

The analogues of (3.16)–(3.17) clearly hold for the R/Z-average fq, hence by (3.13) the
following analogue of (3.22) holds as well:

(3.24)
|φq(g)|2 �ε,I,Ω L−2+ε`2

∑
n∈Z[i]\{0}
γ∈Γn

log ‖g−1γ̃g‖68
√

log `

|xn|
|n|

sup
ν∈iR
|ϕ`,qν,`(g

−1γ̃g)|+ L2+ε`−48.

3.4. A double pre-trace formula and a fourth moment. In this subsection, we use
a different argument, outlined in §1.7, to estimate values |φq(g)| in terms of Diophantine
counts of pairs of Hecke correspondences and estimates on generalized spherical functions;
see (3.29) and (3.30) below. The argument, reminiscent of self-amplification, relies on using
diagonal detection of Voronoi type of §2.8 in a double pre-trace formula (see (3.25) below)
to get a handle on the fourth spectral moment of |φq(g)|.

Let us fix two integers `, q ∈ Z with ` > max(1, |q|). Let n ∈ Z[i] \ {0} and g ∈ G. By
(3.8) and the remarks below it, for any f ∈ H(τ`)∞ we have∫

[`]
f̂(V )λn(V )|φV`,q(g)|2 dV =

2`+ 1

|n|
∑
γ∈Γn

fq(g
−1γ̃g).

It is straightforward to adapt, first the two-variable versions of (2.15), (2.18), and (2.41),
and then the proof of the above pre-trace formula to yield the following two-variable version.
Let n1, n2 ∈ Z[i] \ {0} and g1, g2 ∈ G. Then for any f ∈ H(τ`, τ`)∞ (recalling the notation
introduced after Theorem 12) we have

(3.25)

∫
[`]

∫
[`]
f̂(V1, V2)λn1(V1)λn2(V2)|φV1`,q(g1)|2|φV2`,q(g2)|2 dV1 dV2

=
(2`+ 1)2

|n1n2|
∑

γ1∈Γn1

∑
γ2∈Γn2

fq(g
−1
1 γ̃1g1, g

−1
2 γ̃2g2),
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where f̂(V1, V2) is given by (2.30) when Vj is of type (νj , pj) ∈ iR× Z, and

fq(g1, g2) :=
1

(2π)2

∫ 2π

0

∫ 2π

0
f
(
g1 diag(ei%1 , e−i%1), g2 diag(ei%2 , e−i%2)

)
e2qi(%1+%2) d%1 d%2.

In (3.25), we can restrict to pairs (V1, V2) satisfying λi(Vj) = 1 by introducing an averaging
over {n1, in1} × {n2, in2}:

(3.26)

∫
[`]′

∫
[`]′
f̂(V1, V2)λn1(V1)λn2(V2)|φV1`,q(g1)|2|φV2`,q(g2)|2 dV1 dV2

=
(2`+ 1)2

4|n1n2|
∑

γ1∈Γn1∪Γin1

∑
γ2∈Γn2∪Γin2

fq(g
−1
1 γ̃1g1, g

−1
2 γ̃2g2).

The prime symbol in [`]′ indicates that we sum-integrate over automorphic representations
with a lift to PGL2(Z[i])\PGL2(C), so that the results of §2.7 and §2.8 are applicable.

Now we consider, for any n ∈ Z[i] \ {0}, the spectral weights

H(V1, V2;n) := h(ν1, p1)h(ν2, p2)W`

(
|n|
`
, ~ν, ~p

)
,

where h is as in (3.14) and W` is as in Lemma 3. Combining the Hilbert space isomorphism

H(τ`)⊗̂H(τ`)←→ L2(Ĝtemp(τ`)× Ĝtemp(τ`))

induced by Theorem 10 with Theorem 12 and parts (a)–(b) of Lemma 3, we see that

the function (g1, g2) 7→ qH(g1, g2;n) given by (2.31) belongs to H(τ`, τ`)∞, and its double

τ`-spherical transform equals H(V1, V2;n). Therefore, applying (3.26) with f = qH(·, ·;n),
n1 = n2 = n, and g1 = g2 = g, and then summing up over n, we arrive at

(3.27)

∑
n∈Z[i]\{0}

∫
[`]′

∫
[`]′
H(V1, V2;n)λn(V1)λn(V2)|φV1`,q(g)|2|φV2`,q(g)|2 dV1 dV2

=
∑

n∈Z[i]\{0}

(2`+ 1)2

4|n|2
∑

γ1,γ2∈Γn∪Γin

qHq(g
−1γ̃1g, g

−1γ̃2g;n).

By Lemma 3(c), the left-hand side of (3.27) equals

(3.28)
π

4
`2

∑
V cuspidal

Ti(V )=1, |pV |6`

h(νV , pV )2 L(1, ad2V ) |φV`,q(g)|4 + Eis,

where the term Eis is the contribution of Eisenstein representations:

Eis = `2
∑

ε,η∈{±1}

∑
p∈4Z
|p|6`

∫
(0)

∫
(0)
`η(ν1−εν2) h(ν1, εp)h(ν2, p)Lη((ν1, εp), (ν2, p))

× |φE(ν1,εp)
`,q (g)|2|φE(ν2,p)

`,q (g)|2 dν1

πi

dν2

πi
.
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We make a change of variable (ν1, ν2, p) 7→ (ην1, ηεν2, ηεp). By invariance, we can replace
the resulting pairs (ην1, ηp) and (ηεν2, ηεp) by (ν1, p) and (ν2, p), respectively. In this way
we see that

Eis = 4`2
∑
p∈4Z
|p|6`

∫
(0)

∫
(0)
`ν1−ν2 h(ν1, p)h(ν2, p)Lη((ν1, p), (ν2, p))

× |φE(ν1,p)
`,q (g)|2|φE(ν2,p)

`,q (g)|2 dν1

πi

dν2

πi
.

By Lemma 2, we conclude that Eis > 0. In particular, the right-hand side of (3.27) is real,
and it provides an upper bound for the contribution of each cuspidal V in (3.28):

h(νV , pV )2 L(1, ad2V ) |φV`,q(g)|4 �
∑

n∈Z[i]\{0}

1

|n|2
∑

γ1,γ2∈Γn∪Γin

qHq(g
−1γ̃1g, g

−1γ̃2g;n).

Here we can restrict the n-sum to |n| 6 `1+ε at the cost of an error of Oε(`
−50). Indeed,

the contribution of |n| > `1+ε on the two sides of (3.27) are equal, and this contribution is
Oε(`

−50) thanks to the bound H(V1, V2;n)�A (|n|/`)−A for any A > 0 that follows from
Lemma 3(b) and the exponential decay in (3.14).

We now further explicate this bound within the context of Theorems 1–3 (in particular,
in preparation for use in Theorem 3(b)). Let I ⊂ iR and Ω ⊂ G be compact subsets. We
fix a cuspidal automorphic representation V ⊂ L2(Γ\G) with νV ∈ I, pV = `, λi(V ) = 1,
and we pick a cusp form φq ∈ V `,q with ‖φq‖2 = 1. We shall also assume that g ∈ Ω. By
(2.44) and our findings above,

(3.29) |φq(g)|4 �ε,I `
ε

∑
n∈Z[i]\{0}
|n|6`1+ε

1

|n|2
∑

γ1,γ2∈Γn∪Γin

qHq(g
−1γ̃1g, g

−1γ̃2g;n) + `−50.

We will analyze the right-hand side of (3.29) to localize γ1, γ2 which contribute non-
negligibly, and to bound these contributions in terms of generalized spherical functions

ϕ`,qν,`.

We estimate qH (hence also qHq) in terms of Cartan coordinates using the two-dimensional
analogue of (2.29):

∣∣ qH(k1ah1k2, k3ah2k4;n)
∣∣ 6 ∑

|p1|,|p2|6`

∫∫
s1>h1
s2>h2

∣∣∣∣∣
∫∫
t1∈R
t2∈R

W`

(
|n|
`
, (it1, it2), (p1, p2)

)

×e−`2+(p21+p22)/2 e−(t21+t22)/2 e−it1s1−it2s2 (t21 + p2
1)(t22 + p2

2) dt1 dt2

∣∣∣∣∣ds1 ds2.

This estimate holds for kj ∈ K and hj > 1. Assuming without loss of generality that
s1 > s2 > 0 and shifting the t1-contour, we conclude from Lemma 3(b) that for any



BEYOND THE SPHERICAL SUP-NORM PROBLEM 36

ε,B > 0 the inner double integral is

�ε,B

(
1 +

(1 + |p1 + p2|)(1 + |p1 − p2|)
`

)2B−2+2ε

e−`
2+(p21+p22)/2`4e−Bs1

(
|n|
`

)−B−ε
�ε,B

`4+εe−Bmax(s1,s2)(
1 + `− |p1|

)2(
1 + `− |p2|

)2 ( |n|`
)−B

.

It follows that

qH(k1ah1k2, k3ah2k4;n)�ε,B `4+εe−Bmax(h1,h2)
(
`/|n|

)B
for any ε,B > 0 and h1, h2 > 1. This estimate remains true for general h1, h2 > 0, as
can be seen by using (2.22) and the trivial bound |ϕ`it,p| 6 2`+ 1 instead of (2.29) for the

respective variable if one or both of h1, h2 are at most 1. The same bound applies for qHq,
that is,

qHq(g1, g2;n)�ε,B `4+ε

(
`/|n|

‖g1‖2 + ‖g2‖2

)B
for any ε,B > 0 and g1, g2 ∈ G. So we can refine (3.29) to

|φq(g)|4 �ε,I,Ω `ε
∑

n∈Z[i]\{0}
|n|6`1+ε

1

|n|2
∑

γ1,γ2∈Γn∪Γin
‖g−1γ̃jg‖6`ε

√
`/|n|

qHq(g
−1γ̃1g, g

−1γ̃2g;n) + `−50.

In the last sum, we estimate the terms more directly by (2.31), (3.23), and Lemma 3(b):

qHq(g
−1γ̃1g, g

−1γ̃2g;n)�ε `
2+εF (γ1)F (γ2) + `−80,

where we temporarily abbreviate (suppressing g and q from the notation)

F (γ) := sup
ν∈iR
|ϕ`,qν,`(g

−1γ̃g)|, γ ∈ GL2(C).

Recalling also (3.21), we obtain an inequality of bilinear type:

|φq(g)|4 �ε,I,Ω `2+ε
∑

n∈Z[i]\{0}
|n|6`1+ε

1

|n|2
∑

γ1,γ2∈Γn∪Γin
‖g−1γ̃jg‖6`ε

√
`/|n|

F (γ1)F (γ2) + `−50.

With the shorthand notation

S(n) :=
∑
γ∈Γn

‖g−1γ̃g‖6`ε
√
`/|n|

F (γ),

we observe that the innermost sum in the previous display equals (S(n) + S(in))2, hence
it does not exceed 2(S(n)2 + S(in)2). In the end, we conclude

(3.30) |φq(g)|4 �ε,I,Ω `2+ε
∑

n∈Z[i]\{0}
|n|6`1+ε

1

|n|2
∑

γ1,γ2∈Γn
‖g−1γ̃jg‖6`ε

√
`/|n|

2∏
j=1

sup
ν∈iR
|ϕ`,qν,`(g

−1γ̃jg)|+ `−50,
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which serves as an analogue of (3.24).

3.5. Reduction to Diophantine counting. In this subsection, we input into the prelim-
inary estimates (3.22), (3.24) and (3.30) the results of Theorems 4, 5 and 6, which provide
the desired estimates on spherical trace functions. We shall assume (as we can) that ` is
sufficiently large in terms of ε.

We begin by explicating the estimate (3.22) using (3.18) and Theorem 4. For L > 1 and
~δ = (δ1, δ2) ∈ R2

>0, let

D(L,L) :=

{
n ∈ Z[i] : L 6 |n|2 6 16L, n = 1 or n = l1l2 or n = l21l

2
2

for some l1, l2 ∈ P (L)

}
,

M(g, L,L, ~δ) :=
∑

n∈D(L,L)

#

{
γ ∈ Γn : g−1γ̃g = k

(
z u

z−1

)
k−1 for some k ∈ K, |z| > 1,

min |z ± 1| 6 δ1, |u| 6 δ2

}
.

Note that every element of G is of the form k
( z u

z−1

)
k−1 for some k ∈ K, |z| > 1, and

u ∈ C. Indeed, such a decomposition is immediate with k ∈ G, z ∈ C×, and u = 0 unless
z = ±1, after which the claim follows by replacing k by k

( −1
1

)
if needed and using the

Iwasawa decomposition of k.

Thus to each γ occurring in (3.22) we may associate a dyadic vector ~δ = (δ1, δ2) (that

is, log2 δj ∈ Z) such that 1/
√
` 6 δj 6 `ε and δj are minimal such that γ is counted in the

corresponding M(g, L,L, ~δ). Therefore, applying (3.18) and the estimates of Theorem 4 in
(3.22) leads to the following result.

Lemma 4. Let ` > 1 be an integer, I ⊂ iR and Ω ⊂ G be compact sets. Let V ⊂ L2(Γ\G)
be a cuspidal automorphic representation with minimal K-type τ` and spectral parameter
νV ∈ I. Let B be an orthonormal basis of V `, and let g ∈ Ω. Then for any L > 7 and
ε > 0 we have∑

φ∈B
|φ(g)|2 �ε,I,Ω `3+εLε

∑
~δ dyadic

1/
√
`6δj6`ε

min

(
1

`δ2
1

,
1√
`δ2

)

×
(
M(g, L, 1, ~δ)

L
+
M(g, L, L2, ~δ)

L3
+
M(g, L, L4, ~δ)

L4

)
+ L2+ε`−48.

Lemma 4 is free of any choices of the test function, amplifier, and spherical trace func-
tion. It reduces the estimation of

∑
φ∈B |φ(g)|2 to the Diophantine counting problem of

estimating M(g, L,L, ~δ) uniformly in L, L, and ~δ.
Now, we similarly explicate the estimate (3.24) using (3.18) and Theorems 5–6(a). Recall

the sets D ⊂ G and S ⊂ K ⊂ N ⊂ G introduced before Theorem 6. With D(L,L) as
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above, we define for |q| 6 `, L > 1, δ > 0, and ~δ = (δ1, δ2) ∈ R2
>0, the matrix counts

M∗0 (g, L,L, δ) :=
∑

n∈D(L,L)

#

{
γ ∈ Γn : dist(g−1γ̃g,S) 6 δ,

D(g−1γ̃g)

‖g−1γ̃g‖2
� log `√

`

}
,

M∗(g, L,L, ~δ) :=
∑

n∈D(L,L)

#
{
γ ∈ Γn : dist

(
g−1γ̃g,K

)
6 δ1, dist(g−1γ̃g,D) 6 δ2

}
,

with a sufficiently large implied constant in the definition of M∗0 (g, L,L, δ).
For q = 0, we estimate the size of ϕ`,qν,`(g

−1γ̃g) in (3.24) using Theorem 6(a). Since

there are at most Oε,Ω(`ε|n|2+ε) elements γ ∈ Γn contributing to the right-hand side
of (3.24), the total contribution of those elements which fail to satisfy D(g−1γ̃g) �
‖g−1γ̃g‖2(log `)/

√
` with a sufficiently large implied constant may be absorbed into the

existing Oε,I,Ω(L2+ε`−48) error term. We may thus restrict to γ ∈ Γn satisfying these con-

ditions. We associate to each remaining γ in (3.24) the smallest dyadic 1/
√
` 6 δ 6 `ε such

that γ is counted in the corresponding M∗0 (g, L,L, δ). For a general |q| 6 `, we associate to

each γ in (3.24) the lexicographically smallest dyadic vector ~δ = (δ1, δ2) such that δj 6 `ε

and δ2
1δ2 > 1/

√
` and γ is counted in the corresponding Mq(g, L,L, ~δ). Applying (3.18)

and the estimates of Theorems 5–6(a) in (3.24) leads to the following result.

Lemma 5. Let ` > 1 be an integer, I ⊂ iR and Ω ⊂ G be compact sets. Let V ⊂ L2(Γ\G)
be a cuspidal automorphic representation with minimal K-type τ` and spectral parameter
νV ∈ I. Let φq ∈ V `,q such that ‖φq‖2 = 1 and let g ∈ Ω. Then for any L > 7 and ε > 0
we have

|φ0(g)|2 �ε,I,Ω `2+εLε
∑

δ dyadic

1/
√
`6δ6`ε

1√
`δ

×
(
M∗0 (g, L, 1, δ)

L
+
M∗0 (g, L, L2, δ)

L3
+
M∗0 (g, L, L4, δ)

L4

)
+ L2+ε`−48.

Moreover, for |q| 6 ` we have

|φq(g)|2 �ε,I,Ω `2+εLε
∑

~δ dyadic, δj6`ε

δ21δ2>1/
√
`

1√
`δ2

1δ2

×
(
M∗(g, L, 1, ~δ)

L
+
M∗(g, L, L2, ~δ)

L3
+
M∗(g, L, L4, ~δ)

L4

)
+ L2+ε`−48.
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Similarly, we explicate (3.30) using Theorem 6(b). Here we introduce the double matrix
count

Q(g, L,H1, H2) :=∑
L6|n|62L

#

{
(γ1, γ2) ∈ Γ2

n : ‖g−1γ̃jg‖ 6
√
Hj

L
, dist(g−1γ̃jg,D)�

√
Hj log `

L`

}
,

with a sufficiently large implied constant in the distance condition.

Lemma 6. Let ` > 1 be an integer, I ⊂ iR and Ω ⊂ G be compact sets. Let V ⊂ L2(Γ\G)
be a cuspidal automorphic representation with minimal K-type τ` and spectral parameter
νV ∈ I. Suppose that V lifts to an automorphic representation for PGL2(Z[i])\PGL2(C).
Let φ±` ∈ V `,±` such that ‖φ±`‖2 = 1 and let g ∈ Ω. Then for any ε > 0 we have

|φ±`(g)|4 �ε,I,Ω `2+ε max
16L,H1,H26`1+ε

Q(g, L,H1, H2)

H1H2
+ `−50.

4. Proof of Theorem 4

In this section, we prove Theorem 4. It is clear from the definition (2.17) that we can
restrict to k = 1 without loss of generality, and the first bound holds in the stronger form
|ϕ`ν,`(g)| 6 2`+ 1. In particular, Theorem 4 is trivial for ` = 1, hence we shall assume (for

notational simplicity) that ` > 2. In addition, the exponential factor in (1.5) has absolute
value less than ‖g‖2 thanks to (2.5) and the identity

|ad− bc|2 + |ab̄+ cd̄|2 = (|a|2 + |c|2)(|b|2 + |d|2),

hence it suffices to prove that

(4.1)

∫
K
|ψ`(κ(k−1gk))| dk �ε `

ε min

(
‖g‖4

|z2 − 1|2`
,
‖g‖
|u|
√
`

)
.

Finally, we shall use the obvious fact that

(4.2) |u|, |z|, |z−1| 6 ‖g‖.

Writing k = k[φ, θ, ψ] in Euler angles as in (2.1), and setting

x := (z2 − 1) cos θ + ie−2iφuz sin θ,

one computes

k[φ, θ, ψ]−1gk[φ, θ, ψ] =

(
(1 + x cos θ)/z ∗
−ie2iψx sin θ/z ∗

)
.

Our goal is to estimate then

(4.3)

∫ π

0

∫ π/2

0

∫ π

−π

∣∣∣∣ψ`(κ(( (1 + x cos θ)/z ∗
−ie2iψx sin θ/z ∗

)))∣∣∣∣ sin 2θ dψ dθ dφ.

We introduce the notation λ :=
√

log `.
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4.1. Small values of the integrand. First we identify a region where |ψ`| in the integral
(4.3) is small. Assume that

(4.4) min
(
tan θ, |x| sin θ

)
>

4λ√
`
.

Then in

κ

((
(1 + x cos θ)/z ∗
−ie2iψx sin θ/z ∗

))
=

(
1+x cos θ√

|1+x cos θ|2+|x sin θ|2
∗

∗ ∗

)
∈ K

the upper left entry has absolute square less than 1− λ2/`, hence∣∣∣∣ψ`(κ(( (1 + x cos θ)/z ∗
−ie2iψx sin θ/z ∗

)))∣∣∣∣ < (1− log `

`

)`
<

1

`
.

In view of (4.2), this is admissible for (4.1). In the next subsection, we consider the case
when (4.4) fails.

4.2. Large values of the integrand. Assume first that tan θ 6 4λ/
√
`. Then θ 6 4λ/

√
`,

hence the corresponding contribution to (4.3) is� λ2/`. This is admissible for (4.1) in the
light of (4.2).

Now assume that |x| sin θ 6 4λ/
√
`, and decompose the relevant integration domain for

θ as follows. For any m,n ∈ Z>0 and φ ∈ [0, π], let

I(m,n, φ) :=

{
θ ∈

(
0,
π

2

)
: |x| sin θ 6 4λ√

`
,

1

2
< 2m sin θ 6 1,

1

2
< 2n cos θ 6 1

}
.

If θ /∈ I(m,n, φ) holds for every 0 6 m,n 6 2 log `, then sin 2θ = 2 sin θ cos θ 6 1/`, which
is admissible for (4.1). Therefore, by (4.2) and (4.3), it suffices to prove the bound

(4.5)

∫ π

0

∫
I(m,n,φ)

sin 2θ dθ dφ� min

(
λ2

`|z2 − 1|2
,

λ

`1/2|uz|

)
for every 0 6 m,n 6 2 log `. We shall assume that min(m,n) = 0, for otherwise I(m,n, φ) =
∅. We record also that the Lebesgue measure of I(m,n, φ) is O(2−m−n), because if n = 0,
then sin θ � θ, while if m = 0, then cos θ � π/2− θ. Hence, for any φ ∈ [0, π], we have∫

I(m,n,φ)
sin 2θ dθ =

∫
I(m,n,φ)

2 sin θ cos θ dθ � 2−2m−2n.

First consider the case when in x = (z2 − 1) cos θ + ie−2iφuz sin θ, whose absolute value

does not exceed 2m+3λ/
√
`, neither of the two summands is large:

|z2 − 1|2−n 6 2m+6 λ√
`
, |uz|2−m 6 2m+6 λ√

`
.

Recalling min(m,n) = 0, the previous two displays imply for any φ ∈ [0, π] that∫
I(m,n,φ)

sin 2θ dθ � min

(
λ2

`|z2 − 1|2
,

λ

`1/2|uz|

)
.

So in this case (4.5) is clear.
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Now consider the case when in x = (z2 − 1) cos θ + ie−2iφuz sin θ, whose absolute value

does not exceed 2m+3λ/
√
`, the two summands are individually large:

(4.6) |z2 − 1|2−n > 2m+4 λ√
`
, |uz|2−m > 2m+4 λ√

`
, |z2 − 1|2−n � |uz|2−m.

We claim that this localizes φ. Indeed, setting

2φ0 = arg(iuz)− arg(z2 − 1),

we see that

|z2 − 1| cos θ + e2i(φ0−φ)|uz| sin θ � 2m
λ√
`
,

and comparing the imaginary parts, we have that

sin(2φ− 2φ0)� 22mλ

|uz|
√
`
, and so φ ≡ φ0 + O

(
22mλ

|uz|
√
`

)
(mod π/2).

Also, θ is localized, since

|z2 − 1| cos θ − |uz| sin θ � 2m
λ√
`
,

and the first term here is monotone decreasing, the second one is monotone increasing in
θ. We see that θ is localized to an interval of length O(2mλ/|uz|

√
`) for sin θ 6 cos θ (in

which case n = 0), and to an interval of length O(λ/|z2 − 1|
√
`) for cos θ 6 sin θ (in which

case m = 0).
We estimate the left-hand side of (4.5) by exploiting the above localizations and all three

parts of (4.6). If sin θ 6 cos θ, then n = 0 and sin 2θ 6 21−m, so altogether we obtain a
contribution to (4.5) of size

� 2−m · 2mλ

|uz|
√
`
· 22mλ

|uz|
√
`
� min

(
λ2

|z2 − 1|2`
,

λ

|uz|
√
`

)
.

Similarly, if cos θ 6 sin θ, then m = 0 and sin 2θ 6 21−n, so altogether we obtain a
contribution to (4.5) of size

� 2−n · λ

|z2 − 1|
√
`
· λ

|uz|
√
`
� min

(
λ2

|z2 − 1|2`
,

λ

|uz|
√
`

)
.

The proof of Theorem 4 is complete.

5. Proof of Theorems 5 and 6

In this section, we prove Theorems 5 and 6. We recall that the key player is the function

(5.1) ϕ`,qν,`(g) :=
1

2π

∫ 2π

0
ϕ`ν,`

(
gk[0, 0, %]

)
e−2qi% d%,

where

ϕ`ν,`(g) := (2`+ 1)

∫
K
ψ`(κ(k−1gk)) e(ν−1)ρ(H(gk)) dk.
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The function ψ` : K → C was defined in (1.6), but for calculational purposes we extend it
now to GL2(C):

(5.2) ψ`

((
α β
γ δ

))
:= ᾱ2`,

(
α β
γ δ

)
∈ GL2(C).

5.1. Preliminary computations. We write g in Cartan form

(5.3) g = k[u1, v1, w1]

(
r

r−1

)
k[u2, v2, w2],

where r > 1, and we allow uj , vj , wj ∈ R to be arbitrary for convenience. Spelling out the
definitions, and using that the height in the Iwasawa decomposition is left K-invariant, we

see that ϕ`,qν,`(g) equals

d`
4π3

∫
06u6π

06v6π/2
06w62π
06%62π

ψ`

(
k[−w,−v,−u]k[u1, v1, w1]κ

((
r

r−1

)
k[u2, v2, w2]k[0, 0, %]k[u, v, w]

))

· e−2iq% e(ν−1)ρ(H(( r r−1 )k[u2,v2,w2]k[0,0,%]k[u,v,w])) sin 2v dudv dw d%.

With a change of variables k[u2, v2, w2]k[0, 0, ρ]k[u, v, w] 7→ k[u, v, w] and dropping the
normalized w-integration (which is legitimate since the conjugation by k[0, 0, w] does not
alter the ψ`-value, and the height in the Iwasawa decomposition is also unaffected by
right-multiplication by k[0, 0, w]), we arrive at

d`
2π2

∫
06u6π

06v6π/2
06%62π

ψ`

(
k[0,−v,−u]k[u2, v2, w2]k[0, 0, %]k[u1, v1, w1]κ

((
r

r−1

)
k[u, v, 0]

))

· e−2iq% e(ν−1)ρ(H(( r r−1 )k[u,v,0])) sin 2v dudv d%.

The sum of absolute squares in the first column of diag(r, r−1)k[u, v, 0] equals

h(r, v) := r2 cos2 v + r−2 sin2 v,

hence recalling the definitions (2.5) and (5.2), we can rewrite the integral as

d`
2π2

∫
06u6π

06v6π/2
06%62π

ψ`

(
k[0,−v,−u]k[u2, v2, w2]k[0, 0, %]k[u1, v1, w1]

(
r

r−1

)
k[u, v, 0]

)
· e−2iq% h(r, v)ν−1−` sin 2v du dv d%.

Replacing % by %− u1 − w2, the integral further simplifies to

d`e
2iq(u1+w2)

2π2

∫
06u6π

06v6π/2
06%62π

ψ`

((
e−i%I + ei%J ∗

∗ ∗

))
e−2iq% h(r, v)ν−1−` sin 2v dudv d%,
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where

I :=
(
r−1e−2iu−iw1 sin v cos v1 + reiw1 cos v sin v1

) (
e2iu−iu2 sin v cos v2 − eiu2 cos v sin v2

)
,

J :=
(
−r−1e−2iu−iw1 sin v sin v1 + reiw1 cos v cos v1

) (
e2iu−iu2 sin v sin v2 + eiu2 cos v cos v2

)
.

Evaluating the %-integral, we obtain

(5.4) ϕ`,qν,`(g) =
d`e

2iq(u1+w2)

π

(
2`

`+ q

)∫
06u6π

06v6π/2

sin 2v

h(r, v)`+1−ν Ī
`+qJ̄ `−q dudv.

Taking the complex conjugate of the right-hand side, and introducing the new variables
t := r−1 tan v and φ := 2u, we get

∣∣ϕ`,qν,`(g)
∣∣ =

d`
π

(
2`

`+ q

)∣∣∣∣ ∫ ∞
0

∫ 2π

0

t

(1 + (t/r)2)`+1+ν(1 + (tr)2)`+1−ν(
e−iφ−2iw1(t/r) cos v1 + sin v1

)`+q (
eiφ−2iu2(tr) cos v2 − sin v2

)`+q
(
e−iφ−2iw1(t/r) sin v1 − cos v1

)`−q (
eiφ−2iu2(tr) sin v2 + cos v2

)`−q
dφ dt

∣∣∣∣.
Now comes the last key step: in the inner φ-integral, we can remove the r’s. This is so
because e−iφ must be chosen equally many times as eiφ, and the r’s will cancel out in all
terms surviving the integration. Another way to see the same thing is to shift the contour
as in φ 7→ φ + i log r where the boundary terms cancel out by 2π-periodicity. Either way,
using also the opportunity to replace φ 7→ φ+u2−w1, and writing ∆ := u2 +w1, we finally
obtain∣∣ϕ`,qν,`(g)

∣∣ 6 d`
π

(
2`

`+ q

)∫ ∞
0

t

((1 + (t/r)2)(1 + (tr)2))`+1

×
∫ 2π

0

∣∣eiφ+i∆t cos v1 + sin v1

∣∣`+q∣∣eiφ−i∆t cos v2 − sin v2

∣∣`+q∣∣eiφ+i∆t sin v1 − cos v1

∣∣`−q∣∣eiφ−i∆t sin v2 + cos v2

∣∣`−q dφ dt.

We estimate the inner integrand using the following lemma, which is purely about in-
equalities. We state it formally so as to clearly separate issues. (In the case q = ±`, all
expressions raised to exponent 0 should simply be omitted.) As in the previous section, we
introduce the notation λ :=

√
log `.

Lemma 7. Let `, q ∈ Z be such that ` > max(1, |q|). Let X > 0 and Λ > 0.

(a) If A,B > 0 satisfy A2 +B2 = X2, then

(5.5)

(
2`

`+ q

)(`+q)/2( 2`

`− q

)(`−q)/2
A`+qB`−q 6 X2`.



BEYOND THE SPHERICAL SUP-NORM PROBLEM 44

Moreover, the left-hand side is OΛ(X2``−Λ) unless

A2 =
`+ q

2`
X2 + OΛ

(
X2λ

2 + λ
√
`− |q|

`

)
,

B2 =
`− q

2`
X2 + OΛ

(
X2λ

2 + λ
√
`− |q|

`

)
.

(5.6)

(b) If A,B,C,D > 0 satisfy A2 +B2 = C2 +D2 = X2, then(
2`

`+ q

)
A`+qB`−qC`+qD`−q � X4`

1 +
√
`− |q|

.

Moreover, the left-hand side is OΛ(X4``−Λ) unless (5.6) and the analogous esti-
mates for C, D are satisfied.

Proof. Let us first assume |q| < `. We use Young’s inequality

xy 6
xa

a
+
yb

b
,

1

a
+

1

b
= 1,

to conclude with

(5.7) x :=

(√
2`

`+ q

A

X

) `+q
`

, y :=

(√
2`

`− q
B

X

) `−q
`

, a :=
2`

`+ q
, b :=

2`

`− q

that (√
2`

`+ q

A

X

) `+q
`
(√

2`

`− q
B

X

) `−q
`

6
A2 +B2

X2
= 1.

This is equivalent to (5.5). We also conclude (still using the notation (5.7)) that the
left-hand side of (5.5) is OΛ(X2``−Λ) unless

(5.8) xy > 1/2, xy = 1 + OΛ(δ), δ := λ2/`.

Let us explore the consequences of (5.8). First, by xa/a+ yb/b = 1 we have

1/3 < x, y < 3/2.

Without loss of generality, q > 0 (i.e. a 6 b), and then xa < a 6 2. Moreover,

b log x < (b/a) log a < (b/a)(a− 1) = 1,

hence also −b log y < 1 + OΛ(bδ). In particular, yb �Λ 1 whenever bδ < 1. Now let us
consider the function

F (t) :=
xa

a
+
tb

b
− xt.

Note that F (y) = 1− xy, and F (y0) = F ′(y0) = 0 for y0 := xa−1. Hence, using Lagrange’s
form for the remainder term in Taylor’s theorem, we see that

δ �Λ F (y) >
(b− 1)

2
min(yb−2

0 , yb−2) (y − y0)2.
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Here yb−2
0 = x2−a � 1. Now let us assume that yb > 1 or bδ < 1. Then yb �Λ 1, whence

y − y0 �Λ

√
δ/b by the previous display. From here and (5.8) we get the following two

approximations for bxy:

bxy = bxy0 + OΛ(
√
bδ) = bxa + OΛ(

√
bδ),

bxy = b+ OΛ(bδ) = (b− 1)xa + yb + OΛ(bδ).

Comparing the right-hand sides, we conclude that

(5.9) xa − yb �Λ bδ +
√
bδ.

In the remaining case when yb 6 1 and bδ > 1, the inequality (5.9) holds automatically in
the stronger form |xa − yb| < 2 6 2bδ.

We proved that (5.8) implies (5.9) in all ranges. For our specific set-up (5.7), the
inequality (5.9) says that

aA2 − bB2 �Λ X
2(bδ +

√
bδ),

and this is equivalent to (5.6) in the light of A2 + B2 = X2. This shows (a) under the
assumption 0 6 q < `, but it is easily seen to continue to hold also for q = ` in which case
(5.8) simply reads A2 = X2 + OΛ(X2δ). The argument for −` 6 q < 0 is identical.

Turning to (b), we conclude from (a) that(
2`

`+ q

)`+q ( 2`

`− q

)`−q
A`+qB`−qC`+qD`−q 6 X4`.

On the other hand, using Stirling’s formula n! ∼ (n/e)n
√

2πn, we have for |q| < ` that(
2`

`+ q

)
� (2`)2`

(`+ q)`+q(`− q)`−q

√
2`

(`+ q)(`− q)
,

and so combining the two most recent displays we have the announced bound(
2`

`+ q

)
A`+qB`−qC`+qD`−q � X4`

1 +
√
`− |q|

.

We added artificially the 1+ term in the denominator, so that the inequality also holds for
the previously excluded case |q| = ` in view of AC,BD 6 X2 (which follows directly from
A2 + C2 = B2 + D2 = X2). The claim that the left-hand side is negligible unless (5.6)
holds for (A,B) and (C,D) is immediate from (a). �

We now return to the double integral in the upper bound for ϕ`,qν,`(g). We estimate

the inner integral by writing the integrand as A`+qB`−qC`+qD`−q in the obvious way and
applying Lemma 7, where

A2 +B2 = C2 +D2 = X2 = 1 + t2,

and

A2 =
1 + t2

2
+
t2 − 1

2
cos 2v1 + t sin 2v1 cos(φ+ ∆),
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with analogous expressions for B2, C2, and D2. Since

(1 + (t/r)2)(1 + (tr)2)

(1 + t2)2
= 1 +

(
r − r−1

t+ t−1

)2

,

we conclude that the contribution of the inner integral is OΛ(`−Λ) unless

(5.10) min(t, t−1)�Λ
λ

(r − 1)
√
`
.

For r = 1 we treat the right-hand side as infinity. We may then summarize our findings as
follows.

Lemma 8. Let Λ ∈ N. Let `, q ∈ Z be such that ` > max(1, |q|), and let ν ∈ iR. Assume
that g ∈ SL2(C) is given by (5.3). Let us abbreviate ∆ := u2 + w1 and λ :=

√
log `. Let

M =M(v1, v2,∆, r,Λ) be the set of (φ, t) ∈ [0, 2π]× [0,∞) satisfying (5.10) as well as

2t sin 2v1 cos(φ+ ∆) = (1− t2) cos 2v1 +
q

`
(1 + t2) + OΛ

(
(1 + t2)

λ2 + λ
√
`− |q|

`

)
,

2t sin 2v2 cos(φ−∆) = (t2 − 1) cos 2v2 −
q

`
(1 + t2) + OΛ

(
(1 + t2)

λ2 + λ
√
`− |q|

`

)
,

(5.11)

with a sufficiently large (but fixed) implied constant depending on Λ. Then

(5.12) ϕ`,qν,`(g)�Λ
`

1 +
√
`− |q|

∫
M

t

(1 + t2)2
dφ dt+ `−Λ.

5.2. Simplifying assumptions. For the proof of Theorems 5 and 6, we can and we shall
assume that |∆| 6 π/4. Indeed, using the last relation in (2.2) multiple times, we can
choose the coordinates in (5.3) so that this bound is satisfied. Moreover, we can replace g
by

g−1 = k
[π

2
− w2, v2 −

π

2
, u2 +

π

2

](
r

r−1

)
k
[
w1 −

π

2
, v1 −

π

2
,
π

2
− u1

]
if needed, because the quantities ∆, ‖g‖, D(g) do not change under this replacement,∣∣ϕ`,qν,`(g)

∣∣ =
∣∣ϕ`,qν,`(g−1)

∣∣ holds by (3.23), and

dist(g,H) = dist(g−1,H), H ∈ {K,D,S}
holds by (1.10).

We shall derive (most of) the bounds in Theorems 5 and 6 from (5.12). In Lemma 8,
the pair (∆, r) does not change under the above discussed replacement g 7→ g−1, while the
corresponding integration domains M are related by

(φ, t) ∈M
(
v2 −

π

2
, v1 −

π

2
,∆, r,Λ

)
⇐⇒ (φ, t−1) ∈M(v1, v2,∆, r,Λ).

Moreover, the integrand in (5.12) is invariant under t 7→ t−1, hence we can assume that
the contribution of t 6 1 is not smaller than the contribution of t > 1. So from now on we
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restrictM in (5.12) to the corresponding subset of [0, 2π]× [0, 1]. On this subset we have,
by (5.10),

(5.13) t ∈ [0, 1] and t�Λ
λ

(r − 1)
√
`
.

5.3. Proof of Theorem 5. The bound (1.12) is trivial for `�Λ 1, hence we shall assume
that ` is sufficiently large in terms of Λ. With the notation

α := dist(g,K) � r − 1 and β := dist(g,D),

it follows from (5.12) and the previous subsection that it suffices to show

(5.14)
`

1 +
√
`− |q|

∫
M
tdφ dt�ε,Λ `

ε min

(
1,
‖g‖√
`α2β

)
,

where M is now restricted by (5.13). In fact our arguments below will show that `ε can
be replaced by (log `)3.

We start with the first bound of (5.14). With the notation

σ := λ2 + λ
√
`− |q|, µ :=

q

`
− cos 2v1, ρ := sin 2v1,

the first equation in (5.11) becomes

(5.15) µt2 − 2tρ cos(φ+ ∆) +
2q

`
− µ+ OΛ

(σ
`

)
= 0.

Without loss of generality, µ 6= 0, and then we can view (5.15) as a quadratic equation for
t. Multiplying by µ and completing the square, we obtain the alternative form

(5.16)
(
µt− ρ cos(φ+ ∆)

)2
+
(
ρ sin(φ+ ∆)

)2
= 1− q2

`2
+ OΛ

(
|µ|σ
`

)
.

In particular, the discriminant of (5.15) equals 4D(φ) + OΛ(|µ|σ/`), where

(5.17) D(φ) := 1− q2

`2
−
(
ρ sin(φ+ ∆)

)2
We assume first that |q|/` 6 5/6, and decompose M into two parts M± according as
|ρ sin(φ+∆)| exceeds 1/2 or not. OnM+, the equation (5.15) localizes φ within�Λ σ/(`t)
for each given t ∈ [0, 1]. OnM−, we have D(φ) > 1/18, hence the equation (5.16) localizes
t within �Λ σ/` for each given φ ∈ [0, 2π]. This shows that∫

M
tdφ dt�Λ

∫ 1

0
t
σ

`t
dt+

∫ 2π

0

σ

`
dφ� σ

`
,

hence the first bound of (5.14) follows in stronger form. From now on we assume that
|q|/` > 5/6. We decompose M into two parts M± according as D(φ) is positive or not,
and we make two initial observations. First, M+ is clearly empty when |q| = `. Second,
|µ| > 1/6 holds for large `, because (5.15) coupled with t ∈ [0, 1] yields

2|q|
`
− |µ| −OΛ

(σ
`

)
6 2t|ρ| 6 2

√
1−

(q
`
− µ

)2
.
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In order to estimate the contribution of M+ in (5.14), we decompose M+ into pieces

M+(D, η) :=
{

(φ, t) ∈M+ : D(φ) � D and | cos(φ+ ∆)| � η
}
.

If η 6 `−10, we can estimate trivially, so there are only O(log `) relevant values for η. If ρ >
`−10, then by the same argument there are only O(log `) relevant values for D. If ρ < `−10,
then D > `−1 by |q| < `, hence again there are only O(log `) relevant values for D. So in
all cases it suffices to restrict to O((log `)2) pairs (D, η). Our current assumptions localize
sin(φ+∆) within�

√
D/|ρ|, and hence φ within� min(1,

√
D/|ρη|), independently of t. On

the other hand, given φ, the equation (5.16) localizes t within �Λ min((σ/`)D−1/2,
√
σ/`).

Such t are of size �Λ |ρη|+
√
D +

√
σ/`, so that∫

M+(D,η)
tdφ dt�Λ

(
|ρη|+

√
D +

√
σ

`

)
min

(
σ

`
√
D
,

√
σ

`

)
min

(
1,

√
D

|ρη|

)
� σ

`
.

This contribution is admissible for the first bound of (5.14). It remains to estimate the
contribution of M− in (5.14). On this set we have

0 6 −D(φ)�Λ
σ

`

by (5.16). The argument is similar as forM+, in fact simpler as we only need O(log `) pieces

M−(η) defined by | cos(φ+ ∆)| � η. Initially we localize φ within � min(1, |ρη|−1
√
σ/`),

independently of t. The equation (5.16) localizes t within �Λ

√
σ/`, and such t are of size

�Λ |ρη|+
√
σ/`. We obtain altogether∫
M−(η)

t dφ dt�Λ

(
|ρη|+

√
σ

`

)√
σ

`
min

(
1,

1

|ρη|

√
σ

`

)
� σ

`
,

which is again admissible for the first bound of (5.14).
We now turn to the second bound of (5.14). We shall assume (as we can) that M 6= ∅

and
√
`α2β > ‖g‖. We pick an arbitrary point (φ, t) ∈ M. Combining (5.11) and (5.13),

we get

cos 2vj = −sgn(q) + O(t) sin 2vj + OΛ

(
t2 +

λ2 + `− |q|
`

)
,

where for q = 0 we can replace sgn(q) by 1. After squaring and solving for sin 2vj , then
feeding back the result into the previous display, we get

sin 2vj = OΛ

(
t+

λ+
√
`− |q|√
`

)
, cos 2vj = −sgn(q) + OΛ

(
t2 +

λ2 + `− |q|
`

)
.

Recalling also (5.3), and using (5.13) again, we infer that

β �Λ ‖g‖

(
λ

α
√
`

+
λ+

√
`− |q|√
`

)
.
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Figure 1. Plots of (cos v)2qP
(0,2q)
`−q (cos 2v) for 0 6 v 6 π, ` = 120, q = 120,

q = 100, q = 20, and q = 0.

Hence we always have

1�Λ
‖g‖λ
αβ
√
`

or 1�Λ ‖g‖λ
1 +

√
`− |q|

β
√
`

.

In either case, for any c > 0, the previous display combined with (5.13) yields that

`

1 +
√
`− |q|

∫
M
tdφ dt�Λ,c

λ2

(1 +
√
`− |q|)α2

((
‖g‖λ
αβ
√
`

)c
+ ‖g‖λ

1 +
√
`− |q|

β
√
`

)

�ε,Λ,c `
ε

(
‖g‖c

`c/2α2+cβc
+
‖g‖√
`α2β

)
.

Choosing c = 2, and recalling our initial assumption
√
`α2β > ‖g‖, we obtain the second

bound of (5.14) in stronger form.
The proof of Theorem 5 is complete.

5.4. Proof of Theorem 6(a). The averaged spherical trace function ϕ`,qν,`(g) exhibits

starkly different behavior depending on the value of −` 6 q 6 `. Some of these features
are already visible along K = SU2(C). From (5.1) and (5.4) we can see that, in the notation
of (2.1) and (2.4),

ϕ`,qν,`(k[u, v, w]) = Φ`
q,q(k[u, v, w]) = e2πiq(u+w)(cos v)2qP

(0,2q)
`−q (cos 2v).

The absolute value of the right-hand side exhibits a primary peak at v ∈ πZ of size 1. For
q = ±`, this is followed by a sharp drop to ON (`−N ) after a range of length about `−1/2.
For a generic q, the drop becomes soft through a highly oscillatory range of magnitude
`−1/2 (faster and more oscillatory for smaller q) and a secondary, Airy-type peak of size

about `−1/3 before the delayed sharp drop. For q = 0, the secondary peak grows to a full
peak of size 1 at v ∈ 1

2π+πZ (corresponding to skew-diagonal matrices in K) and the sharp
drop disappears. These varying features, which are illustrated in Figure 1, become vastly
more complicated off K, where the hard work in Theorems 5 and 6 lies. Nevertheless, their
traces are visible in the hard localization to D (but none to K!) for q = ±` and the hard
localization to N with soft localization to S ⊂ K ⊂ N for q = 0.

In this subsection, we consider in more detail the case q = 0. Then (5.12) simplifies to

(5.18) ϕ`,0ν,`(g)�Λ

√
`

∫
M

t

(1 + t2)2
dφ dt+ `−Λ,
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where by (5.11) and the last paragraph of §5.1, the set M can be described by the con-
straints given in (5.13) and

2t sin 2v1 cos(φ+ ∆) = (1− t2) cos 2v1 + OΛ(λ/
√
`),

2t sin 2v2 cos(φ−∆) = (t2 − 1) cos 2v2 + OΛ(λ/
√
`).

(5.19)

We shall use the notations

P (φ) := max(| sin 2v1 cos(φ+ ∆)|, | sin 2v2 cos(φ−∆)|),
R := max(| cos 2v1|, | cos 2v2|),
N := max(| sin(2v1 + 2v2) cos ∆|, | sin(2v1 − 2v2) sin ∆|).

Recall also the earlier notations (1.9) and (1.11). As

|a|2 − |d|2 =
r2 − r−2

2
(cos 2v1 + cos 2v2), |b|2 − |c|2 =

r2 − r−2

2
(cos 2v1 − cos 2v2),

we can identify N as the set of matrices with r = 1 or cos 2v1 = cos 2v2 = 0. More precisely,
by (5.19) and (5.13) we have

D(g)� r(r − 1)R�Λ r(r − 1)

(
t+

λ√
`

)
�Λ

r2λ√
`
,

so that unless D(g) �Λ ‖g‖2λ`−1/2, we have M = ∅, yielding ϕ`,0ν,`(g) �Λ `−Λ. Hence we

are left with proving (1.13).

In (5.18), the contribution of the t-integral over the interval [0, `−Λ/2−1/4] is negligible,

and we split the rest of M in dyadic ranges M(δ) according to `−Λ/2−1/4 < t � δ 6 1.
The number of such ranges is OΛ(log `). Assume (φ, t) ∈ M(δ). The discriminants of the

two quadratic equations (5.19) are 4Dj(φ) + OΛ(λ/
√
`), where

D1(φ) := 1− sin2(2v1) sin2(φ+ ∆), D2(φ) := 1− sin2(2v2) sin2(φ−∆).

A simple calculation gives that

(5.20) D1(φ) +D2(φ) > P (φ)2 +R2.

If | sin 2v1 sin(φ + ∆)| > 1/2, then for any fixed t, (5.19) localizes φ to a set of measure

OΛ(λ/
√
`). Otherwise, for any fixed φ, (5.19) localizes t to a set of measure OΛ(λ/

√
`).

We conclude that

(5.21) meas(M(δ))�Λ λ/
√
`.

Now we prove the alternative bound

(5.22) meas(M(δ))�Λ
λ4

N`
.

We shall assume that N` > 1, for otherwise (5.22) follows from (5.21). Under this assump-
tion, we have max(| sin 2v1|, | sin 2v2|)� `−1, which implies that

meas({(φ, t) ∈M(δ) : P (φ) 6 `−3})� `−1.
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Indeed, if φ changes by at least `−1 and at most π/4, then cos(φ ± ∆) both change by
Ω(`−2), hence P (φ) changes by Ω(`−3). This implies that P (φ) 6 `−3 localizes φ to a set
of measure O(`−1). Therefore, the contribution of {(φ, t) ∈ M(δ) : P (φ) 6 `−3} to the

left-hand side of (5.22) is OΛ(δ/
√
`), which is admissible by N 6 1. We decompose the

rest ofM(δ) into dyadic rangesM(δ, P) according to `−3 6 P (φ) � P 6 1. The number of
such ranges is O(log `), hence in order to verify (5.22), it suffices to prove

meas(M(δ, P))�Λ
λ2

N`
.

The proof of this estimate immediately reduces to the following two localizations:

(5.23) meas({φ ∈ [0, 2π] : (φ, t) ∈M(δ, P) for some t � δ})�Λ
(P +R)λ

N
√
`

,

and for any φ ∈ [0, 2π],

(5.24) meas({t ∈ [0, 1] : (φ, t) ∈M(δ, P)})�Λ
λ

(P +R)
√
`
.

Now we prove these localizations.
Starting out from (5.19), we execute two eliminations: one to eliminate the main terms

of the right-hand sides, and the other one to eliminate the left-hand sides. Introducing

F (φ) := cosφ cos ∆ sin(2v1 + 2v2)− sinφ sin ∆ sin(2v1 − 2v2),

these give

tF (φ)�Λ Rλ/
√
` and (1− t2)F (φ)�Λ Pλ/

√
`.

In particular, we obtain both for t > 1/2 and t 6 1/2 that

(5.25) F (φ)�Λ (P +R)λ/
√
`.

Letting

N ′ :=

√
sin2(2v1 + 2v2) cos2(∆) + sin2(2v1 − 2v2) sin2(∆) � N,

and choosing ψ ∈ [0, 2π) such that

cosψ =
sin(2v1 + 2v2) cos ∆

N ′
, sinψ = −sin(2v1 − 2v2) sin ∆

N ′
,

(5.25) gives rise to

cos(φ− ψ)�Λ
(P +R)λ

N
√
`

.

This localizes φ to a set of measure OΛ((P + R)λ/N
√
`). Indeed, if the right-hand side is

very small in terms of the implied constant, then φ−ψ is bounded away from πZ, hence the
derivative cos′(φ−ψ) is bounded away from zero, while otherwise the claimed localization
is trivial. This gives (5.23). Fixing φ ∈ [0, 2π], and solving under (5.19) the quadratic
equation in t of the larger discriminant, we see by (5.20) that t is localized to a set of

measure OΛ(λ/(P +R)
√
`). This gives (5.24). Altogether, the proof of (5.22) is complete.
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Combining (5.21) and (5.22), we obtain

meas(M(δ))�ε,Λ `
ε−1µ, µ := min(

√
`,N−1).

We claim that

(5.26) dist(g,S)�Λ λδ
−1µ−1, if M(δ) 6= ∅.

This implies the inequality
√
`

∫
M(δ)

tdφ dt�ε,Λ `
ε−1/2δµ�ε,Λ

`ε√
`dist(g,S)

,

which, summed over the O(log `) dyadic ranges for δ, suffices for the proof of (1.13). Note

that the bound ϕ`,qν,`(g)�ε `
ε is already covered by Theorem 5.

To complete the proof of Theorem 6(a), it remains to show (5.26). For this final argu-
ment, we can and we shall assume that −π/8 6 v1, v2 6 3π/8, because replacing (u1, v1)
by (−u1, v1 + π/2), or (v2, w2) by (v2 + π/2,−w2), has the effect of multiplying g by

(
i

i

)
from either side without altering ∆ or the statement (5.26). We fix a pair (φ, t) ∈M(δ).

Now, N 6 µ−1 implies that

(5.27) v1 + v2 ∈
π

2
Z + O

(
1

µ

)
and v1 − v2 ∈

π

2
Z + O

(
1

µ|∆|

)
.

Let us introduce the short-hand notation

m[v] :=

(
cos v i sin v
i sin v cos v

)
, v ∈ R.

Keeping (2.1) and (5.3) in mind, we observe initially that

(5.28) m[v1] diag
(
rei∆, r−1e−i∆

)
m[v2] = m[v1 + v2] + O

(
r − 1 + |∆|

)
.

On the right-hand side, we have dist(m[v1 + v2],S)� µ−1 by (5.27), and also

(5.29) r − 1�Λ
λ

t
√
`
� λ

δµ

by (5.13) and µ 6
√
`. Hence (5.26) follows from (5.28) as long as ∆ �Λ λδ−1µ−1. In

other words, we can and we shall assume that |∆| �Λ λδ−1µ−1 holds with a sufficiently
large implied constant depending on Λ. In particular, we shall assume that the error terms
in (5.27), and similar error terms for angles in the rest of this subsection, are less than π/8
in size. Under this assumption, (5.27) breaks into two cases.

Case 1: v1, v2 � µ−1|∆|−1 and v1 + v2 � µ−1. In this case, we refine (5.28) to

m[v1] diag
(
rei∆, r−1e−∆

)
m[v2]

= m[v1 + v2] +m[v1] diag
(
rei∆ − 1, r−1e−i∆ − 1

)
m[v2]

= m[v1 + v2] + diag
(
rei∆ − 1, r−1e−i∆ − 1

)
+ O

(
r − 1 + µ−1

)
= diag

(
ei∆, e−i∆

)
+ O

(
r − 1 + µ−1

)
.

The main term diag
(
ei∆, e−i∆

)
lies in S, hence (5.26) follows by (5.29).
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Case 2: v1, v2 = π/4 + O(µ−1|∆|−1) and v1 + v2 = π/2 + O(µ−1). As we shall see,
this case does not occur. The assumptions imply that sin 2v1 and sin 2v2 exceed 1/2. We
multiply the second equation in (5.19) by sin 2v1, and the first equation in (5.19) by sin 2v2.
Adding and subtracting the resulting two equations, we obtain

4t sin 2v1 sin 2v2 cosφ cos ∆ = (t2 − 1) sin(2v1 − 2v2) + OΛ(λ/
√
`),

4t sin 2v1 sin 2v2 sinφ sin ∆ = (t2 − 1) sin(2v1 + 2v2) + OΛ(λ/
√
`).

We infer that

δ � |t cosφ|+ |t sinφ| �Λ | sin(2v1 − 2v2)|+ | sin(2v1 + 2v2)|
|∆|

+
λ√
`|∆|

�Λ
λ

µ|∆|
.

This contradicts our earlier assumption that ∆�Λ λδ
−1µ−1 holds with a sufficiently large

implied constant depending on Λ.
The proof of Theorem 6(a) is complete.

5.5. Proof of Theorem 6(b). We finally consider the case q = ±`. By the symmetries

(1.10) and (3.23), we can restrict to q = `. We have already shown the bound ϕ`,`ν,`(g)�ε `
ε

in greater generality in Theorem 5. As a first step, we complement this with a stronger
bound for r > 2. To this end, we return to (5.4). As q = `, the binomial coefficient and

the J-factor disappear. When I
2`

is expanded, we see a Laurent polynomial of e2iu. When
we integrate in u from 0 to π, all the terms but the constant one vanish. We calculate the
constant term using the binomial theorem and the original product definition of I. This
way we see that

ϕ`,`ν,`(g) = d`e
2i`(u1−u2−w1+w2)r2`

2∑̀
m=0

(
2`

m

)2

(r−2e2iu2+2iw1 cos v1 cos v2)m

(− sin v1 sin v2)2`−m
∫ π/2

0
(sin2 v)m(cos2 v)2`−m sin 2v

h(r, v)`+1−ν dv.

Using the variable x := sin2 v, we rewrite this as

ϕ`,`ν,`(g) = d`e
2i`(u1−u2−w1+w2)r2ν−2

2∑̀
m=0

(
2`

m

)2

(r−2e2iu2+2iw1 cos v1 cos v2)m

(− sin v1 sin v2)2`−m
∫ 1

0

xm(1− x)2`−m

(1− x+ r−4x)`+1−ν dx.

With the short-hand notation

U := r−1eiu2+iw1
√
x cos v1 cos v2 and V := i

√
(1− x) sin v1 sin v2,
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we obtain finally

∣∣ϕ`,`ν,`(g)
∣∣ 6 2`+ 1

r2

∣∣∣∣∣
∫ 1

0

2∑̀
m=0

(
2`

m

)2 U2mV 4`−2m

(1− x+ r−4x)`+1−ν dx

∣∣∣∣∣
=

2`+ 1

r2

∣∣∣∣∫ 1

0

1

2π

∫ 2π

0

(Ueiφ + V )2`(Ue−iφ + V )2`

(1− x+ r−4x)`+1−ν dφ dx

∣∣∣∣ .
(5.30)

Using that (Ueiφ+V )(Ue−iφ+V ) = U2 +V 2 +2UV cosφ is on the line segment connecting
(U + V )2 and (U − V )2, we observe that

|(Ueiφ + V )(Ue−iφ + V )|2

1− x+ r−4x
6 max

±

|U ± V |4

1− x+ r−4x
,

which by the Cauchy–Schwarz inequality can be further upper bounded by

6
(1− x+ r−2x)2

1− x+ r−4x
= 1− x

1 + 2
r2−1

+ 1
(r2−1)2(1−x)

.

Hence the contribution to the rightmost expression in (5.30) of x ∈ [0, 1] satisfying

x > δ

(
1 +

2

r2 − 1
+

1

(r2 − 1)2 (1− x)

)
, δ :=

log `

`
,

is admissible for (1.14). By r > 2, the remaining values x ∈ [0, 1] satisfy

x < 3δ or x(1− x) <
3δ

(r2 − 1)2
,

hence also x < 3δ or 1− x < 8δ/r4. So the remaining contribution is

6
2`+ 1

r2

∫
[0,3δ)∪(1−8δ/r4,1]

dx

1− x+ r−4x
� log `

r2
,

which is again admissible for (1.14).
By (5.12), it remains to show that

(5.31) dist(g,D)�Λ ‖g‖λ/
√
`, if M 6= ∅.

In the present case q = `, the condition (5.11) simplifies to

2t sin 2v1 cos(φ+ ∆) = (1− t2) cos 2v1 + (1 + t2) + OΛ(λ2/`),

2t sin 2v2 cos(φ−∆) = (t2 − 1) cos 2v2 − (1 + t2) + OΛ(λ2/`),
(5.32)

hence for the proof of (5.31) we can and we shall assume that |v1 + v2| 6 π/2. Indeed,
replacing v1 by v1+π has the effect of replacing g by −g without altering ∆ or the statement
(5.31). We fix a pair (φ, t) ∈M.

The two equations in (5.32) yield readily that

(sin 2vj)
2 6 2 + 2 cos 2vj �Λ t

2 + t| sin 2vj |+ λ2/`.
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Hence sin 2vj �Λ t+ λ/
√
`, that is,

(5.33) v1, v2 ∈
π

2
Z + OΛ

(
t+

λ√
`

)
.

Combining (5.32) with the Cauchy–Schwarz inequality, we also get

(1 + t2)2 + OΛ(λ2/`) 6 (1− t2)2 + 4t2 cos2(φ±∆).

Equivalently,

sin(φ±∆)�Λ
λ

t
√
`
.

Using also our initial assumption |∆| 6 π/4, we conclude that

(5.34) ∆�Λ
λ

t
√
`

and φ ∈ πZ + OΛ

(
λ

t
√
`

)
.

In particular, cos(φ±∆) = ε+OΛ(λ2/t2`) for some ε ∈ {±1}. Plugging this back to (5.32),
and using also (5.33) along with

t

(
t+

λ√
`

)
min

(
1,
λ2

t2`

)
� λ2

`
,

we obtain

2tε sin 2v1 = (1− t2) cos 2v1 + (1 + t2) + OΛ(λ2/`),

2tε sin 2v2 = (t2 − 1) cos 2v2 − (1 + t2) + OΛ(λ2/`).
(5.35)

Now consider the following three unit vectors in R2:

v1 := (cos 2v1, sin 2v1), v2 := (cos 2v2,− sin 2v2), t :=

(
t2 − 1

t2 + 1
,

2tε

t2 + 1

)
.

By (5.35), the scalar products vjt are 1 + OΛ(λ2/`), hence the directed angles arg(vj) −
arg(t) lie in 2πZ + OΛ(λ/

√
`). It follows that

arg(v1)− arg(v2) ∈ 2πZ + OΛ(λ/
√
`),

and then the assumption |v1 + v2| 6 π/2 forces that

(5.36) v1 + v2 �Λ λ/
√
`.

We are now ready to complete the proof of Theorem 6(b). By (5.33) and (5.36), there
exists a multiple v of π/2 such that

m[v1] = m[v] + OΛ

(
t+ λ/

√
`
)
,

m[v2] = m[−v] + OΛ

(
t+ λ/

√
`
)
,

m[v1 + v2] = id + OΛ

(
λ/
√
`
)
.



BEYOND THE SPHERICAL SUP-NORM PROBLEM 56

Therefore, using also (5.13) and (5.34), we conclude that

m[v1] diag
(
rei∆, r−1e−∆

)
m[v2]

= m[v1 + v2] +m[v1] diag
(
rei∆ − 1, r−1e−i∆ − 1

)
m[v2]

= m[v1 + v2] +m[v] diag
(
rei∆ − 1, r−1e−i∆ − 1

)
m[−v] + OΛ

(
rλ/
√
`
)

= m[v] diag
(
rei∆, r−1e−i∆

)
m[−v] + OΛ

(
rλ/
√
`
)
.

The main term m[v] diag
(
rei∆, r−1e−i∆

)
m[−v] lies in D, hence (5.31) follows.

The proof of Theorem 6(b) is complete.

6. Proof of Theorem 1

In this section, we prove Theorem 1. Lemma 4, which results from the amplified pre-trace
inequality and estimates on the spherical trace function, proves an estimate on |Φ(g)|2 for

g ∈ Ω in terms of the Diophantine counts M(g, L,L, ~δ). We begin with the key remaining
step of estimating these counts.

We allow all implied constants within this section to depend on Ω, and we drop the
subscript from notation. Moreover, we adopt the notation A 4 B to mean that |A| �ε

(`L)εB, where ε > 0 is fixed but may be taken as small as desired at each step, and the
implied constant is allowed to depend on ε.

For each L ∈ {1, L2, L4} and ~δ = (δ1, δ2) with 0 < δ1, δ2 6 `ε, we will estimate the count

M(g, L,L, ~δ) of matrices

γ =

(
a b
c d

)
∈ M2(Z[i]), det γ = n ∈ D(L,L), |n| � L1/2,

g−1γ̃g = k

(
z u

z−1

)
k−1 for some k ∈ K such that

|z| > 1, min |z ± 1| 6 δ1, |u| 6 δ2,

(6.1)

where as before γ̃ = γ/
√
n. By the symmetry γ ↔ −γ, we can and we shall assume that

|z− 1| 6 |z+ 1|. Then the conditions imply that both |z− 1| and |z−1− 1| are at most δ1,
hence ∣∣∣∣a+ d√

n
− 2

∣∣∣∣ = | tr γ̃ − 2| = |z + z−1 − 2| = |z − 1||z−1 − 1| 6 δ2
1 .

On the other hand, since ‖g‖ �Ω 1, we also have that

‖γ̃ − id‖ =

∥∥∥∥gk(z − 1 u
z−1 − 1

)
k−1g−1

∥∥∥∥� δ1 + δ2.

Summarizing, we need to estimate the number of matrices γ as in (6.1) such that

(6.2)
∣∣a+ d− 2

√
n
∣∣ 6 δ2

1

√
|n|, |a− d|, |b|, |c| � (δ1 + δ2)

√
|n|.

In particular, we have |a+ d| 4
√
|n| and

(6.3) (a− d)2 + 4bc = (a+ d)2 − 4n 4 δ2
1 |n|.
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As is often the case, parabolic matrices γ (those with trace ±2
√
n) play a distinctive

role in this counting problem, and we split the count accordingly into the parabolic and
non-parabolic subcounts as

M(g, L,L, ~δ) = Mp(g, L,L, ~δ) +Mnp(g, L,L, ~δ).

We shall prove the following result using (6.1), (6.2), and (6.3).

Lemma 9. Let Ω ⊂ G be a compact subset, L > 1, and L ∈ {1, L2, L4}. For g ∈ Ω and
~δ = (δ1, δ2) with 0 < δ1, δ2 4 1, we have the following bounds.

M(g, L, 1, ~δ) 4Ω 1,(6.4)

Mp(g, L,L, ~δ) 4Ω L1/2 + Lδ2
2 ,(6.5)

Mnp(g, L, L2, ~δ) 4Ω L4δ4
1(δ2

1 + δ2
2),(6.6)

Mnp(g, L, L4, ~δ) 4Ω L6δ4
1(δ2

1 + δ2
2).(6.7)

Moreover,

(6.8) Mnp(g, L,L, ~δ) = 0 unless δ1 < L−1/4.

Proof. The bound (6.4) is immediate from (6.2). We turn to the bound (6.5), which counts
parabolic matrices γ. In this case, we have (a−d)2 +4bc = 0 and z = 1, hence in particular

(6.2) holds with 0 in place of δ1. If bc 6= 0, then there are � L1/2 choices for a+ d = 2
√
n,

and� L1/2δ2
2 choices for a−d 6= 0. The difference a−d determines the product bc uniquely,

hence by the divisor bound, there are 4 1 choices for (b, c). This is admissible for (6.5). If

bc = 0, then there are � L1/2 choices for a = d =
√
n, and � 1 + L1/2δ2

2 choices for (b, c).
This is again admissible for (6.5).

From now on we count non-parabolic matrices γ, in which case (a− d)2 + 4bc 6= 0. The
statement (6.8) is immediate from (6.3), so we are left with proving (6.6) and (6.7), where

we may assume δ1 < L−1/4. If bc 6= 0, then there are 4 L1/2(δ2
1 + δ2

2) choices for a − d,
and, for given a − d, there are 4 Lδ4

1 choices for (b, c) by (6.3) and the divisor bound. If

bc = 0, then there are 4 L1/2δ2
1 choices for a − d by (6.3), and 4 L1/2(δ2

1 + δ2
2) choices

for (b, c). Altogether, there are 4 L3/2δ4
1(δ2

1 + δ2
2) choices for the triple (a− d, b, c). In the

middle range L = L2, we additionally use that there are 4 L1/2 choices for a+ d, whence
(6.6) follows. In the high range L = L4, n = l21l

2
2 is a square, and (a− d)2 + 4bc 6= 0 factors

as (a + d + 2l1l2)(a + d − 2l1l2). Hence the triple (a − d, b, c) in fact determines a + d up
to 4 1 possibilities by the divisor bound, and (6.7) follows. �

Combining Lemmata 4 and 9, we obtain that∑
φ∈B
|φ(g)|2 4I,Ω `3

(
1

L
+ Sp(L) + Snp(L,L2) + Snp(L,L4)

)
+ L2`−48,
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where

Sp(L) :=
∑

~δ dyadic

1/
√
`6δj41

1√
`δ2

(
L+ L2δ2

2

L3
+
L2 + L4δ2

2

L4

)
4

1

L2
+

1√
`
,

Snp(L,L2) :=
∑

~δ dyadic

1/
√
`6δj41

1

`δ2
1

· L
4δ4

1(δ2
1 + δ2

2)

L3
4
L

`
,

Snp(L,L4) :=
∑

~δ dyadic

1/
√
`6δj41

1

`δ2
1

· L
6δ4

1(δ2
1 + δ2

2)

L4
4
L2

`
.

Putting everything together, we conclude that∑
φ∈B
|φ(g)|2 4I,Ω `3

(
1

L
+

1√
`

+
L2

`

)
+ L2`−48 � `8/3,

by making the essentially optimal choice L := 7`1/3 (which satisfies our earlier condition
L > 7).

The proof of Theorem 1 is complete.

7. Proof of Theorem 3

In this section, we prove Theorem 3. For q = 0, Lemma 5 provides an estimate on
|φq(g)|2 for g ∈ Ω in terms of the Diophantine count M∗0 (g, L,L, δ), while for q = ±` we
need to analyze Q(g, L,H1, H2) as follows from Lemma 6. We begin by estimating these
counts. We keep the notational conventions from §6.

7.1. A comparison lemma. The Diophantine counts in Lemmata 5 and 6 involve the
positioning relative to certain special sets of the matrix g−1γ̃g, which we now explicate in
preparation for a counting argument. Using g ∈ Ω, we may write explicitly

g =

(
g1 g2

g3 g4

)
, gj � 1.

An explicit calculation shows that

g−1

(
a b
c d

)
g =

(
a+d

2 + L1 L2

L3
a+d

2 − L1

)
,

where

(7.1)

L1 = (a− d)
(

1
2 + g2g3

)
+ bg3g4 − cg1g2,

L2 = (a− d)g2g4 + bg2
4 − cg2

2,

L3 = −(a− d)g1g3 − bg2
3 + cg2

1.
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We record the following simple but effective result, which will be used in both parts of
Theorem 3.

Lemma 10. Let Ω ⊂ G be a compact subset, and g ∈ Ω. Let a, b, c, d ∈ C and ∆ > 0 be
such that L2, L3 � ∆.

(a) For at least one s ∈ {a− d, b, c}, we have[
a− d b c

]>
=
[
λ1 λ2 λ3

]>
s+ O(∆)

with λ1, λ2, λ3 � 1 depending only on g.
(b) For the same choice of s ∈ {a− d, b, c}, we have

(a− d)2 + 4bc = µs2 + O(∆|s|+ ∆2),

with µ = λ2
1 + 4λ2λ3 � 1. If additionally (a− d)2 + 4bc = 0, then a− d, b, c� ∆.

Proof. We may write the defining equations for L2 and L3 as
[
L2 L3

]>
= M

[
a− d b c

]>
for a 2× 3 matrix M whose 2× 2 minors we compute to be∣∣∣∣ g2

4 −g2
2

−g2
3 g2

1

∣∣∣∣ = g1g4 + g2g3,

∣∣∣∣ g2g4 −g2
2

−g1g3 g2
1

∣∣∣∣ = g1g2,

∣∣∣∣ g2g4 g2
4

−g1g3 −g2
3

∣∣∣∣ = g3g4.

At least one of these minors exceeds 1/3 in absolute value, since

(g1g4 + g2g3)2 − 4g1g2g3g4 = 1.

Consider the case when |g1g4 + g2g3| > 1/3. Then we may solve the latter two equations
in (7.1) for b, c, which yields[

b
c

]
=

[
−g1g2

g3g4

]
a− d

g1g4 + g2g3
+ O(∆).

This settles the first claim in the lemma with s = a− d. The second claim follows from

(a− d)2 + 4bc =
(a− d)2

(g1g4 + g2g3)2
+ O

(
∆|a− d|+ ∆2

)
.

The other cases (of which it suffices to consider one) are similar. For example, under
|g1g2| > 1/3 we have[

a− d
c

]
=

[
−g1g4 − g2g3

−g3g4

]
b

g1g2
+ O(∆), (a− d)2 + 4bc =

b2

(g1g2)2
+ O

(
∆|b|+ ∆2

)
,

from which the lemma follows. �

7.2. Second moment count for q = ±`. We will now establish an upper bound for the
quantity Q(g, L,H1, H2) counting pairs of matrices (γ1, γ2) such that

(7.2)

γj =

(
aj bj
cj dj

)
∈ M2(Z[i]), det γ1 = det γ2 = n, L 6 |n| 6 2L,

‖g−1γ̃jg‖ 6
√
Hj

L
, dist(g−1γ̃jg,D)�

√
Hj log `

L`
.
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We denote the quantities in (7.1) corresponding to γj as L1j , L2j , L3j . From (7.1) and
(7.2) we deduce that

(7.3) ‖γj‖ �
√
Hj , L2j , L3j 4

√
Hj/`,

and

(7.4) (a1 + d1)2 − (a2 + d2)2 = (a1 − d1)2 + 4b1c1 − (a2 − d2)2 − 4b2c2.

We shall prove the following result using (7.2), (7.3), and (7.4).

Lemma 11. Let Ω ⊂ G be a compact subset and L > 1. For g ∈ Ω and 1 6 H1, H2 4 `,
we have

(7.5) Q(g, L,H1, H2) 4Ω H1H2.

Proof. We shall use that the entries aj , bj , cj , dj ∈ Z[i] of each participating γj satisfy the
conditions of Lemma 10 with ∆j 4 1 in the role of ∆. Indeed, this follows from (7.3) and
H1, H2 4 `.

Let sj ∈ {aj − dj , bj , cj} be as in Lemma 10(a). By Lemma 10(a) and (7.3), for a given
pair (s1, s2), there are 4 1 choices for the two triples (aj −dj , bj , cj), which then determine
both sides of (7.4). Using this preliminary observation, we do the counting in two steps.

First we count (γ1, γ2) satisfying (7.2) and (a1 + d1)2 6= (a2 + d2)2. By (7.3), there
are � H1H2 choices for the pair (s1, s2), hence 4 H1H2 choices for the two triples (aj −
dj , bj , cj). Given the triples, by (7.3)–(7.4) and the divisor bound, there are 4 1 choices
for (a1 + d1, a2 + d2). This is admissible for (7.5).

Now we count (γ1, γ2) satisfying (7.2) and (a1 + d1)2 = (a2 + d2)2. In this case,
Lemma 10(b) coupled with (7.3)–(7.4) shows that s2

1 − s2
2 4

√
H1 +

√
H2. Hence, by

the divisor bound (separating the case when s2
1 = s2

2), there are 4 max(H1, H2) choices for
the pair (s1, s2) and same for the two triples (aj − dj , bj , cj). Independently of the triples,
by (7.3), there are � min(H1, H2) choices for (a1 + d1, a2 + d2). This is again admissible
for (7.5). �

7.3. Interlude: a first moment count. For the proof of Theorem 2 in §8 below, we
need a variation of the previous Diophantine argument that is most conveniently stated
and proved at this point. For L ∈ {1, L2, L4} and every 0 < δ 4 1, we will establish an
upper bound on the quantity

(7.6) MD(g, L,L, ε, δ) :=
∑

n∈D(L,L)

#
{
γ ∈ Γn : ‖g−1γ̃g‖ � `ε, dist(g−1γ̃g,D) 6 δ

}
,

where the implied constant is absolute. As before, we conclude from the conditions in (7.6)
and the explicit description in (7.1) that

(7.7) ‖γ‖ 4 L1/4 and L2, L3 � L1/4δ.

We shall prove the following result using (7.7) and the identity

(7.8) (a− d)2 + 4bc = (a+ d)2 − 4n.



BEYOND THE SPHERICAL SUP-NORM PROBLEM 61

Lemma 12. Let Ω ⊂ G be a compact subset, L > 1, and ε > 0. For g ∈ Ω and 0 < δ 4 1,
we have the following bounds.

MD(g, L, 1, ε, δ) 4Ω 1,(7.9)

MD(g, L, L2, ε, δ) 4Ω L2 + L4δ4,(7.10)

MD(g, L, L4, ε, δ) 4Ω L2 + L6δ4.(7.11)

Proof. The bound (7.9) corresponds to L = 1, and it is immediate from (7.7). Hence we
focus on the bounds (7.10)–(7.11) that correspond to L ∈ {L2, L4}. We shall use that
the entries a, b, c, d ∈ Z[i] of each participating γ satisfy the conditions of Lemma 10 with

∆ = L1/4δ, as follows from (7.7).
First we count parabolic matrices γ. In this case, we have (a − d)2 + 4bc = 0, hence

also a − d, b, c � L1/4δ by Lemma 10(b). If bc 6= 0, then there are � L1/2 choices for

a + d = ±2
√
n, and � L1/2δ2 choices for a − d 6= 0. The difference a − d determines the

product bc uniquely, hence by the divisor bound, there are 4 1 choices for (b, c). This is

admissible for (7.10)–(7.11). If bc = 0, then there are � L1/2 choices for a = d = ±
√
n,

and � 1 + L1/2δ2 choices for (b, c). This is again admissible for (7.10)–(7.11).
Now we count non-parabolic matrices γ, in which case (a − d)2 + 4bc 6= 0. Let s ∈

{a − d, b, c} be as in Lemma 10(a). There are 4 L1/2 choices for s, and for a given s,
there are � 1 + Lδ4 choices for the triple (a− d, b, c) by Lemma 10(a). Altogether, there

are 4 L1/2 + L3/2δ4 choices for the triple (a − d, b, c). In the middle range L = L2, we

additionally use that there are 4 L1/2 choices for a+ d, whence (7.10) follows. In the high
range L = L4, n = l21l

2
2 is a square, and (a−d)2+4bc 6= 0 factors as (a+d+2l1l2)(a+d−2l1l2).

Hence the triple (a− d, b, c) in fact determines a+ d up to 4 1 possibilities by the divisor
bound, and (7.11) follows. �

7.4. Counting setup for q = 0. For each L ∈ {1, L2, L4} and 0 < δ 4 1, we will establish
an upper bound on the quantity M∗0 (g, L,L, δ) consisting of matrices

(7.12)

γ =

(
a b
c d

)
∈ M2(Z[i]), det γ = n ∈ D(L,L), |n| � L1/2

dist(g−1γ̃g,S) 6 δ,
D(g−1γ̃g)

‖g−1γ̃g‖2
� log `√

`
.

From the first distance condition in (7.12) we conclude that

(7.13) a, b, c, d 4 L1/4.

Using the description in (7.1), the distance conditions in (7.12) imply that{
L2, L3 � δ

√
|n|∣∣a+d

2 ± L1

∣∣ = (1 + O(δ))
√
|n|

or

{
a+ d, L1 � δ

√
|n|

|L2|, |L3| = (1 + O(δ))
√
|n|;

(7.14)

∣∣a+d
2 + L1

∣∣2 − ∣∣a+d
2 − L1

∣∣2 4√L/` and |L2|2 − |L3|2 4
√
L/`.(7.15)
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As in §6, we split the count into the parabolic and non-parabolic subcounts as

M∗0 (g, L,L, δ) = M∗p0 (g, L,L, δ) +M∗np
0 (g, L,L, δ).

We shall prove the following result using (7.12)–(7.15) and (7.8).

Lemma 13. Let Ω ⊂ G be a compact subset, L > 1, and L ∈ {L2, L4}. For g ∈ Ω and
0 < δ 4 1, we have the following bounds.

M∗0 (g, L, 1, δ) 4Ω 1,(7.16)

M∗p0 (g, L,L, δ) 4Ω L1/2 + Lδ2,(7.17)

M∗0 (g, L, L2, δ) 4Ω L3/2 + L3δ3 +
L2 + L7/2δ2

√
`

+
L4δ2

`
,(7.18)

M∗np
0 (g, L, L4, δ) 4Ω L3 + L5δ2 +

L4 + L6δ2

√
`

.(7.19)

Proof. The bound (7.16) is immediate from (7.13). For the proof of (7.17), we observe

that, in the parabolic case, (7.14) implies L2, L3 � L1/4δ. Indeed, this is clear when the

first half of (7.14) holds. Otherwise, the conditions a + d = ±2
√
n and a + d � δ

√
|n|

force δ � 1, so the claimed bound is clear again. Applying Lemma 10(b), we infer that

a − d, b, c � L1/4δ holds in the parabolic case. From here (7.17) follows readily, as in the
second paragraph of the proof of Lemma 12. Finally, we shall prove (7.18) and (7.19) in
the next two subsections. �

7.5. Volume argument. Here, we present a volume argument that we will use repeatedly
to estimate the number of lattice points satisfying (7.12)–(7.15). The symbol vol will refer
to the Lebesgue measure in Cm ' R2m, with m being clear from the context.

The explicit expressions for the linear forms in (7.1) may be rewritten as

(7.20)
[
L1 L2 L3

]>
= A0(g)

[
a− d b c

]>
,

where A0 : Ω → GL3(C) is a continuous function. It is straightforward to verify that
detA0(g) = 1/2 holds identically. We shall also use the 4-dimensional variant

(7.21)
[
a+ d L1 L2 L3

]>
= diag(1, A0(g))

[
a+ d a− d b c

]>
.

Now, let m > 1 be a fixed integer (m ∈ {2, 3, 4} in our applications), and let A : Ω →
GLm(C) be a fixed continuous function. As Ω is compact, there exists a fixed compact
subset K = K(A,Ω) ⊂ Cm such that each 2m-dimensional lattice A(g)Z[i]m ⊂ Cm (g ∈ Ω)
has a fundamental parallelepiped lying in K and of volume � 1. It follows by a standard
volume argument that for any compact subset V ⊂ Cm and g ∈ Ω we have

(7.22) #
(
V ∩A(g)Z[i]m

)
� volV • where V • := V +K.
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We also record for repeated reference a simple volume computation. For r,∆ > 0, we
define the sets

W1(r,∆) :=
{

(z1, z2) ∈ C2 : |z1|, |z2| 6 r, <(z1z2) 6 ∆
}
,

W2(r,∆) :=
{

(z1, z2) ∈ C2 : |z1|, |z2| 6 r,
∣∣|z1|2 − |z2|2

∣∣ 6 ∆
}
.

Cutting these into two parts according to whether |z2| 6 |z1| or |z2| > |z1|, we obtain
readily by Fubini’s theorem that

volWj(r,∆)� min(r4, r2∆).

On the other hand, we have

Wj(r,∆)• ⊂Wj

(
r + O(1),∆ + O(r + 1)

)
with implied constants depending only on A and Ω, hence

(7.23) volWj(r,∆)• � min
(
(r + 1)4, (r + 1)2(∆ + r + 1)

)
� 1 + r2∆ + r3.

7.6. Middle and high range for q = 0. We now estimate the count M∗0 (g, L,L, δ) in
the “middle range” L = L2 and the “high range” L = L4. In the high range, we shall focus
on the non-parabolic contribution M∗np

0 (g, L, L4, δ), since we have already proved (7.17),
and here we shall profit substantially from the fact that det γ is a square.

7.6.1. Middle range. In the middle range L = L2, we estimate the number of choices in
M∗0 (g, L, L2, δ) as follows.

For the case when the first half of (7.14) holds, we introduce the set

V1(δ) :=
{

(z0, z1, z2, z3) ∈ C4 : z0, z1 4 L1/4, <(z0z1) 4
√
L/`,

z2, z3 � L1/4δ, |z2|2 − |z3|2 4
√
L/`

}
,

suppressing from notation the dependence implicit in 4. Then we have by (7.23)

volV1(δ)• 4 volW1(L1/4,
√
L/`)• · volW2(L1/4δ,

√
L/`)•

� (L3/4 + L/
√
`)(1 + L3/4δ3 + Lδ2/

√
`).(7.24)

For the case when the second half of (7.14) holds, we introduce the set

V2(δ) =
{

(z0, z1, z2, z3) ∈ C4 : z0, z1 � L1/4δ, <(z0z1) 4
√
L/`,

z2, z3 4 L1/4, |z2|2 − |z3|2 4
√
L/`

}
,

suppressing from notation the dependence implicit in 4. Then we have by (7.23)

volV2(δ)• 4 volW1(L1/4δ,
√
L/`)• · volW2(L1/4,

√
L/`)•

� (L3/4 + L/
√
`)(1 + L3/4δ3 + Lδ2/

√
`).(7.25)

Using (7.12)–(7.15), (7.21)–(7.22), and (7.24)–(7.25), we conclude (7.18) in the form

M∗0 (g, L, L2, δ) 4 (L3/2 + L2/
√
`)(1 + L3/2δ3 + L2δ2/

√
`).



BEYOND THE SPHERICAL SUP-NORM PROBLEM 64

7.6.2. High range. As in the proof of Lemmata 9 and 12, in the high range L = L4, once
the triple (a − d, b, c) is determined for a non-parabolic matrix γ (so that (7.8) holds),
a+ d and along with it γ is determined up to 4 1 choices by the divisor bound, using that
n = l21l

2
2 is a square. We now estimate the number of choices in M∗np

0 (g, L, L4, δ) as follows.
For the case when the first half of (7.14) holds, we introduce the set

V3(δ) :=
{

(z1, z2, z3) ∈ C3 : z1 4 L1/4, z2, z3 � L1/4δ, |z2|2 − |z3|2 4
√
L/`

}
,

suppressing from notation the dependence implicit in 4. Then we have by (7.23)

(7.26) volV3(δ)• 4
√
L · volW2(L1/4δ,

√
L/`)• �

√
L(1 + Lδ2/

√
`+ L3/4δ3).

For the case when the second half of (7.14) holds, we introduce the set

V4(δ) :=
{

(z1, z2, z3) ∈ C3 : z1 � L1/4δ, z2, z3 4 L1/4, |z2|2 − |z3|2 4
√
L/`

}
,

suppressing from notation the dependence implicit in 4. Then we have by (7.23)

(7.27) volV4(δ)• 4 (1 + L1/4δ)2 · volW2(L1/4,
√
L/`)• � (1 +

√
Lδ2)(L3/4 + L/

√
`).

Using (7.8), (7.12)–(7.15), (7.20), (7.22), and (7.26)–(7.27), we conclude (7.19) in the
form

M∗np
0 (g, L, L4, δ) 4 L2(1 + L4δ2/

√
`+ L3δ3) + (1 + L2δ2)(L3 + L4/

√
`).

The proof of Lemma 13 is complete.

7.7. Proof of Theorem 3. In the case q = 0, we combine Lemmata 5 and 13 to see that

|φ0(g)|2 4I,Ω `2
(

1

L
+ S∗0(L,L2) + S∗0(L,L4)

)
+ L2`−48,

where

S∗0(L,L2) :=
∑

δ dyadic

1/
√
`6δ41

1√
`δL3

(
L3/2 + L3δ3 +

L2 + L7/2δ2

√
`

+
L4δ2

`

)
4

1

L3/2
+

1√
`

+
L

`3/2
,

S∗0(L,L4) :=
∑

δ dyadic

1/
√
`6δ41

1√
`δL4

(
L3 + L5δ2 +

L4 + L6δ2

√
`

)
4

1

L
+

L√
`

+
L2

`
.

Putting everything together, we conclude that

|φ0(g)|2 4I,Ω `2
(

1

L
+

L√
`

+
L2

`

)
+ L2`−48 � `7/4,

by making the essentially optimal choice L := 7`1/4 (which satisfies our earlier condition
L > 7).

The case q = ±` is immediate from Lemmata 6 and 11, hence the proof of Theorem 3 is
complete.
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8. Proof of Theorem 2

In this section, we prove Theorem 2. Here we take the aim of the softest possible proof
based on the localization properties of the averaged spherical trace function (proved in
Theorem 5 and then encoded in the form of the amplified pre-trace inequality in Lemma 5)
and the already available ingredients for the counting problem.

For each L ∈ {1, L2, L4} and ~δ = (δ1, δ2) with 0 < δ1, δ2 6 `ε, the count M∗(g, L,L, ~δ)
in Lemma 5 may be estimated in a split fashion as

M∗(g, L,L, ~δ) 6 min
(
MK(g, L,L, δ1),MD(g, L,L, ε, δ2)

)
,

where

MK(g, L,L, δ) :=
∑

n∈D(L,L)

#
{
γ ∈ Γn : dist

(
g−1γ̃g,K

)
6 δ
}
,

and MD(g, L,L, ε, δ) is as in (7.6). The quantity MK(g, L,L, δ) is the classical Diophantine
count in the spherical sup-norm problem in the eigenvalue aspect, which in the present
context was treated in detail in [BHM16]. In the notation of that paper, we have:

• u(γ̃gK, gK) � dist(g−1γ̃g,K)2 in [BHM16, (5.3)];
• N = 1, and r �Ω 1 for g ∈ Ω, in [BHM16, (6.2)].

Thus the count MK(g, L,L, δ1) agrees with M(gK,L,L,O(δ2
1)) in [BHM16, (5.17)–(5.18)].

Importing estimates [BHM16, (7.1), (7.2), (7.5), (11.1), (11.6)], we conclude that

MK(g, L, 1, δ1) 4Ω 1, MK(g, L, L2, δ1) 4Ω L2 + L4δ1, MK(g, L, L4, δ1) 4Ω L3 + L6δ1.

The count MD(g, L,L, ε, δ) was estimated in Lemma 12. Combining everything, we
obtain the following lemma.

Lemma 14. For g ∈ Ω, L > 0, and arbitrary ε > 0 and ~δ = (δ1, δ2) with 0 < δj 4 1, the

quantity M∗(g, L,L, ~δ) in Lemma 5 satisfies

M∗(g, L, 1, ~δ) 4Ω 1,

M∗(g, L, L2, ~δ) 4Ω min
(
L2 + L4δ1, L

2 + L4δ4
2

)
,

M∗(g, L, L4, ~δ) 4Ω min
(
L3 + L6δ1, L

2 + L6δ4
2

)
.

We are now ready for the proof of Theorem 2. From Lemma 14, we have for every pair
~δ = (δ1, δ2) with 0 < δ1, δ2 6 `ε that

M∗(g, L, 1, ~δ)

L
+
M∗(g, L, L2, ~δ)

L3
+
M∗(g, L, L4, ~δ)

L4
4Ω

(
1

L
+ L2 min

(
δ1, δ

4
2

))
.
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Inserting this into Lemma 5, we find that

|φq(g)|2 4I,Ω `2
∑

~δ dyadic, δj41

δ21δ2>1/
√
`

1√
`δ2

1δ2

(
1

L
+ L2 min

(
δ1, δ

4
2

))
+ L2`−48

4 `2
(

1

L
+

∑
~δ dyadic, δj41

δ21δ2>1/
√
`

L2 min

(
1√
`δ1δ2

, δ1, δ
4
2

))
4 `2

(
1

L
+

L2

`2/9

)
,

where we used min(A,B,C) 6 A4/9B4/9C1/9 in the last step. The choice L := 7`2/27 is
optimal up to a constant, and it satisfies our earlier condition L > 7, hence we obtain
Theorem 2 in the form

‖φq|Ω‖∞ 4I,Ω `26/27.

The proof of Theorem 2 is complete.
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