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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Formic acid mediator in hydrothermal 
carbonisation raises biomass-to-H2 
conversion. 

• Artificial neural network accurately 
predicts HTC yields and products 
properties. 

• The HTC gas yield is increased from 
1.67 to 13.42 mol kg− 1 using an acid 
mediator. 

• Higher combined severity factor (>1.5) 
intensifies green hydrogen evolution. 

• For dilute suspensions, CSF>2.8 is 
needed to maintain a high H2 yield (3 
mol kg− 1).  
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A B S T R A C T   

This study investigates the formic acid-mediated hydrothermal carbonisation (HTC) of microalgae biomass to 
enhance green hydrogen production. The effects of combined severity factor (CSF) and feedstock-to-suspension 
ratio (FSR) are examined on HTC gas formation, hydrochar yield and quality, and composition of the liquid 
phase. The hydrothermal conversion of Chlorella vulgaris was investigated in a CSF and FSR range of − 2.529 and 
2.943; and 5.0 wt.% – 25.0 wt.%. Artificial neural networks (ANNs) were developed based on experimental data 
to model and analyse the HTC process. The results show that green hydrogen formation can be increased up to 
3.04 mol kg− 1 by applying CSF 2.433 and 12.5 wt.% FSR reaction conditions. The developed ANN model (BR-2- 
11-9-11) describes the hydrothermal process with high testing and training performance (MSEz = 1.71E− 06 & 
1.40E− 06) and accuracy (R2 = 0.9974 & R2 = 0.9781). The enhanced H2 yield indicates an effective alternative 
green hydrogen production scenario at low temperatures using high-moisture-containing biomass feedstocks.  
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1. Introduction 

The transition of modern societies towards net zero emissions re-
quires the extensive use of hydrogen in industrial processes (Henry et al., 
2020). The global hydrogen requirement is expected to exceed 200 Mt 
by 2030, but only 38% of the demand is projected to be synthesised via 
water electrolysis (IEA, 2021). The urgent need for high-volume 
hydrogen production call attention to alternative green (i.e., biomass- 
derived) technological solutions that could mitigate the use of fossil 
fuels for synthesising H2. 

Among thermochemical hydrogen producing processes, gasification 
and pyrolysis are established technologies, but undesired co-products 
such as ash and tar are produced during the transformation of feed-
stocks (Calijuri et al., 2022). Moreover, the conversion of aquatic 
biomass (e.g., microalgae, sewage sludge) via high-temperature atmo-
spheric processes is a challenging task due to the high moisture content 
of these feedstocks (up to even 80–90% (Islam et al., 2022)) and the 
requirement of energy-intensive pre-drying steps (Min et al., 2022). As a 
bypass solution, sub-, or supercritical water-based technologies can be 
applied to convert raw biogenic materials using their own water content 
as a reagent and solvent and to produce solid hydrochar (Liu et al., 
2022), liquid bio-oil (Adedeji et al., 2022), hydrogen-rich fuel gas 
mixtures (Rajagopal et al., 2022) and subsequently, value-added 
chemical products such as methanol (Fózer et al., 2021). 

Hydrothermal carbonisation was applied to produce mainly hydro-
char (with solid yields up to 50–80%) by using various feedstocks such 
as aquatic biomass (Chlorella vulgaris, Didymocystis inermis, Tetradesnus 
obliquus) (de Siqueira Castro et al., 2021), waste (Xu et al., 2021) and 
plastic (Iñiguez et al., 2019). Khoo et al. (2020) produced an energy- 
dense hydrochar from Chlorella vulgaris microalgae by optimising HTC 
reaction temperature and retention time parameters. Climate change 
benefits of the HTC process were reported to be sufficient to outweigh 
the impacts of production in cases where the stability of hydrochar is 
adequately high for storage purposes (Owsianiak et al., 2018). However, 
Zhang et al. (2021) highlighted the need to improve process efficiencies 
and economic costs of hydrothermal carbonisation and suggested the 
recovery of value-added products from the reaction media. 

Producing hydrogen from microalgae by thermochemical technolo-
gies could result in favourable carbon emission footprints; however, the 
non-catalytic hydrothermal and atmospheric transformation of aquatic 
biomass require high reaction temperatures and a high amount of en-
ergy to achieve elevated gasification efficiencies (Tiong and Komiyama, 
2022). This limitation makes it necessary to apply (1) catalysts (Xie 
et al., 2019), (2) co-gasifying agents (Huang et al., 2018), (3) enhanced 
energy recovery (Behera et al., 2022) or (4) various mediators (Zhang 
et al., 2021) to improve conversion efficiencies, hydrogen yield, product 
characteristics, and environmental performances. Acid-mediated sub- 
critical treatments offer a simple and attractive way to improve the 
hydrothermal conversion and characteristics of HTC-derived biofuels 
(Sarrion et al., 2022). Evcil et al. (2020) investigated the use of com-
bined Lewis and Brønsted acids (AlCl3-HCl) on lignocellulosic biomass. 
They observed that the catalyst combination decreased hydrochar yield 
and increased the heating value up to 29.19 MJ kg− 1 at 275 ◦C and 24 h 
residence time. Lachos-Perez et al. (2022) discussed that intermediate 
products (e.g., acetic acid and formic acid) formed during the HTC 
process could affect the HTC gas composition and enhance the formation 
of CO2 and minor gases. Lu et al. (2022) showed that formic acid de-
creases the content of nitrogen heterocyclic compounds in the produced 
bio-oil. Wang et al. (2018) highlighted that HTC liquid and gas products 
have received limited research attention and also pointed out the need 
for advanced reaction modelling to guide the development of HTC-based 
technologies. 

Modelling hydrothermal processes are challenging due to the unclear 
reaction mechanisms and the high number of parallelly occurring re-
actions that require simplifications in kinetic simulations (Yang et al., 
2022). Machine learning (ML) algorithms (e.g., artificial neural 

networks) provide a framework for simulating complex chemical pro-
cesses without knowing exact reaction kinetics using a black-box 
approach. ML was already applied to simulate the production of bio-
char (Zhu et al., 2019), the co-pyrolysis of sewage sludge (Bi et al., 2021) 
or to predict the viscosity of slurry in the hydrothermal hydrolysis 
process (Chen et al., 2021). However, there is a lack of research on 
models development that involve the use of mediators and focus on the 
evolution of the gas phase in low-temperature hydrothermal processes. 

Former hydrothermal carbonisation studies focused mainly on 
improving the yield and properties of hydrochar. The main goals of this 
work are to (i) assess the gas formation and green hydrogen production 
potentials of hydrothermal carbonisation using Chlorella vulgaris, a 
model microalgae biomass, and (ii) develop an accurate artificial neural 
network to describe gas formation under acid-mediated sub-critical 
conditions. The present study shows that formic acid-mediated hydro-
thermal carbonisation of microalgae biomass can boost HTC gas for-
mation, and the obtained green hydrogen yield competes with other 
thermochemical technologies (e.g., hydrothermal gasification and 
pyrolysis). 

2. Materials and methods 

2.1. Materials 

Chlorella vulgaris (C. vulgaris) microalgae feedstock was acquired 
from the commercial market (Vital-Trend Kft., Hungary) in dried form. 
The proximate analysis of C. vulgaris showed that the volatile matter, 
fixed carbon and ash content of the dried biomass are 84.14 wt.%, 10.70 
wt.% and 5.16 wt.%, respectively. The elemental composition of 
C. vulgaris was calculated based on the work of Parikh et al. (2007). The 
investigated microalgae strain contained 45.10 wt.% C, 5.77 wt.% H, 
43.30 wt.% O, and 5.82 wt.% N. The higher heating value of the dried 
C. vulgaris was 18.01 MJ (kg)− 1. Acetone (⩾99.5%) and formic acid 
(⩾95%) were purchased from Merck KGaA, Germany. 

2.2. Experimental procedure 

2.2.1. Hydrothermal carbonisation 
Autogenous hydrothermal carbonisation was carried out in a 250 mL 

batch autoclave reactor (MT-07300, Parr Instrument Company, USA). 
Inert atmosphere was provided by washing the reactor vessel with ni-
trogen. A Heidolph MR 3003 control magnetic stirrer with a hotplate 
was applied for heating the reactor that was insulated using rockwool. 
The biogas was collected in a gas burette (2,000 mL) and sampled using 
a septum attachment. The solid and liquid phases were separated with a 
Hettich Rotina 380 1701 centrifuge by using 3,758 relative centrifugal 
force (G-force) separation and sedimentation performance for 5 min. 
The synthesised hydrochar was dried for constant weight at 105 ◦C using 
a drying cabinet (Heraeus D-6450 Hanau). 

2.2.2. Analysis of solid hydrochar and C. vulgaris 
The proximate analysis of hydrochar samples was performed based 

on the ASTM D3175 (volatile matter, VM), ASTM D3174 (ash) and 
ASTM D3172 (fixed carbon, FC) standards. The VM was determined by 
igniting the samples at 950 ◦C for 7 min in a platinum crucible. The ash 
content of HC samples was measured by heating them in ceramic cru-
cibles to 500 ◦C and 950 ◦C using 8.3 and 7.5 ◦C min− 1 heating rates, 
respectively. Then, the samples were ignited at 950 ◦C for 2 h. The FC 
content was determined by Eq. 1: 

FC (wt.%) = 100 − VM − ash. (1) 

The thermogravimetric analysis (TGA) of Chlorella vulgaris feedstock 
was carried out using a Perkin Elmer STA-6000 device. The dried 
microalgae samples (approximately 10 mg) were heated in an alumina 
crucible from room temperature to 950 ◦C using four different heating 
rate settings: 2; 5; 10; and 20 K min− 1. Inert atmosphere was applied 
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during the measurements; the nitrogen flow rate was set to 20 mL min− 1. 

2.2.3. Analysis of gaseous products 
The HTC gas samples were measured with an HP5890A Series II gas 

chromatograph equipped with thermal conductivity and flame ionisa-
tion detectors. A 1.9 m × 3.175 mm (LxØ) packed column (filled with 
Porapak Q, 80–100 mesh load) was utilised for the separation of gas 
components. The initial temperature of the oven was set to 50 ◦C for 30 
s. The oven temperature was increased to 150 ◦C using 20 ◦C min-
− 1heating rate. The column head pressure of argon carrier gas was 150 
kPa. 

2.2.4. Analysis of liquid products 
The co-produced process water was analysed using a Shimadzu GC/ 

MS-QP2010 SE gas chromatograph mass spectrometer. The process 
water was filtered using a syringe filter (hydrophilic PTFE, 0.45 μm, 
FilterBio®). 0.1 mL sample was diluted in 0.9 mL acetone. The injector 
temperature was 280 ◦C, the ion source and interface temperatures were 
set to 250 ◦C and 290 ◦C. The initial temperature was 40 ◦C, which was 
held for 1 min. Then, the temperature was increased to 150 ◦C using 5 ◦C 
min− 1 heating rate. Finally, the oven temperature was raised to 320 ◦C 
using 10 ◦C min− 1 heating rate and was held for 5 min. The He flow rate 
in the column was 1.2 mL min− 1, the split ratio was set to 3. The mass 
spectrometer was operated at an m/z scan range of 50–650. SGE BP5 
(25 m x 0.25 mm ID) capillary column was used for the separation of 
compounds. 

Shimadzu TOC-VCSN analyser was used to measure the total carbon, 
inorganic carbon and total organic carbon contents of process water 
samples. 

2.3. Data analysis 

The hydrochar yield (YHC, %) was determined using Eq. 2: 

YHC (%) =
mass of dried hydrochar (g)
mass of dried microalgae (g)

⋅100%, (2) 

The higher heating value of the produced solid fuel samples (HHVSF, 
MJ kg− 1, R2 = 0.9597, Eq. 3) was determined using an empirical formula 
reported by Dashti et al. (2019):   

The energy densification (ED, -) and fuel ratio (FR, -) were calculated 
by Eq. 4 and 5: 

ED
(
−
)
=

HHVHC

HHVfeedstock
, (4)  

FR
(
−
)
=

FC
VM

, (5)  

where HHVHC and HHVfeedstock are the higher heating value (MJ kg− 1) of 
hydrochar and microalgae feedstock, FC and VM are the fixed carbon 
and volatile matter contents (wt.%). 

The energy (ηER, − )-, and fixed carbon recovery efficiencies (ηFCR, − ) 
were obtained according to Eq. 6 and 7: 

ηER ( − ) =
HHVHC

HHVfeedstock
⋅

YHC

100%
, (6)  

ηFCR ( − ) =
FCHC

FCfeedstock
⋅

YHC

100%
. (7) 

The biogas yield (Ybiogas, mol kg− 1) was determined based on Eq. 8: 

Ybiogas
(
mol kg− 1) =

∑(
nGAS,i

)

mfeedstock
i = H2,CH4,CO2,CO,C2H4,C2H6, (8)  

where nGAS,i is the mole number of the ith gas component (mol), mfeedstock 
is the mass of the feedstock (kg). 

The carbon gasification efficiency (CGE, -) was determined by Eq. 9: 

CGE ( − ) =

∑(
nGAS,j⋅ MWC

MWGAS,j

)

mfeedstock⋅xfeedstock,C
MWC

j = CH4,CO2,CO,C2H4,C2H6, (9)  

where MWC and MWGAS,j are the molecular weight of carbon and the jth 

gas component (g mol− 1), xfeedstock,C is the mass fraction of carbon in the 
feedstock (–). The hydrogen gasification efficiency (HGE, -) was calcu-
lated based on Eq. 10: 

HGE
(
−
)
=

nH2

mfeedstock⋅xfeedstock,H
MWH

(10)  

where nH2 is the mole number of H2 (mol), xfeedstock,H is the mass fraction 
of hydrogen in the feedstock (–), MWH is the molecular weight of 
hydrogen (g mol− 1). 

The effectiveness of the hydrothermal treatment was evaluated by 
the severity factor (log10R0) (Morales-Contreras et al., 2022). The 
severity factor, defined as the logarithm of reaction ordinate (R0), 
combines reaction temperature and time into one variable using the 
Arrhenius Law. The reaction ordinate is expressed in Eq. 11: 

R0
(
min
)
=

∫ τ

0
exp

⎛

⎜
⎜
⎜
⎜
⎝

Tr − Tb
(

T2
f R

Ea

)

⎞

⎟
⎟
⎟
⎟
⎠

dt, (11)  

where Tr is the reaction temperature (◦C), Tb is the base temperature 
(◦C) (assumed to be 100 ◦C), Tf is the ”floor” temperature equal to the 
central level of the applied reaction temperature range (◦C), R is the 
universal gas constant (8.314 J K− 1mol− 1), Ea is the activation energy (J 
mol− 1), τ is the reaction time (min) (i.e., the sum of residence time and 
the time that is required to reach the reaction temperature from the base 
temperature). The severity factor was modified to include the effects of 
using acid mediators in different concentrations assuming a first-order 
reaction rate (Chen et al., 2007) and named as the combined severity 
factor (CSF, Eq. 12) (Chum et al., 1990): 

HHVSF
(
MJ kg− 1) = − 0.0038

(
− 19.9812FC1.2259 − 1.0298⋅10− 13VM8.0664+

+0.1026Ash2.4231 − 1.2065⋅10− 7( FC⋅Ash4.6653)+ 0.0228
(
FC⋅VM⋅Ash

)
−

− 0.2511(VM/Ash)) − 0.0478(FC/VM) + 15.7199
(3)   
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CSF ( − ) = lg(R0) − pH (12) 

The Kissinger equation (expressed in Eq. 13) was used to determine 
the apparent activation energy and pre-exponential constant (A) based 
on thermogravimetric analysis (Vyazovkin et al., 2011): 

ln

(
β

T2
m,i

)

= ln
(

−
AR
Ea

d(1 − α)
dα

)

−
Ea

RTm,i
, (13)  

where α is the extent of conversion (–), β is the heating rate (K min− 1). 

2.4. Artificial neural network (ANN) modelling 

The formic acid-mediated hydrothermal carbonisation of Chlorella 
vulgaris biomass was modelled by developing a multi-input and multi- 
output artificial neural network using the MATLAB R2021a software 
(MathWorks, 2021). Bayesian regularisation algorithm was used for 
training because of its ability to reach good generalisation with small 
datasets, it is difficult to overtrain or overfit, and it does not require 
lengthy cross-validation (Burden and Winkler, 2009). The input data is 
based on a 3-factorial central composite design of experiments (gener-
ated using the HTC reaction temperature, feedstock-to-suspension ratio 
and catalyst-to-suspension ratio) that is expanded up to 30 cases by 
adding entries between low and high factor levels. The reaction tem-
perature, reaction time and pH variables were transformed into the 
combined severity factor. Machine learning models were trained using 
the combined severity factor and the feedstock-to-suspension ratio. 
Input data (detailed in Table 1) were randomly assigned between the 
training (80%) and testing (20%) stages. The input data was pre- 
processed before model training by using z-score (z, -) normalisation 
as shown in Eq. 14: 

z
(
−
)
=

μ − μ
SD

(14)  

where μ is the sample value, μ is the mean value of the sample data, SD is 
the standard deviation. 

The target variables were divided into three categories based on HTC 
product phases:  

• solid phase: (i) hydrochar yield (%); (ii) volatile matter (wt.%); (iii) 
fixed carbon (wt.%); and (iv) ash content (wt.%),  

• liquid phase: (i) total organic carbon content (mg L− 1),  
• gaseous phase: (i) hydrogen yield (mol kg− 1); (ii) methane yield (mol 

kg− 1); (iii) carbon dioxide yield (mol kg− 1); (iv) carbon monoxide 
yield (mol kg− 1); (v) ethylene yield (mol kg− 1); and (vi) ethane yield 
(mol kg− 1). 

The training and testing performances of neural network topologies 
were evaluated based on the mean squared error (MSEz) (Eq. 15). The 
accuracy of ANN models was tested by the coefficient of determination 
(Eq. 16). 

MSEz =

∑n

j=1

(
Yz

pred,j − Yz
exp,j

)2

n
, (15)  

R2
z = 1 −

∑n

j=1

(
Yz

pred,j − Yz
exp,j

)2

∑n

j=1

(
Yz

exp,j − Yz
exp,j

)2 , (16)  

where Yz
pred,j is the predicted, Yz

exp,j is the experimental, Yexp,j is the 
average of all factor level(s) of the zth target variable, and n is the 
number of data. 

3. Results and discussion 

3.1. Determining kinetic constants for assessing hydrothermal reaction 
severity 

The TGA experimental results of Chlorella vulgaris biomass are shown 
in Figs. 1a to 1d. Combusting the dried feedstock using distinct 2–20 K 
min− 1 heating rate levels resulted in one major low peak on the corre-
sponding derivative thermogravimetric (DTG) curves. The peaks indi-
cate a combustion process between 200 ◦C and 500 ◦C that is attributed 
to the combustion and evaporation of volatiles. Similar combustion 
characteristics were reported by Ye et al. (2020), who investigated the 
co-combustion of coal and microalgae. The temperature values at the 
extrema of DTG curves are used to formulate a linear function, as is 
presented in Fig. 1e. The Kissinger equation, constructed based on 
thermogravimetric analysis measurements and DTG curves, is expressed 
in Eq. 17 (R2=0.9717). 

ln
(

β
T2

max

)

= − 15, 923
(

1
Tmax

)

+ 11.688 (17) 

Based on the Kissinger equation, kinetic constants are calculated and 
used to determine the severity factor. It is obtained that the apparent 
activation energy and pre-exponential constant of the dried Chlorella 
vulgaris biomass is 132.4 ± 1.9 kJ mol− 1 and 1.896E+09  ± 2.683E+07 
s− 1. These results are in agreement with the findings of Soria-Verdugo 
et al. (2018) who reported the activation energy and pre-exponential 
constant of Chlorella vulgaris microalgae strain in a range of 
135.6–337.1 kJ mol− 1 and 8.7E+09–4.1E+21 s− 1, respectively. 

3.2. Artificial neural network (ANN) modelling 

The experimental results of non-catalysed and formic acid-mediated 
hydrothermal carbonisation of Chlorella vulgaris are summarised in 
Table 1. Supervised machine learning models are developed based on 
experimental data and used to model the hydrothermal conversion in a 
wide range of combined reaction severity [-2.5, 2.9] and feedstock-to- 
suspension ratio [5 wt.%, 25 wt.%] intervals. It is obtained that the 
number of hidden layers and hidden neurons significantly influences the 
performance of neural networks. The training and testing performances 
and accuracies are fine-tuned by examining one and two hidden layer 
topologies and adjusting the number of hidden neurons from 5 to 20. A 
total of 272 neural network topologies are developed and trained (see 
supplementary material). Neural network topologies with one hidden 
layer resulted in adequate training accuracies (R2⩾0.974); however, the 
testing coefficients of determination were less accurate with values 
ranging between 0.833 and 0.942. The underfitting is explained by the 
insufficient level of resolving complex correlations between input and 
target variables. The simulation results show that adding one additional 
hidden layer to the perceptron enables to obtain better accuracies in 
many of the investigated neural net scenarios. The ideal neural network 
topology (BR-2-11-9-11) consisting of two hidden layers is illustrated in 
Fig. 2a. The best model training (R2= 0.9974, Fig. 2b) and testing (R2=

0.9781, Fig. 2c) accuracies are achieved with 11 neurons in the first and 
9 neurons in the second hidden layer. The BR-2-11-9-11 multi-layer 
perceptron is characterised by low training and the lowest testing errors 
with MSEzvalues of 1.71E-06 and 1.40E-06. Increased mean squared 
errors are observed when the number of hidden neurons raised above 
ideal values. This tendency indicates that the modelling performance 
reached its peak with the given training set, and the performance could 
be increased only by expanding the size of the input database using more 
complex ANN topologies that contain surplus hidden neurons, or 
reducing the complexity of the multi-layer perceptron by decreasing the 
number of input variables. Thus, the obtained BR-2-11-9-11 perceptron 
is identified as the best neural network topology for the available HTC 
measurements-based input dataset. These results shows the benefits of 
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Table 1 
Experimental set-up and results of formic acid-mediated hydrothermal carbonisation.  

No Experimental parameters Hydrochar characteristics TOC (mg 
L− 1) 

Biogas yield and composition   

T 
(◦C) 

τ(min) pH 
(–) 

CSR (wt. 
%) 

CSF (–) FSR (wt. 
%) 

YHC 

(%) 
VM (wt. 
%) 

FC (wt. 
%) 

Ash (wt. 
%)  

YGAS(mol 
kg− 1) 

H2(mol 
%) 

CH4(mol 
%) 

CO2(mol 
%) 

CO (mol 
%) 

C2H4(mol 
%) 

C2H6(mol 
%) 

1 180 67 5.38 0 − 1.081 12.5 46.7 87.1 9.5 3.4 29,790 0.38 0.45 0.25 94.15 5.13 2.97E-03 8.01E-03 
2 220 142 7.86 0 − 1.999 12.5 27.7 82.4 12.3 5.3 33,970 1.67 0.12 0.12 96.43 3.28 1.53E-02 3.33E-02 
3 180 76 2.76 10 1.594 12.5 27.7 85.4 12.4 2.2 59,440 2.95 16.61 0.03 80.69 2.66 2.05E-03 3.63E-03 
4 220 130 3.39 10 2.433 12.5 5.1 77.5 13.7 8.8 50,600 13.42 22.63 0.02 71.76 5.57 5.59E-03 4.69E-03 
5 180 79 2.60 5 1.770 5.0 25.4 88.1 10.1 1.8 27,290 1.60 2.89 0.03 91.18 5.89 2.01E-03 5.89E-03 
6 220 146 2.93 5 2.943 5.0 10.5 87.8 10.8 1.4 24,940 7.70 16.87 0.03 81.20 1.89 6.30E-03 5.68E-03 
7 180 94 3.39 5 1.056 20.0 37.7 87.0 10.3 2.8 62,240 2.56 1.70 0.03 95.89 2.37 2.88E-03 8.18E-03 
8 220 157 5.26 5 0.645 20.0 17.3 83.8 10.2 6.0 63,670 6.46 3.47 0.02 91.21 5.28 8.03E-03 8.66E-03 
9 200 105 5.66 0 − 0.550 5.0 32.0 83.1 13.4 3.5 14,080 1.09 0.23 0.08 96.64 3.04 5.47E-03 1.17E-02 
10 200 109 2.41 10 2.716 5.0 13.2 83.3 15.7 1.0 38,440 4.68 11.62 0.03 85.83 2.51 2.89E-03 5.67E-03 
11 200 120 6.40 0 − 1.232 20.0 41.6 85.2 9.6 5.3 52,400 1.60 0.67 0.03 96.19 3.08 7.42E-03 1.81E-02 
12 200 123 3.37 10 1.809 20.0 15.6 84.1 13.8 2.1 75,150 5.92 2.75 0.02 88.53 8.69 4.75E-03 5.07E-03 
13 200 102 3.28 5 1.817 12.5 22.2 87.1 11.7 1.2 45,050 3.98 1.23 0.02 96.48 2.25 2.85E-03 4.58E-03 
14 200 104 3.29 5 1.816 12.5 19.4 87.1 11.3 1.6 45,180 4.16 0.58 0.02 95.74 3.66 1.86E-03 4.02E-03 
15 200 103 3.31 5 1.792 12.5 21.3 88.6 10.3 1.1 51,690 4.17 2.17 0.03 95.49 2.30 3.15E-03 6.13E-03 
16 220 99 6.77 0 − 1.066 15.0 17.1 71.8 20.9 7.4 38,720 2.56 0.02 0.13 97.04 2.76 5.27E-03 3.71E-02 
17 180 80 5.13 0 − 0.754 5.0 29.2 83.0 14.4 2.6 14,480 0.51 0.03 0.12 95.80 4.02 2.24E-03 3.71E-02 
18 200 86 5.80 0 − 0.772 25.0 30.7 73.3 20.8 5.9 54,690 1.90 0.05 0.12 83.58 16.21 6.11E-03 3.03E-02 
19 180 92 6.72 0 − 2.283 7.5 30.5 89.6 5.7 4.8 24,740 0.96 0.02 0.03 92.93 7.02 9.00E-03 4.00E-03 
20 220 107 8.20 0 − 2.462 7.5 13.5 83.3 8.6 8.1 26,350 1.58 0.01 0.05 97.12 2.78 2.00E-02 1.00E-02 
21 180 93 6.97 0 − 2.529 15.0 38.5 86.9 6.1 7.0 47,060 1.27 0.06 0.04 91.11 8.77 1.30E-02 1.00E-02 
22 220 103 8.24 0 − 2.518 15.0 16.3 79.9 10.6 9.5 46,650 2.56 0.10 0.04 95.99 3.83 1.70E-02 1.90E-02 
23 190 129 3.65 2.5 1.242 15.0 38.1 88.2 9.1 2.7 37,980 2.59 1.21 0.04 95.29 3.45 3.69E-03 6.66E-03 
24 210 100 3.31 2.5 2.090 7.5 23.3 84.5 12.7 2.8 23,600 3.56 4.45 0.04 92.27 3.22 6.32E-03 6.77E-03 
25 220 120 3.11 7.5 2.678 12.5 10.9 89.5 10.0 0.5 43,690 8.01 8.03 0.03 88.84 3.10 6.00E-03 4.54E-03 
26 180 78 2.44 7.5 1.925 7.5 26.7 85.8 12.8 1.4 36,140 1.76 0.45 0.03 95.70 3.81 1.06E-03 4.97E-03 
27 200 94 5.00 1 0.064 20.0 41.5 83.6 10.2 6.2 42,570 2.40 0.47 0.06 96.56 2.90 4.37E-03 1.01E-02 
28 180 130 2.94 9 1.647 17.5 29.2 86.6 9.8 3.6 56,150 3.84 12.63 0.04 83.86 3.46 2.97E-03 4.06E-03 
29 180 121 2.69 10 1.866 12.5 30.7 80.9 12.9 6.3 49,410 4.01 23.41 0.06 73.97 2.55 3.92E-03 6.40E-03 
30 210 99 6.03 0 − 0.634 5.0 32.7 82.5 13.6 3.9 13,420 1.22 0.15 0.12 96.99 2.72 1.00E-02 1.53E-02  
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using the combined severity factor from modelling point of view. The 
utilisation of the CSF parameter that combines the HTC reaction tem-
perature, reaction time and pH factors into one variable enables the 
reduction of the number of input variables, the complexity of ANN 
structures and the size of the required input dataset facilitating the 
development of high performing and accurate ML models. 

Complying with computational rigour requires a detailed description 
of model assumptions and limitations. The major assumptions and 

limitations of the developed machine learning-based HTC model are 
discussed below:  

• The experimental dataset and applied apparatus ultimately influence 
the capabilities of the model. The ML model is best suited to describe 
the hydrothermal conversion of aquatic biomass in batch-type au-
toclaves that are operated below 250 ◦C and apply an autogenic 

Fig. 1. TG and DTG curves of Chlorella vulgaris microalgae feedstock obtained at different heating rates: (a) 2 K min− 1, (b) 5 K min− 1, (c) 10 K min− 1, (d) 20 K min− 1; 
and (e) the obtained Kissinger equation costructed based on TGA measurements. 
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pressure regime and nitrogen atmosphere during the sub-critical 
reaction.  

• The model adequately describes the non-catalytic and formic acid- 
mediated hydrothermal carbonisation of Chlorella vulgaris feed-
stock; however, it may provide less accurate results when other 
microalgae strains or biomass types are in the centre of interest.  

• The trained model is applicable in a combined severity factor and 
feedstock-to-suspension ratio intervals of − 2.5 and 2.9; and 5 wt.% - 
25 wt.%.  

• The applied GC/TCD/FID analytical system was able to detect 
hydrogen, methane, carbon dioxide, carbon monoxide, ethylene, and 
ethane in HTC gas samples. Thus, it is assumed that the produced gas 
mixture contains mainly these compounds. 

3.3. The effects of combined severity factor and feedstock concentration 
on hydrochar formation 

The results show that the combination of elevated temperature levels 
and the use of formic acid decreases the hydrochar yield. YHC is reduced 

by 40.8% from 46.7% by employing acid mediation at 10 wt.% CSR, 
180 ◦C and 12.5 wt.% FSR. Conducting hydrothermal carbonisation at 
elevated temperature (220 ◦C) and reaction time (142 min) settings 
resulted in similar hydrochar yield reduction (40.6%). Combined high 
factor levels (i.e., Tr,HTC= 220 ◦C, τ = 130 min, CSR  = 10 wt.% at 12.5 
wt.% FSR) reduced the hydrochar yield to 5.1%. It is observed that using 
harsher hydrothermal carbonisation regimes can elevate the total gas 
yield and the TOC content of the HTC liquid to 13.42 mol kg− 1 and 
50,600 mg L− 1. These results indicate that applying enhanced reaction 
severities (e.g., a CSF of 2.433) shifts product formation from the solid 
phase toward volatile liquids and gaseous compounds. 

The hydrochar yield is illustrated as a function of the combined 
severity factor and feedstock-to-suspension ratio in Fig. 3a. It is obtained 
that lower severity (CSF ⩽0) and feedstock concentration (FSR ⩽13 wt. 
%) levels are preferred to strengthen hydrochar formation. Positive CSF 
levels were attained by using formic acid mediation; thus, the ML model 
confirms that formic acid-based treatment has a negative effect on the 
HC yield. This finding is in agreement with the TOC analysis of the liquid 
phase. Fig. 3b demonstrates that the total organic carbon content rises 

Fig. 2. The ideal topology of the artificial neural network, training & testing. The characteristics of artificial neural networks used for the modelling of formic acid- 
mediated hydrothermal carbonisation. (a) ideal BR-2-11-9-11 ANN topology, (b) training accuracy, (c) testing accuracy, (d) combined coefficient of correlation. 

Z. Gruber et al.                                                                                                                                                                                                                                  



Bioresource Technology 365 (2022) 128071

8

significantly as the CSF and FSR levels increase. It is observed that the 
TOC content of process water is the lowest in those specific combined 
severity factor and FSR intervals where hydrochar formation occurs at 
the highest intensity (-2.5 < CSF <0; 5 wt.% < FSR <13 wt.%). These 
results display that the formic acid-boosted hydrothermal conversion 

enhances the formation of volatile compounds at increased CSF levels. In 
this way, acid mediation and the targeted use of combined reaction 
severities improve the flexibility of hydrothermal pretreatments. 
Depending on biomass valorisation scenarios (e.g., H2 for Power-to-X 
applications, or high-quality secondary hydrochar fuel for rotary 

Fig. 3. Hydrochar composition and properties. a.) the effects of CSF and FSR on the hydrochar yield; b.) on the total organic carbon content of the liquid product 
phase; c.) the composition and fuel ratio of hydrochar; d.) Van Krevelen diagram, marks indicate feedstock-to-suspension ratios (i.e., 7.5 wt.%: circles 
( ), 12.5 wt.%: triangles ( ), 17.5 wt.%: squares ( )), colours indicate the levels of combined severity factor (CSF=-2: pale 
red, CSF=-1: purple, CSF = 0: blue, CSF = 1: black, CSF =;̇2: applegreen). 

Fig. 4. The effects of combined severity factor and feedstock-to-suspension ratio on the (a) higher heating value of hydrochar, energy densification of hydrothermal 
carbonisation, and (b) energy- and fixed carbon recovery efficiencies. 
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kilns), the biomass pretreatment step can be fitted to preferred end-use 
cases by shifting the production rate between solid, liquid and gaseous 
fractions. 

Fig. 3c shows the proximate composition and fuel ratio of hydrochar 
produced using various combined severities and feedstock concentra-
tion. A tendency difference is observed between positive and negative 
CSF reaction conditions. Raising microalgae concentration contributes 
to achieving higher fuel ratios and product stability when negative or 
zero severities are applied. On the other hand, lower FSR levels are 
preferred in positive CSF scenarios. The results demonstrate that harsher 
hydrothermal severity condition (CSF ⩾0) reduces the fuel ratio of 
hydrochar. There is a link between the fuel ratio and stability of solid 
fuels (Leng et al., 2019); thus, the results indicate that formic acid- 
assisted cases lower the stability of solid combustible hydrochars. The 
decreased stability is also confirmed by illustrating the atomic compo-
sition of HC samples on a van Krevelen diagram (Fig. 3d). The diagram 
shows that increased combined severity (CSF  = 2, indicated with apple 
green colour) slightly reduces the degree of coalification (H/C and O/C 
ratios) of hydrochar. Better dehydrogenation and reduction were ach-
ieved by applying CSF regimes between − 1 and 1 (highlighted with 
purple, blue and black colours). Low combined severity factor level (-2, 
pale red) was not favoured for the coalification of microalgae. Thus, the 
formic acid-mediated hydrothermal carbonisation results in elevated 
green hydrogen production at the cost of reduced stability of hydrochar. 
This finding indicates that the acid-mediated hydrochar is better suited 
for short-term applications (e.g., as a secondary fuel) rather than as a 
long-term (more than 10–100 years) carbon storage material. 

The energy densification and higher heating value of hydrochars are 
presented in Fig. 4a. Increasing the combined severity from − 2 to − 1 is 
found to be beneficial in improving energy densification (up to 1.14 at 
CSF=-1) and the heating value (20.44 MJ kg− 1 at CSF=-1) of 
microalgae-derived solid fuels. A considerable drop (-10.4%) is observed 
in the value of ED and HHVHC by elevating the hydrothermal reaction 
severity up to zero. The results indicate that the feedstock-to-suspension 
ratio plays an important role in attaining better energy densification and 
calorific values. It is obtained that the higher heating value of hydrochar 
can be increased from 17.3 MJ kg− 1 to 19.4 MJ kg− 1 by lowering the 
feedstock concentration from 17.5 wt.% to 7.5 wt.%. The hydrochar 

energy conversion and fixed carbon recovery efficiencies are illustrated 
in Fig. 4b. The energy conversion efficiency shows similar tendencies to 
the higher heating value of HC. ηER decreases at higher FSR and CSF 
>0 levels. The fixed carbon recovery efficiency improves when the CSF 
is increased above 0 and peaks at CSF  = 1. This result confirms that high 
hydrothermal severities (CSF >1) increase the formation of carbon-rich 
volatile compounds. 

3.4. GC–MS analysis of HTC liquid phase 

The GC–MS spectra of the liquid phase were analysed to quantify the 
peak areas of detected compounds and to compare relative content 
changes using different hydrothermal reaction conditions. Liquid 
products were classified into aliphatic hydrocarbons, alcohols, alde-
hydes, ketones, acids, heterocyclic compounds, esters, aromatic and 
N–heteroatom compounds. The composition of organics in HTC process 
water samples is shown in Fig. 5. The results show that the combined 
reaction severity influences the composition of organics in the liquid 
phase product. Positive CSF conditions yielded HTC liquid samples 
containing mainly acids, esters, heterocyclic and N–heteroatom com-
pounds. Higher hydrothermal severity (CSF >0) increased the acid 
composition of organics above 50%. Liu et al. (2022) reported that the 
removal of ketones and aromatics was increased by treating the aqueous 
phase of hydrothermal carbonisation with potassium persulfate. Similar 
results are obtained in situ via formic acid-assisted hydrothermal car-
bonisation, where the amount of ketones, heterocyclic and aromatic 
compounds is reduced at elevated hydrothermal reaction severity levels 
(CSF >0). Liu et al. (2022) discussed that the presence of aromatics plays 
an important role in hydrochar formation contributing to the production 
of carbonaceous microspheres with stable oxygen groups, and increased 
acidity of the aqueous phase may affect deoxygenation reactions and the 
quality of hydrochar. The results show that hydrotreating Chlorella 
vulgaris at low severities (CSF <0) increases the amount of aromatic and 
heterocyclic compounds in the liquid phase. Simultaneously, hydrochar 
samples are obtained to be more stable (with a higher fuel ratio) by 
conducting experiments at negative combined severity regions (Fig. 3). 
Therefore, increasing reaction severity reduces hydrochar stability 
(Fig. 3c), raises the formation of volatile compounds (Fig. 3b) and the 

Fig. 5. Content distribution of main products in the HTC process water.  
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acidity of the aqueous phase (3rd-8th; 10th; 12th-15th; and 23th-29th ex-
periments on Fig. 5). Higher HTC reaction severities are beneficial to 
increase gas formation but circularity considerations call the attention 
on the neutralisation of volatiles-rich hydrothermal wastewaters. The 
co-produced aqueous phase could be suitably recirculated in hydro-
thermal liquefaction or carbonisation processes to increase the forma-
tion of bio-crude and hydrochar, and decrease the environmental and 
economic cost of the disposal of process wastewaters (Leng et al., 2020). 
Another circularity element could be the utilisation of the aquaous phase 
in the cultivation of microalgae. Tsarpali et al. (2021) reported that 
Chlorella vulgaris tolerated the HTC aqueous phase (AP) up to 7.5% in the 
cultivation broth and indicated that the AP is an effective nutrient source 
for algae that can potentially reduce the production cost of aquatic 
biomass. 

3.5. The effects of combined severity factor and feedstock concentration 
on gas formation 

The experimental results demonstrate that HTC biogas evolution can 

be improved by employing higher reaction temperature, performing 
hydrotreatment with a longer reaction time and applying formic acid- 
mediated feed suspension. The total gas yield is raised from 1.67 mol 
kg− 1 to 13.42 mol kg− 1 by using 10 wt.% CSR at 220 ◦C and 90 min 
residence time. The results show that the feedstock concentration is a 
critical parameter in gas formation. The highest hydrogen mole fractions 
are achieved using formic acid-assisted conversions at an FSR level of 
12.5 wt.%. Decreasing the FSR and CSR to 5 wt.% reduced the total gas 
yield and hydrogen mole fraction to 7.70 mol kg− 1 and 16.87 mol% 
(Table 1). Raising the FSR to 20 wt.% at a CSR level of 5 wt.% had a 
negative effect on hydrogen evolution and decreased the H2 yield to 
0.224 mol kg− 1. These experimental results suggest interacting effects 
between the levels of the combined severity factor and feedstock-to- 
suspension ratio process parameters. 

Fig. 6a illustrates the HTC gas yield by components as a function of 
the CSF. The HTC biogas contains mainly carbon dioxide at low reaction 
severities (CSF <0). The yield of other gas components (H2, CH4, CO, 
C2H4, C2H6) remains low (<0.13 mol kg− 1) at negative CSF experi-
mental conditions. Harsher severity conditions (CSF ⩾1.5) result in a 

Fig. 6. The effects of HTC process parameters on (a) gas formation, (b) green hydrogen yield, (c) carbon dioxide yield, and (d) carbon- and hydrogen gasification 
efficiencies. 
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substantially increased biogas formation. Exponential growth is 
observed in the total gas yield between 1.0 and 2.5 combined severity 
factors. Fig. 6b shows that hydrogen formation outsets above 0.75 se-
verities and the H2 evolution intensifies above 1.50 CSF. Converting the 
biomass feedstock at positive CSF conditions decrease the mole fraction 
of CO2 in the produced gas mixture; however, the yield of CO2 increases 
significantly from 0.33 mol kg− 1 (CSF = − 1, FSR  = 12.5 wt.%) to 8.76 
mol kg− 1 (CSF  = 2.5, FSR  = 12.5 wt.%). It is obtained that the mole 
fraction of CO increases within the gas mixture when the combined 
severity factor is raised above 0. 

Figs. 6b and 6c demonstrate that the concentration of microalgae is a 
determinant factor in HTC gas formation. Elevated hydrogen yield 
(YH2 > 2.5 mol kg− 1) can be achieved by applying 10 wt.% ⩽ FSR ⩽12 
wt.% at CSF  = 2.5 reaction conditions. In the case of more dilute 
feedstock suspensions (FSR <10 wt.%), the combined severity factor 
oughts to be increased (CSF >2.8) to maintain elevated hydrogen yield 
(3 mol kg− 1). More dilute suspensions contain less transformable 
organic feedstock; thus, the reaction severity needs to be augmented to 
enhance and maintain the formation of more volatile compounds. The 
need for higher combined severities in the case of dilute suspensions 
elevates resource use (e.g., heat or the amount of formic acid) that could 
potentially impact the economics and environmental performance of the 
acid-mediated hydrothermal conversion. For this reason, the scale-up of 
acid-mediated HTC is subjected to taking into consideration the strong 
interaction between CSF and FSR factors to determine optimal working 
conditions for enhanced gas production. Farobie et al. (2021) reported 
H2 yields between 1.70 mol kg− 1 and 9.34 mol kg− 1 by converting 
Chlorella vulgaris microalgae at 405 ◦C and 550 ◦C via hydrothermal 
gasification. The maximum hydrogen yield achieved by the formic acid- 
mediated hydrothermal carbonisation of Chlorella vulgaris is 3.04 mol 
kg− 1 at a CSF of 2.43 and 12.5 wt.% feedstock concentration levels. This 
result demonstrates that the homogeneously catalysed hydrothermal 
carbonisation process is capable of providing similar hydrogen evolu-
tion compared to other high-temperature thermochemical conversion 
methods with potential energy-saving benefits due to the applied lower 
HTC temperature regimes (Tr < 250 ◦C). 

The carbon and hydrogen gasification efficiencies are illustrated in 
Fig. 6d. The results show that elevated CSF levels positively affect both 
indicators. The CGI is increased by one order of magnitude from 0.0020 
to 0.0693 when the CSF is raised from − 1 to 2.5. The hydrogen for-
mation is more significant within the mentioned CSF interval, and the 
value of HGE is augmented from 0.0008 to 0.0747. Gasification effi-
ciencies are improved significantly above CSF = 1.5. Combining high 
combined severity factors (CSF >2.0) with lower feedstock concentra-
tion (FSR <15.0 wt.%) increases the CO2 yield (Fig. 6c). It is obtained 
that the CO2 yield of the HTC process ranges from 0.36 mol kg− 1 to 9.63 
mol kg− 1. Despite the relatively high CO2 yields at elevated severity 
conditions (CSF >2.0), the carbon gasification efficiency remains below 
0.10. This value indicates that at higher HTC severities (2.0 < CSF <3.0), 
hydrochar formation is combined with elevated gaseous co-product 
evolution. Chen et al. (2022) applied a batch reactor to gasify sewage 
sludge at 550–750 ◦C and obtained CO2 yields between 6.50 mol kg− 1 

and 12.90 mol kg− 1. Raheem et al. (2021) obtained CO2 yields between 
2.5 mol kg− 1 and 3.5 mol kg− 1 by converting Chlorella vulgaris via cat-
alytic and non-catalytic gasification. These values indicate that the CO2 
yield of formic acid-assisted hydrothermal carbonisation is in the similar 
range as reported in the case of other thermochemical technologies and 
feedstock types, making the HTC process an attractive alternative for the 
conversion of dilute aquatic biomass as is microalgae. The co-production 
of H2 and CO2 is beneficial considering subsequent valorisation routes, 
such as Power-to-X applications. The hydrothermal carbonisation pro-
cess is typically carried out at moderate temperature levels (i.e. 
<250 ◦C) compared to other thermochemical processes (e.g., pyrolysis 
(350–550 ◦C), atmospheric gasification (700–900 ◦C), supercritical 
water gasification (450–800 ◦C)). Applying low-temperature levels 
during the conversion of biogenic feedstocks can be translated into 

lower energy demands and opens possibilities for various waste heat 
integration scenarios. A technical report prepared by ECRA (2016) 
indicated that the hydrothermal carbonisation process could offer sub-
stantial energy savings for treating high-moisture-containing biogenic 
wastes in cement plants. The acid-assisted hydrothermal carbonisation 
could be suitably integrated into already installed conventional pro-
duction lines to lower environmental impacts via waste heat utilisation 
and thermal energy substitution with alternative fuels (Nhuchhen et al., 
2021), such as stable hydrochars with a long shelf life. The elevated total 
gas yield and H2 mole fraction during the hydrothermal carbonisation of 
Chlorella vulgaris offer an alternative solution to co-produce a green H2- 
rich synthesis gas mixture and hydrochar, providing an additional layer 
to tackle the transition towards net zero emissions. 

4. Conclusions 

In this study, an alternative biomass-to-green hydrogen synthesis 
scenario is examined using acid-mediated hydrothermal carbonisation 
(HTC). The hydrogen and total HTC gas production is enhanced signif-
icantly and modelled along with the formation and characteristics of 
hydrochar and HTC liquid using the toolsets of machine learning. 
Harsher combined severity conditions (CSR >1.5) increase the evolution 
of H2, CO2 and CO. It is determined that there is an interaction between 
the combined severity factor and feedstock-to-suspension ratio param-
eters that influences the formation of HTC products. The production of 
H2 at moderate reaction conditions offers energy-saving benefits over 
high-temperature thermochemical conversion methods. 
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