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Abstract

In his essay Science as a Vocation, Max Weber took the essence of scientific activities 
to consist in specialisation and enthusiasm. His arguments, together with works by 
Michael Polanyi (Mihály Polányi) and others, are explored and compared with re-
cent results and expectations of automatised, artificial-intelligence-driven scientific 
discovery. Our aim is to show that artificial intelligence systems (AI systems) – while 
they can evidently and effectively support everyday scientific activities as useful 
tools – are not, in themselves, able to produce genuine invention, are not suitable for 
breakthrough scientific discovery. And this limitation, we argue, is due to AI systems’ 
inability for specialisation and their lack of enthusiasm. Our observation is that while 
selection by intrinsic interest is unavoidable and an essential part of science, this in-
terest is unquantifiable and unmetrisable by an objective function, therefore cannot 
be learned by an AI system. We conclude that being a scientist full of passion and 
with the ability of selection remains humans’ intellectual privilege.
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I. INTRODUCTION

In February 1996 the reigning world chess champion Garry Kasparov was de-
feated by the IBM computer Deep Blue. Although Deep Blue controlled the 
white pieces, and right after that game Kasparov won the next game, and was 
the overall winner of the six-game chess match (Kasparov versus Deep Blue: 
4–2), this date still marks an unusual technological achievement: this was the 
first win of an artificial-intelligence-driven system (AI system) over the high-
est-ranked human specialist in a specific field of expertise. One year later Deep 
Blue defeated Kasparov 3.5–2.5 in another six-game chess match.
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Almost exactly 20 years later, in March 2016, Lee Sedol, one of the greatest 
players of Go, a highly complex strategy board game popular in East-Asia, was 
defeated by Google’s AlphaGo software. Go has far more variations than chess, 
and strategies are more complicated (Bouzy 2001), therefore this win is another 
important milestone in the development of artificial intelligence. The event was 
selected as one of the scientific breakthroughs of the year 2016 by Science Mag-
azine.1 And the momentum was unstoppable: in less than one year, AI software 
defeated over 100% of the best poker players in several poker tournaments. Why 
are these developments so interesting? While chess and Go are called games 
with complete information – that is, players possess full information about their 
opponents and their potential (straightforward or surprising) actions – poker is 
clearly a game with incomplete information. The possibility of bluffing makes 
a poker game somewhat independent of the consequences of previous steps, it 
liberates players from the restrictions of logic, therefore opponents need to study 
not only combinations and strategies – beside learning game rules, computers 
must also learn the behaviour and attitude of other players (Moravčík 2017).

Besides board and card games, it was a natural next step to compare humans 
and AI systems in other fields as well. In this paper we intend to study how the 
rapid development of AI may impact on human scientific activity, science as a vo-
cation: more specifically, the potential automatisation and algorithmisation of sci-
entific discovery.2 Some are sceptical about such impact. Others are warning the 
sceptic: it may be prudent to reassess doubts given that Kasparov and Sedol were 
also antecedently doubtful as to whether an AI system could beat them. For ex-
ample, Nobel laureate scientist Wilczek (2016) (among others) strongly believes 
that scientific discovery will soon be fully automatised. According to Wilczek and 
other scientists (see e.g. Kitano 2016) it is a realistic scenario that an AI system will 
be the best physicist and will be able to win the Nobel Prize in the near future.

Attempts to find scientific achievements through automated discovery have a 
long history during which tools and concepts have significantly evolved. In this 
paper the label “AI system” is taken to encompass earlier serial-computation 
approaches as well as more recent machine learning approaches, genetic algo-
rithm based methods, or their fusion (for an overview of these methods and their 
history see Alai 2004). We will call all these AI systems without differentiating 
among them, because we believe that there are two significant common attrib-
utes to all of these methods: their data-driven approach and their algorithmic, 
procedural nature. Regardless of the method and tool, artificial intelligence re-
quires data – a large amount of training data in which it can find typical patterns 

1  Besides gravitational waves and customised proteins, see Science 354. 1518–1523.
2  Throughout the paper notions like “algorithm” and “computer” are used in the usual 

manner for software and hardware tools developed for determined computation executed 
in a finite number of steps. However, we note here that illuminating discussion about these 
notions is now under way in the literature, see e.g. Rapaport 2018.
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and correlations. And this is done by a procedure, an algorithm, even in the case 
of the most sophisticated neural network methods. 

One may ask whether scientific discovery or even the scientific description of 
the world can have a substantially different path than what we have experienced 
throughout the history of science. We cannot answer this question here, but the 
fact remains that no alternative approach has been envisioned so far: all the at-
tempts at automatised scientific discovery follow our classical path and a poten-
tial new, uncharted path may well diverge considerably from what we now call 
science and knowledge. Nevertheless, our discussion remains in the classical 
framework: we consider scientific discovery and science as an enterprise whose 
results were, over many centuries, produced by human scientists.3 

In this paper we intend to point out those substantial aspects of scientific dis-
covery that make the personal involvement of human scientists inevitable, and 
consequently make the replacement of scientists by computer algorithms and 
artificial intelligence in the scientific process highly doubtful. Our arguments 
will extensively rely on Max Weber’s stance, who saw the essence of scientific 
activities in specialisation and enthusiasm (Weber 1946). These key notions will 
be analysed in our study from the perspective of AI-driven scientific discov-
ery. We aim to show that AI systems – while they can evidently and effectively 
support everyday scientific activities as useful tools – are not, in themselves, 
able to produce genuine invention, are not suitable for breakthrough scientific 
discovery. And this limitation, we argue, is due to AI systems’ inability for spe-
cialisation and their lack of enthusiasm.4

One may think that specialisation cannot be an obstacle to AI in terms of 
automatised scientific discovery: for the computational and learning capacity of 
these algorithms can easily be focused on an arbitrary narrow field. However, as 
we will show, from a theoretical point of view, the specialisation requirement 
yields an insurmountable problem for artificial intelligence. Enthusiasm, as we 
will also point out, raises an even more difficult issue. 

We put special emphasis on the enthusiasm-filled moment that anticipates 
scientific work. Max Weber writes about this moment as follows:

Yet it is a fact that no amount of such enthusiasm, however sincere and profound it 
may be, can compel a problem to yield scientific results. Certainly enthusiasm is a 
prerequisite of the “inspiration” which is decisive. Nowadays in circles of youth there 
is a widespread notion that science has become a problem in calculation, fabricated 

3  This view also gives credibility to the thoughts of scientists from past centuries about 
science and scientific discovery, even if automatised scientific discovery was not an issue, or 
it was technically less developed in their time. 

4  From a Kuhnian perspective: artificial intelligence is able to support “normal science” 
through day-to-day experimental studies, but it cannot discover results forcing a paradigm 
shift.
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in laboratories or statistical filing systems just as “in a factory”, a calculation involving 
only the cool intellect and not one’s “heart and soul”. First of all one must say that 
such comments lack all clarity about what goes on in a factory or in a laboratory. In 
both some idea has to occur to someone’s mind, and it has to be a correct idea, if one 
is to accomplish anything worthwhile. And such intuition cannot be forced. It has 
nothing to do with any cold calculation. (Weber 1946. 135)

This – in our view, essential – moment, the birth of the first idea, the exciting 
promise of the discovery, the moment of entering the force field of the problem, 
I will call – applying a physical metaphor – the gravity of invention.

II. AI-DRIVEN SCIENTIFIC DISCOVERY – INABILITY  

FOR SPECIALISATION

 
The first research result about an AI system engaging in scientific discovery was 
published by Pat Langley and his colleagues (Langley et al. 1987). In this study 
an AI system was programmed by the research team to explore new scientific 
results based on a data set. In their groundbreaking study the most interesting 
aspect is the history-oriented approach, which, to some extent, already predis-
poses it towards verifying a preconceived outcome: during the training period, 
data fed into the AI system was selected from a certain historical period of science. 
Physical and chemical observations and laws known around the 17th and 18th cen-
turies were learned by the system. Based on these data, the AI system “discov-
ered” now well-known, but at-the-time new scientific results such as Ohm’s law, 
Kepler’s third law of planetary motion, and various chemical reactions.

However, besides these apparently successful outcomes the computer also 
“discovered” superseded scientific theories such as the phlogiston theory mis-
takenly put forth to explain oxidation. Moreover, other outcomes were true but 
totally uninteresting from a scientific point of view. Note here that those re-
sults, such as Kepler’s law, discovered by the AI system, can be deduced (and 
in fact have been subsequently discovered by Kepler) by systematically track-
ing the available observational data over a long period of time. In other words, 
systematic computational work on observational data can readily lead us to this 
discovery. The phrase “systematic” is used here as the opposite of “heuristic”, 
following a distinction drawn by Michael Polanyi:

The difference between the two kinds of problem solving, the systematic and the heu-
ristic, reappears in the fact that while a systematic operation is a wholly deliberate act, 
a heuristic process is a combination of active and passive stages. A deliberate heuristic 
activity is performed during the stage of Preparation. If this is followed by a period of In-
cubation, nothing is done and nothing happens on the level of consciousness during this 
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time. The advent of a happy thought (whether following immediately from Preparation 
or only after an interval of Incubation) is the fruit of the investigator’s earlier efforts, but 
not in itself an action on his part; it just happens to him. And again, the testing of the 
“happy thought” by a former process of Verification is another deliberate action of the 
investigator. Even so, the decisive act of discovery must have occurred before this, at 
the moment when the happy thought emerged. (Polanyi 1974. 134)

A scientific discovery is called systematic if the final result is reached by a series 
of intentional, algorithm-based steps, even if these steps are very complicated. 
By contrast, the discovery is heuristic if – beside the above mentioned steps – it 
is based on one or more unanticipated, unenforceable moments, which cannot be 
explained as a simple logical consequence of preceding steps. These are the mo-
ments of Weberian inspiration, the moment when a – perhaps brilliant – thought 
arises. For example, contrary to Kepler’s law, the thought of the heliocentric sys-
tem by Copernicus cannot be the outcome of a systematic discovery, since obser-
vational data available given that era’s level of accuracy provided stronger support 
for the Ptolemaic system. Analogously, the theory of general relativity by Einstein 
cannot be algorithmically derived from the observational data of that age – it was 
experimentally proven only decades after the publication. Since every result the 
AI system can produce is inherently based on the analysis of available observa-
tional data, it can yield systematic scientific discovery, but we claim that brilliant 
heuristic moments and thoughts lie outside the repertoire of an AI system.

One may think that even if we cannot expect from AI systems groundbreak-
ing discoveries in the natural sciences or mathematics (discoveries that require 
the power of a compelling paradigm change), many useful and interesting results 
in a specialised narrow subfield may still be gleaned by an AI system. And this 
leads us to the question of specialisation, whose importance was also empha-
sised by Weber. But specialisation certainly involves selection: scientists have 
to select among topics, within the given topic they have to select among related 
theorems, laws, data which are to be learned, improved or further developed. 
Moreover, one even has to select among the potentially solvable problems and 
among the provable theorems. Selection is unavoidable due to our limited re-
sources, but there is an even more important aspect: the intrinsic interest of the 
problem. It is worth citing Michael Polanyi again on this:

An affirmation will be acceptable as part of science, and will be the more valuable to 
science, the more it possesses: (1) certainty (accuracy) (2) systematic relevance (pro-
fundity) (3) intrinsic interest. (Polanyi 1974. 143)

While (1) and (2) sound natural requirements in the realm of scientific inquiry, 
(3) is a property that is difficult to make precise, yet it is of central importance. 
We clearly have no exact tools or algorithms or conditions to evaluate effectively 
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the level of interest of a scientific statement. No one can assess based on exact 
criteria what theorem or law is more interesting (or will be in the future) than 
another statement of physics, chemistry or mathematics. Having said that, se-
lection by intrinsic interest looks not only unavoidable, but also essential. It is 
evident that our (human or articifical) intellectual capacity is restricted in terms 
of time and computational power, therefore it is highly beneficial to focus this 
capacity on problems which may yield higher “gains”, and can improve our sci-
entific knowledge in a more effective way. The higher the intrinsic interest of a 
problem, the stronger its gravity of invention. Stronger gravity can also affect, in-
fluence more scientists. We provide some examples for such an interest arising 
among mathematicians because – compared to the natural sciences – mathemat-
ics is a field where scientists can formulate new valid statements in a relatively 
easy way, thus in relatively large numbers. 

Since mathematics is a cumulative, aggregate field of science, whenever a state-
ment is correctly proved, it will be part of mathematics forever. The so-called 
Ulam’s dilemma (Ulam 1976) describes the ever-more-complex situation as fol-
lows: in mathematics (and partly in theoretical physics) we have discovered so 
many theorems, and scientists extend this list daily by such a vast amount of valid 
statements, that nobody is able to overview the entire field, only some sufficiently 
small subfield.5 The only solution to this dilemma is specialisation, also encour-
aged by Weber. Specialisation means selection: selection among theorems, among 
subfields, among problems. This selection, however, is not a drawback, not a re-
striction, not a systemic limitation, contrary to how one may view it at first glance. 
Selection is the essence of scientific discovery. It is worth citing here one of the 
greatest mathematicians of the 19th and 20th centuries, Henri Poincaré:6 

What, in fact, is mathematical discovery? It does not consist in making new com-
binations with mathematical entities that are already known. That can be done by 
anyone [even a computer – M.H.], and the combinations that could be so formed would 
be infinite in number, and the greater part of them would be absolutely devoid of 
interest. Discovery consists precisely in not constructing useless combination, but in 
constructing those that are useful, which are an infinitely small minority. Discovery is 
discerment, selection. (Poincaré 2009. 50)

5  In his book, Stanislaw Ulam estimated the number of yearly published mathematical the-
orems around 200 000 – and this number evidently further increased (probably exponentially) 
in recent decades.

6  In the original version: “Qu’est-ce, en effet, que l’invention mathématique? Elle ne con-
siste pas à faire de nouvelles combinaisons avec des êtres mathématiques déjà connus. Cela, 
n’importe qui pourrait le faire, mais les combinaisons que l’on pourrait former ainsi seraient 
en nombre infini, et le plus grand nombre serait absolument dépourvu d’intérêt. Inventer, 
cela consiste précisément à ne pas construire les combinaisons inutiles et à construire celles 
qui sont utiles et qui ne sont qu’une intime minorité. Inventer, c’est discerner, c’est choisir.” 
(Poincaré 1912. 48)
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Invention thus practically amounts to selection when done well, and well in 
time. But such selection cannot be algorithmisable, since it is not a mechanically 
scientific, but rather a meta-mathematical selection. If we start from an axiomat-
ic system, say, the Peano-axioms of natural numbers, then human as well as arti-
ficial intelligence can prove many valid statements, for example, that there is an 
infinite number of primes; and can falsify many other untrue statements, such as 
there is no even prime. Moreover, artificial intelligence can evidently “produce” 
many more valid theorems and can falsify many more untrue statements in a 
given period of time than human scientists can. However, as Karl Popper7 (1950) 
also points out, computers have no instruments or algorithms to draw a distinc-
tion between what are – in our view – interesting, thought-provoking, ingenious 
statements and statements which are totally uninteresting (although true). A very 
simple, yet convincing example of Popper’s can further illuminate this problem 
and make it plausible: besides the statement 2 + 1 = 3, a computer will find in-
finitely many statements like 2 + 1 ≠ 4; 2 + 1 ≠ 5… and further statements like  
2 + 1 ≠ 3 + 1; 2 + 1 ≠ 4 + 1, all arrived at based on the same set of starting axioms. 
For each substantial, interesting statement an AI system systematically gener-
ates infinitely many uninteresting yet valid statements.8 Overall, the probabil-
ity of observing the few promising ideas worth further investigation among the 
many-many uninteresting statements by the computer is very close to zero. 

III. AI-DRIVEN SCIENTIFIC DISCOVERY – LACK OF ENTHUSIASM

As we have already mentioned, besides the ability, instinct and delight of spe-
cialisation, Max Weber has seen the substance of scientific activities in enthu-
siasm. What does enthusiasm – or lack thereof – mean in terms of science as a 
vocation? When engagement with a problem is externally driven (a typical ex-
ample for most of us is solving a task provided by the teacher in a mathematics 
class) then one can feel the sense of duty or competition, the wish to surmount 
the hurdles related to the problem, but the extrinsic nature of motivation de-
prives us of feeling passion and enthusiasm. By contrast, if the motivation for 
solving the problem comes from an intrinsic interest, if an unforced and unforce-

7  “A calculator may be able, for example, to produce proofs of mathematical theorems. It 
may distinguish theorems from nontheorems, true statements from false statements. But it 
will not distinguish ingenious proofs and interesting theorems from dull and uninteresting 
ones. It will thus ‘know’ too much — far too much that is without any interest.” (Popper 
1950. 194)

8  Although it is not well defined what we mean by “interesting” and “uninteresting” re-
sults, mathematicians have a surprisingly well-functioning common intuition in judging the 
value of propositions. Overall this leads to the question of (un)metrisability of scientific inter-
est, which we will discuss in the last section.
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able seed of idea emerged in our head, then we will engage this problem with 
personal commitment, passion and enthusiasm. 

In his famous book Proofs and Refutations, Imre Lakatos (1976) studied and 
demonstrated through several examples how a (mathematical) problem and in-
vention may arise, among which here we briefly refer to one typical scenario.

Suppose that – as a beginner in maths – we study divisibility of numbers and 
we observe that every number whose last digit is 2 (such as 12, 22, 32 etc.) is di-
visible by 2. Meanwhile numbers whose last digit is 3 are not always divisible by 
3 (for example 63 is divisible by 3, but 13 is not divisible). We find it interesting 
that there are numbers analogous to 2, for example numbers whose last digit(s) 
is 5 (or 10 or 25) are always divisible by 5 (or 10 or 25), call these last-divisible 
numbers. Meanwhile we find several numbers in the other class as well: for ex-
ample 24 is divisible by 4, but 14 is not. Now we are right in the middle of the 
field of gravity of the problem, the gravity of invention, and the data we collect-
ed (last-divisible examples are 2, 5, 10, 25, 50, 100…) make the heuristic idea 
clear: all the last-divisible numbers are products of powers of 2 and 5, possibly 
including powers with exponent 0 (note, however, that not all numbers that are 
such products are last-divisible, for example, 54 isn’t while 53 is). This is far from 
a rigorous proof, but the rest is simply a mechanical computation for formulating 
and justifying the precise statement.9 

In the example described above and in many other examples Lakatos has pre-
sented (in a much more detailed form in his book), he describes the athmosphere 
of raising a problem and finding a heuristic solution. Here we intend to focus 
on one important aspect of this process: assuming an underlying principle in the 
collected examples and counterexamples, based on which one can heuristically 
create a conjecture is of utmost importance. The key moment is the percep-
tion of the first couple of aspects of the pattern, the excitement of foreseeing 
the potential existence of some (ir)regularity. This excitement is not about the 
foreseen result, but about the promise of an interesting result. It is the gravity of 
invention, the engagement of the scientist in the field of gravity of the problem. 
The first perception about the number 2 is not specifically exciting, but the 
moment of understanding that another number (3) works differently than 2 may 
put our mathematical thinking in action. Anticipating the promise of success, 
we try to find new examples and counterexamples. Finding these data it can 
happen that the problem turns out to be too simple, too trivial, or uninteresting. 
But it can also happen that the intrinsic interest of the problem drives us into a 
new field and activates our heuristic problem-solving abilities.

9  The theorem in its final form is as follows: a number  is last-divisible if and only if 

, where  and .
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Note that the first moment, the promise of a future fruitful cogitation is, in 
fact, not part of the heuristic problem-solving process. It is a “preheuristic” 
flash, yet it is essential in terms of mathematical discovery and in general in 
scientific vocation.

The start of gravity of invention, the passion of thinking, the way how the 
scientist is getting engaged by the problem, is unexplainable, unenforceable, 
and, more importantly, unpredictable. It cannot be foreseen, cannot be meas-
ured (as we will see soon in some detail). And overall this foreshadows that an 
AI system, evidently driven by external forces (i.e. programmers) when studying 
chess, making stock market transactions or proving geometric theorems, can-
not be programmed for this central passion, for the enthusiasm towards science. 
Some aspects of this discussion ultimately lead us to the most fundamental 
questions of artificial intelligence, notably issues having to do with what it takes 
for a system to have mental states, and more specifically, mental states of the 
sort that can underpin goals, motivation. These questions are beyond the scope 
of this paper, but even if we suppose that future AI systems can have mental 
states, these states (and the change of them) are outcomes of a causal process, 
externally driven (by the programmer and partly by the input data). Therefore it 
is entirely unclear if and how enthusiasm and passion of thinking is achievable 
by artifical intelligence systems.

There is no doubt that computers, without any passion or enthusiasm, can in-
deed find interesting results in some fields of science. For example, the AI-driv-
en computer called “Eve” has been searching and finding effective pharmaceu-
tical components, carrying out a vast number of trials (see King 2018). A further 
recent example for this type of discovery is from the field of material science, 
reported by Tshitoyan (2019) and Kauwe (2020). AI systems can discover new 
materials or new properties of old materials, but only following the typical pat-
terns of an extremely large training data set of information. However, if we are 
seeking to discover something atypical, a kind of material which achieves its 
extraordinary properties by leveraging a new mechanism that is not common in 
the training data set, it will be unlikely to identify it through AI-driven discovery 
(c.f. Kauwe 2020). Atypical discovery always needs heuristic impulse and vision. 
The following sentences from Michael Polanyi clearly demarcate the barriers:

The heuristic impulse links our appreciation of scientific value to a vision of reality, 
which serves as a guide to enquiry. Heuristic passion is also the mainspring of origi-
nality. (Polanyi 1974. 169)

Automatic scientific discovery without enthusiasm can only happen through a 
great number of trials, through following or finding typical patterns. Without 
heuristic impulse there is no chance of realising and evaluating the potential 
value of a future discovery which may come from a certain direction of research. 
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Even if a significant discovery is found by an AI system, it is not necessarily able 
to realise its importance.

The scientist is not cold and unemotional during research, not even at the 
beginning, at the preheuristic moment of involvement. As, following Heidegger 
and Gadamer, István Fehér M. (2017. 15) formulated this succintly, the scientist 
always has a – positively considered – prejudice:10 

…with regard to the type of interpretation that is directed at texts, in most cases it 
is illusory to refer to what “stands there” in the text as decisive evidence. For what 
is first and foremost “there” – provided there is any sense in speaking of “standing 
there” – is not so much the text itself, but rather “the self-evident, undisputed pre-
liminary prejudice [Vormeinung] of the interpreter”.

We can extend this approach to non-textual (visual or machine-based) sources of 
scientific information as well: there is no decisive, original meaning of pictures, 
figures, graphs, equations, data, and software output. What exists is a meaning 
interpreted by the scientist who studies that source, and this meaning is filtered 
and fertilised through the preliminary prejudice [Vormeinung], and positively 
considered preconception [Vorurteil] of the scientist. An AI system does not pos-
sess and cannot be equipped with such a preconception and prejudice: comput-
ers can treat only the information “standing there” technically or syntatically 
without any relationship to the source of information, without any preliminary 
opinion, because these are all beyond (or rather before) the pure binary infor-
mation. It is as yet entirely unclear how to equip an AI system with more about 
the subject matter of investigation than the pure binary data we have provided. 
Let’s compare this to Polanyi’s words:

To see a problem is to see something hidden that may yet be accessible. The know
ledge of a problem is, therefore, like the knowing of unspecifiables, a knowing of 
more than you can tell. But our awareness of unspecifiable things, whether of particu-
lars or of the coherence of particulars, is intensified here to an exciting intimation of 
their hidden presence. It is an engrossing possession of incipient knowledge which 
passionately strives to validate itself. Such is the heuristic power of a problem. (Po-
lanyi 1961. 466)

Note that knowing the problem is not the same as knowing the solution to the 
problem. To know problems, or even to feel problems requires the recognition 
of their hidden presence, and the excitement of this recognition, the possibility 
of invention is gravitating us to the search for a solution to the problem and 
to the application of heuristics. The latter, that is to say, our attempt to solve 

10  In this paragraph the author refers to Heidegger (1962. 141).
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the problem, may or may not succeed, but the gravitational attraction already 
mentioned will trigger the process. Mathematics uses one concise word for all 
of this: conjecture. The mathematical conjecture is preconceived knowledge, 
prejudice, similar to what is discussed in Gadamer’s legal example (Gadamer 
2004. 194) as a preconceived judgement: something I think about the thing be-
fore I know the thing, which can be verified or falsified by subsequent careful 
examination.

The AI system tries to grasp the problem without prejudice, with the ques-
tion “what is that?,” while we begin to engage the problem because it already 
means something to us, so our question (according to Nietzsche) is: “what is that 
for me?”.11 With the question “what is that?” the computer searches for an ob-
jective constitution, an absolute meaning in all data. When evidently expecting 
two computers to analyze the same data to produce the same result, we actually 
discover and demonstrate limitations to artificial intelligence. Let’s quote Gad-
amer again: 

The paradox that is true of all traditionary material, namely of being one and the same 
and yet of being different, proves that all interpretation is, in fact, speculative. Hence 
hermeneutics has to see through the dogmatism of a “meaning-in-itself” in exact-
ly the same way critical philosophy has seen through the dogmatism of experience. 
(Gadamer 2004. 507)

The question “what is that for me?” can be answered differently even if two of 
us look at the same text, same data, same picture. Moreover, here, in addition 
to our semantic relation, the expression “means something to me” as it is used 
in everyday language, carries an emotional charge, and this emotional charge is 
the passion. Artificial intelligence is an attempt to realise the “meaning-in-it-
self” in the modern age, trying to ignore personal enthusiasm and passion. But 
passion-free invention cannot exist, and, for now this seems to remain a lasting 
if not eternal barrier to artificial intelligence.

11  See Nietzsche (1968. 301): “A ’thing-in-itself’ just as perverse as a ’sense-in-itself’, a 
’meaning-in-itself’. There are no ’facts-in-themselves’, for a sense must always be projected 
into them before there can be ’facts’. The question ’what is that?’ is an imposition of meaning 
from some other viewpoint. ’Essence’, the ’essential nature’, is something perspectival and 
already presupposes a multiplicity. At the bottom of it there always lies ’what is that for me?’ 
(for us, for all that lives, etc.)”.
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IV. SCIENTIFIC INTEREST IS UNQUANTIFIABLE

Finally, let us examine the reason for the apparent contradiction that while AI 
systems can beat top-ranked minds in the mental sports and games mentioned 
in the introduction, they cannot produce groundbreaking novelties in the field 
of scientific discovery.

In chess, various calculation methods that assign numerical values ​​to each 
piece and each step or position are well known (for example, according to clas-
sical piece value calculation, 1 unit is assigned to pawn, 3 to bishop, 5 to rook, 
9 to queen). The purpose of the computer is to find a step that optimises the 
cumulative value of the current position. It can be done by examining an easy-
to-construct mathematical tool, the so-called objective function, and to find its op-
timal value. A similar objective function – or in multi-criterion decision models, 
functions – can be defined in other games and in very different areas of the app
lication of artificial intelligence as well, such as automated stock trading, where 
the obvious objective function is the amount of profit.

The objective function (or functions) must clearly quantify which of the two 
situations or states is more valuable, that is, when we make a better choice, to 
which direction belongs more utility. However, in the light of the above men-
tioned problems, it seems that such an objective function cannot be defined in 
scientific discovery.

It is worth mentioning here the notion of utility measured by a given objec-
tive function (a certain type of objective function is also called a utility func-
tion), because when we apply it to science, to scientific discovery, it brings to 
mind Kant’s classical discussion of the conflict of faculties:12

…truth (the essential and first condition of learning in general) is the main thing, 
whereas the utility… is of secondary importance (Kant 1992. 7).

Of course, this allows that what is useful may be untrue (and vice versa); mean-
while, usefulness and utility cannot be the primary guiding principle for a theo-
retical researcher. As Mihály Vajda expresses in his commentary on Kant’s work 
above (Vajda 2016):

12  This text is especially relevant to our topic because we may well assume that Kant, had it 
existed at that time, would have classified the Information Technology (or simply IT) faculty 
as one of the higher-utility faculties, in contrast to the lower faculties such as Philosophy (and 
Mathematics), where the guiding principles are pure erudition, free choice of subject, and 
critical approach.
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I would like to hope that the university will continue to train not only smart pro-
fessionals but also a group of people who are carriers of something which is per se 
unreasonable, because it is useless… What can be contrasted with utility is a kind of 
irrationality: a world where the useless – beauty and tranquility – (also) reigns.

Scientists may choose a direction which is (at a given moment) seemingly use-
less, if they find this direction interesting. Moreover, accoding to Vajda’s com-
mentary, this – perhaps unreasonable – moment showcases the freedom and 
beauty of pure science.

Are we able to algorithmise and measure the motivation behind the drivers of 
what may seem like an unreasonable, useless choice? Recent scientific experi-
ments show that we are powerless in this matter. Let us examine what happens 
when someone tries to define an “objective function of intrinsic interest”, that 
is a metric stimulating and measuring the curiosity of an AI system based on the 
novelty of information or the amount of information obtained per unit of time.

In a recent experimental study (Burda 2018), authors found that the most 
interesting series of events (that is to say: the series providing the most interest-
ing information defined by the objective function of intrinsic interest) to the AI 
system as it “watches” television is the continuous, instantaneous switching of 
channels, or even the black-and-white noise of the television (when there is no 
broadcasting), since the information per pixel changes the most in these cases. 
If, ironically, the computer was playing computer games to arouse its interest, it 
was observed that the computer – after several wins – sometimes “intentionally” 
lost the game in order to see “GAME OVER” which was rarely shown, so it was 
interesting new information according to the objective function. The irrationali-
ty here also appears, but the algorithmic uselessness is a dead end.

The above anomalies also prove that we cannot as yet properly allocate value 
to the interest of a process, situation, or even to the interest of an unknown sci-
entific claim. While we can measure their information content in a technical and 
syntactic sense, we are unable to mathematise its semantic aspects, value, and 
intrinsic interest. Between stacked syllogisms, we are technically unable to set 
up a scale or order of values ​​that can be automatically calculated and verified. 
All this eventually results in the AI system being able to function as a “smart 
professional” in the sense of Vajda, but – in the absence of a proper objective 
function – the system will be incapable of decision and choice, in the sense of 
Poincaré. Thus it remains entirely unclear if and how fully automatised scientif-
ic discovery could be carried out. Consequently, being a scientist full of passion 
and with the ability of selection remains humans’ intellectual privilege.
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