(@) Comparison between mono and multi repository
AKADEMIAI KIADO structures

Ulvi Shakikhanli* and Vilmos Bilicki

Pollack Periodica e

An International Journal
for Engineering and
Information Sciences

Doctoral School of Computer Science, Faculty of Science and Informatics, University of Szeged,
Szeged, Hungary

Received: December 10, 2021 e Revised manuscript received: April 11, 2022 e Accepted: April 22, 2022
Published online: June 24, 2022

17 (2022) 3, 7-12

DOI:

10.1556/606.2022.00526 ABSTRACT
© 2022 The Author(s)

The comparison of Mono and Multi Repository structures is a highly debated topic in the software
development field. Despite the choice of repository structure is the first main step in development; so
far, this comparison has only been made on a small or local scale. Here, Mono and Multi Repository
structures have been compared from different aspects using thousands of projects.

First, an algorithm shared for collecting and identifying Mono and Multi Repository projects and

save them into the database. Database was used for making different comparisons for example the usage
ORIGINAL RESEARCH intensity of both structure types over time, the developer’s preference over structure type based on their
PAPER country and so on. Also, all these comparisons have been made according to the team size and

development period for each repository structure.

R

Check for
updates

KEYWORDS

mono/multi repository, repository structure, repository identification

1. INTRODUCTION

Development area and information technologies are improving every day. It is all too
common for developers to start coding an application without a formal architecture in place
[1]. In general, this creates some problems for developers and others in this field for example
sometimes certain things as the architecture of application can cause some confusion. It is
well known that software design and architectural patterns are general and reusable solutions
to the problems, like computer hardware performance limitations, high availability and
minimization of business risk [2]. For the sake of clarity, it can be stated that the architectural
pattern is a solution that is directed to elements of software architecture. However, there are
no patterns for managing the architecture of large projects at the repository level. There are
several Version Control Software Systems (VCSSs) and all of them have different charac-
teristics. Some of them are free (for example: Git, Fossil, Mercurial) and they support several
features that may be crucial during the version control process [3]. Beside this, several re-
pository structures have appeared since 2009 like Monorepo (also called Mono Repository),
Multirepo (also known as Multi Repository or Polyrepo); and the latest architecture, which
can be understood as a hybrid of the previous two is Metarepo (also called Meta Re-
pository) [4].

Choosing repository structure is the first step for development period and can be accepted
as the foundation of whole project. Since each repository structure has its own features this
choice is highly crucial.

*Corresponding author. Based on the research it has become clear that some of the big companies choose different
E-mail: ulvi@inf.u-szeged.hu approaches for their own software projects. In some cases the reason for them choosing a
certain repository structure depends on the type of culture they prefer. For instance, Netflix
uses the Multi Repository architecture because of its culture called “freedom and re-
’j Journals sponsibility” [5]. There are also other big companies that prefer the Mono Repository

Brought to you by MTA Kdnyvtar és Informaciés Kézpont olvasok | Unauthenticated | Downloaded 10/25/22 08:33 AM UTC

https://orcid.org/0000-0002-7793-2661
https://doi.org/10.1556/606.2022.00526
mailto:ulvi@inf.u-szeged.hu

Pollack Periodica 17 (2022) 3, 7-12

approach like Microsoft and it also can be stated that its
repository is one of the biggest one [6].

The precise definition of Mono and Multi Repository
projects is hotly debated but simple definitions will be
provided by using current blogs and some academic papers
written in this area.

The Mono Repository (Monorepo or Single Repository)
is a type of source control pattern where all the components
and sections of source code are kept in one repository. And
the Multi Repository pattern manages all the packages and
source code components in several repositories [7].

There are two key differences between this paper and the
others. First of all the comparison was made from different
perspectives that are not properly covered or sometimes not
even mentioned in the literature. The second, the compari-
sons did not done on a basis of projects of some specific
company or group of developers. The database [8] was
created by us and it contains projects gathered from all over
the world. These projects vary from small one developer
start-up projects to big commercial ones and it allows us to
make a comparison on a much bigger scale than has never
been attempted before.

Several questions prepared to make comparisons more
understandable and they will be stated later on.

2. METHODOLOGY

This chapter presents research methodology, the key ques-
tions, algorithm and approaches used in the study.

2.1. Research questions

The main aim of this paper is to compare two basic re-
pository structures and verify them according to the
different measures. In order to make the paper clearer and
more understandable, the following five questions were
defined:

e RQ #1. How does the literature compare the Mono/Multi
Repository structure?

e RQ #2. What is the usage intensity of the Mono and Multi
Repository approaches?

e RQ #3. Is there any relationship between the developer’s
country and their choice of repo structure?

o RQ #4. What is the connection between the team size and
repository structure?

® RQ #5. What is the connection between the development
period and repository structure?

2.2. Literature review

Unfortunately, there is a shortage of academic studies that
make a comparison between Mono and Multi Repository
structures. This is why using the Multivocal Literature Re-
view (MLR) was preferred to get the same basic under-
standing [9]. Therefore, it means that mostly different blogs
were used and posts for the literature review. First, let us see

Brought to you by MTA Kdnyvtar és Informaciés Kézpont olvasok | Unauthenticated | Downloaded 10/25/22 08:33 AM UTC

what the literature says about the definition of Mono and
Multi Repository systems.

The Mono Repository (Monorepo or Single Repository)
is a type of source control pattern where all the components
and sections of source code are kept in one repository. In
contrast, the Multi Repository pattern manages all packages
and source code components in several repositories [7].

2.2.1. Accessibility (visibility). The well-organized hierar-
chical structure is the main advantage of Mono Repository
structure [4]. In this case, it had to be assumed that all the
developers have access to all parts of the project (of course
this may not so depending on the company policy). The
Survey conducted among Google developers can shed light on
this case [10]. It told us that most developers greatly value the
visibility and access possibilities in different parts of the code,
but this is also possible in a Multi Repository approach. The
main reason for this is that developers can check the effect
and workflow of different components in the repository and
gain an overall understanding of the project this way. How-
ever, as it was shown in the survey, all of these benefits may
become drawbacks in some cases and create problems in the
Multi Repository architecture. One of these might be de-
pendency problems. In big companies like Google, the size of
Mono Repository projects may be enormous (e.g., 2 billion
lines of code) and changing one dependency in a project can
cause huge difficulties like the diamond dependency.

2.2.2. Testing for security and functionality. This may be
one of the best advantages of the Multi Repository structure.
Independent repositories allow isolated testing for module
security and functionality [11]. Nevertheless, with this type
of flexibility it also introduces complexity during version
control and this usually creates some drawbacks.

2.3. ldentifying and collecting Mono Repository
projects

Collecting Mono Repository projects is not as easy as the
Multi Repository one, so that is why it is going to be discussed
first. First, it had to be mentioned that the Github platform
was used as source of finding project. Github is a free version
control system, which contains millions of projects so it is
something like a gold mine for this type of software research.
Before dive in the steps of algorithm it had be mentioned that
in order to be able to compare the collected results and check
accuracy of algorithm. Several Mono and Multi Repository
projects have been collected from different resources to be
used as examples. Those projects were chosen according to
the definition of structure types.

The whole procedure of identifying and collecting Mono
Repository projects can be separated into three parts:

1. Get a list of possible users;
2. Check each repository of user;
3. Add newly founded projects to the database.

2.3.1. Get a list of possible users. Github Application Pro-
gramming Interface (API) can provide us with JavaScript

Pollack Periodica 17 (2022) 3, 7-12

Object Notation (JSON) documents. Those documents
contain several parameters of repositories. As it was
mentioned previously, Github has millions of users and it is
not possible just try to get any list of users. In this case, it is
needed to find those users that may have mono or multi
repository projects. There are also some additional steps for
user selection. Users are excluded from the list if it has no
repositories or repositories don’t belong any of the
structures.

2.3.2. Check each repository of a user. This section is about
how to identify Mono Repository projects in Github user
accounts.

In order to be able to understand this part the definition
of a mono repository project had to be remembered. Earlier
it was said that a Mono Repository project should contain all
parts of the project in one folder or repository.

An algorithm had to be constructed to define a re-
pository that is either a mono or not. The file structure of the
repository was used for this. The file structure is a list of
names of folders and files in a repository. These are folder
names and they may be listed like “Client, Server, Ul, Front,
Back, API, Frontend, and Backend”.

As it might be expected, these are names of folders,
which contain components of either the frontend or the
backend parts of the project.

The steps of algorithm are:

Step 1: Find the repository of the user;

Step 2: Collect the name of folders of the repository;
Step 3: Compare the collected folder names with the
previously defined list;

Step 4: Add the project to the database if there are any
matches.

Here it should be mentioned that Step 3 is the most
important part and it can be carried out in several ways
depending on the programming language and framework.

2.3.3. Add the newly founded project to the database. This
is the last step. Unique database has been created for this
research. There are several features of the repository that can be
added to the database depending on the requirement. In
addition, of course all these features can be obtained by the
Github API if the name of the repository and the user is known.

2.4, Identifying and collecting Multi Repository
projects

It had already been remarked that the collection and iden-
tification process of the mono and multi repository projects
is quite similar. Steps below show the shows the flow of
procedure.

1. Get a list of possible users;

2. Collect properties of each repository;

3. Match the repositories;

4. Add newly founded projects to the database.

The first step is almost the same so there is no need to
explain them again. Let us now go directly to the third step.

Brought to you by MTA Kdnyvtar és Informaciés Kézpont olvasok | Unauthenticated | Downloaded 10/25/22 08:33 AM UTC

2.4.1. Collect properties of each repository. As it had
already been said, one can get all the properties of repository
using the Github API. In this stage, a simple database will be
created for users and add all the repositories with their main
properties to this database. Main properties can be listed as
follow: name, created and finished date, database used and
so on.

2.4.2. Match the repositories. This stage is probably one of
the most difficult and time-consuming part of this study.
Therefore, after collecting all the repositories of a particular
user, there are two main questions:

e Ql: How frontend and backend repositories can be
identified and grouped?

e Q2: How to define which frontend and backend re-
positories belong to the same project?

The Machine Learning (ML) algorithm based on the file
structure of the repository provides the answer for the first
question. ML models trained based on thousands of re-
positories and it can define the type of repository with
almost 90% accuracy.

The repository sets which are demonstrated here can be
seen as rough sets [12]. So the answer of the second question
lies with classification. After the first stage, repositories
divided into two groups, the frontend and backend re-
positories. Repositories in those two groups have been
classified using K Nearest Neighbor (KNN) method based
on the name of the repository and content of the readme file.
After lots of tests and measurements, an accuracy score of
nearly 90% acquired. For a better understanding of this
stage, tests can be presented as follows:

The database contains several features of the repository
(“Name of repository”, “Created date”, etc.). The main idea
was to apply these features and make a classification based
on them. Since variations can be endless, it was extremely
hard to find the right features. In order to do this, several
approaches have been tried out and most of them aban-
doned. For reasons of space, results of those tests are pre-
sented in Table 1.

Table 2 shows us the list of abbreviations while Table 1
explaining results of tests. As it can be seen in Table 1, all
the important features were utilized in the database and the
success rate was reasonably low. In the second case,
“Readme” was removed, the result also fell with it, and of

Table 1. The success rate of different feature combinations

Used features Success rate

RN+L+F+ DT+ D+ ES +R 36%
RN + L + F +DT + D + FS 32%
RN +L+ F+ DT + D +R 48%
RN+L+F+D+R 48%
RN+ L+ F+R 52%
RN +L+R 56%
RN + R 89%
RN + L 28%
RN +L+F 24%

10

Pollack Periodica 17 (2022) 3, 7-12

Table 2. List of abbreviations

Name of feature Abbreviation of it

Repo Name RN
Language L
Framework F
Database type DT
Developers D
File structure ES
Readme R

course, it increased again when it included it. As it might be
expected, the number of combinations may be several
hundred. This is why there is no need to include all of them
here. The highest score was obtained when “Repository
Name” and “Readme” were used together. In this test, it was
nearly 89%, but depending on the test subject, it may plus or
minus five percent. The utility of the algorithm lies not only
in its accuracy, but also with it being most probably the only
algorithm and this may be one of the main steps for
matching front and backend repositories.

3. A COMPARISON OF THE MONO AND MULTI
REPOSITORY APPROACHES

This section answers to the questions RQ #2 - RQ #5 from
different aspects. In order to be able to get a better insight
specific group of projects that are called “Big Projects” were
used. For the sake of simplicity, these projects have been
classified in a 3-month development period and used 10
Mbytes of memory.

3.1. An intensity comparison of the repository
structure

Now, the usage level of the repository structure was
described over time from 2015 to 2021 and address RQ #2.
The whole database was utilized (including Big Projects) to
get better results. As it can be seen in Fig. 1, the multi re-
pository approach became popular from 2017.

The Multi Repository approach practically did not exist
in 2015 and it started to become popular and rival the Mono

in 2021

in ZOZOP%

in 2019 4

mmm Mono
. Multi

in 2018
in 2017 §
in 2016 4§

<= 2015

0 1000 2000 3000 4000 5000

Fig. 1. The usage level of repository structure by years

Brought to you by MTA Konyvtar és Informaciés Kézpont olvasék | Unauthenticated | Downloaded 10/25/22 08:33 AM UTC

Repository approach in 2018. Surprisingly, the Multi Re-
pository approach got a huge boost in 2019 and afterwards
the Mono Repository approach was never quite able to catch
up. Therefore, it means the Multi Repository approach is
much more popular than the Mono Repository one, but this
does not mean that there is no need to compare both
approaches.

3.1.1. A comparison of the developer countries and the
structure type. Firstly, Fig. 2 provides some rather inter-
esting results. It quickly gives us the answer to RQ #3. As it
can be seen, the Multi Repository approach is quite popular
in almost all the major countries but there are notable ex-
ceptions. For example, while the number of developers from
China is not only much bigger than the others, they also
have the highest percentage of Mono Repository choices.
Here, it can be observed that the choice of repository
structure is not just based on company policy but also on the
“programming culture” of the given country.

3.1.2. A comparison of the team size in Mono/Multi Re-
pository structures. The aim of this section is to answer RQ
#4. Before examining this comparison again there are a few
things, which need to be mentioned. In order to be able to
get good results the projects with fewer than five developers
were eliminated because this type of projects are mostly for
personal use and they do not have any real commercial
value.

The projects with a team size of between 5 and 10 de-
velopers were compared in Fig. 3. Here, the results indicate
that the Multi Repository approach has the upper hand.
Despite this, the share of Multi Repository projects starts to
decrease when the team size increases. Hence, it can be said

China
Australia f— .

France

India
UK . s Mono
1 Multi

Canada s I
Russia =
Germany j—
USA
Brazil

0 500 1000 1500 2000 2500 3000

Fig. 2. The countries of developers for each structure type

25-30 s Mono
mm Multi
20 -25
15-20
10-15
5-10
1-4
0 1000 2000 3000 4000 5000 6000

Fig. 3. A comparison of the team size

Pollack Periodica 17 (2022) 3, 7-12

that developer teams with a bigger size prefer to work on the
Mono Repository structure rather than the Multi one.

3.1.3. A comparison of the development period. With the
last comparison, RQ #5 was answered. Figure 4 tells us the
percentage of development period for each approach based
on the whole database. For example, in Fig. 4a it can be
observed that almost 64% of all the Mono Repository projects
are completed in under a month and this figure is nearly
66% for Multi Repository cases. Moreover, figures for other
cases like the development period between 3 and 6 months
and over 12 months were practically the same Fig. 4b. It is
again worth to remind that these pie charts were created
based on the whole database.

In Fig. 5 the Big Projects were examined, which have
been mentioned earlier took up 10 Mb of memory and the
development period was over 3 months. In the previous
case, the whole database was examined and it appeared that
the percentage values were closer to each other and now
surprisingly similar values can be observed here as well.

Naturally, there are some differences but they are no
more than 3% and can be ignored. Based on the results, it
can be hypothesized that the repository structure of the

> 12 months

e 6-12 months

10.5% . 3-6 months
10.2%
14.4%
1-3 months
< 1 month
a)
6-12 months

3-6 months
> 12 months >

1-3 months
6.5%6.6%

b) < 1 month

Fig. 4. The development period in terms of two approaches used,
a) Mono Repository, b) Multi Repository

Brought to you by MTA Konyvtar és Informaciés Kézpont olvasék | Unauthenticated | Downloaded 10/25/22 08:33 AM UTC

11
> 12 months
1-3 months | |
' 6-12 months
a) 3-6 months
< 12 months
\ 6-12 months
17.6%
41.1%)
. 15.1%
1-3 months ;
" 3-6 months
b)

Fig. 5. The development period comparison of two approaches
(Big Projects), a) Mono Repository, b) Multi Repository

project does not significantly affect the development period.
Of course, while more comparisons are required to test this
statement, it does show that some interesting results could
be acquired by examining real projects carried out by
different developer teams.

4. CONCLUSION

In this study, followings were presented

a) A comparison of two repository structure types from
quite different perspectives using databases containing
different types of projects;

b) A unique algorithm for identifying and collecting mono
and multi repository projects from Github;

¢) Databases were created with the help of this method and
they can be used by other researchers for different
purposes.

Regarding a), most of the comparisons between Mono
and Multi Repository approaches were made using rather
small or local scales. Related papers, which were found in the
literature, focused only projects of one company or a specific
group of developers. Here, new approach implemented to
this comparison by using a new database that contains
projects taken from different backgrounds. This way the
resulting comparisons were much more general and

12

Pollack Periodica 17 (2022) 3, 7-12

produced some things that were never taken into account in
similar studies. According to the results it can be said that
Multi Repository projects takes less time than Mono Re-
pository ones and additionally the team sizes in Mono
Repository projects are much bigger than Multi one. Be-
side these choice of structure compared according to the
regions of developers and that can be useful for project
planners when they want to take regions of developers in
account.

Regarding b), the procedure of identifying a Mono
Repository project is based on its file structure. As it was
mentioned, in the definition all, the components of the
project are kept in one repository and obviously, they
were inside specific folders. They can easily be defined by
examining the file structure. The identification of multi
repository projects was based on clustering algorithms.
In this algorithm, the name and the content of the
readme file of the repository were used. Later only
needed to use Github API commands to collect the
specific features of projects and repositories present in
the database.

Regarding c), database was created that can be used for
different purposes and in this paper; the difference between
two repository structures was tried to ascertain. At first, the
degree of usage of the repository structure from 2015 to 2021
was checked. Secondly, the effects of structures were
compared based on aspects like development period, number
of developers in the team and regions of developers.

There are several ways two repository structures can be
composed but almost all of them are based on views of
developers and some statistics prepared for certain com-
panies (like Google and Facebook). In this study, not only a
way was proposed for identifying and collecting mono and
multi repository projects, but also created a unique database
to go with it. . Other researchers can do additional com-
parisons according to the database.

Plans for future work include the following. Now, the
algorithm does not work on specific types of projects and it
needs to be extended it to get results that are more objective.
In addition, there is plans for creating metrics for each re-
pository structure and after that, it would be possible to get a
clearer view of how the two different repository structures
can affect the development period

REFERENCES

[1] Comparison of version-control software, Wikipedia, 2019. [On-
line]. Available: https://en.wikipedia.org/wiki/Comparison_of
version-control_software. Accessed: Dec. 6, 2021.

[2] G. Kokrehel and V. Bilicki, “The impact of the software archi-
tecture on the developer productivity,” Pollack Period., vol. 17, no.
1, pp. 7-11, 2022.

[3] Architectural pattern, Wikipedia, 2021. [Online]. Available: https://en.
wikipedia.org/wiki/Architectural_pattern. Accessed: Nov. 25, 2021.

[4] B. Libbey, Monorepo, Manyrepo, Metarepo, 2019. [Online]. Avail-
able: https://notes.burke libbey.me/metarepo/. Accessed: Nov. 1, 2021.

[5] R. Hastings, Netflix culture: Freedom & responsibility, Reed

Hastings. Slideshare 2019. [Online] Available: https://www.

slideshare.net/reed2001/culture-1798664/2-Netflix_Culture

Freedom_Responsibility2. Accessed: Nov. 15, 2021.

H. Brian, Scaling Git (and some back story), Microsoft Devblocks,

2017. [Online]. Available: https://devblogs.microsoft.com/bharry/

scaling-git-and-some-back-story/. Accessed: Nov. 15, 2021.

[6

[7

P. L. Scott, Mono-repo or multi-repo? Why choose one, when you

can have both? Medium.com, 2017. [Online]. Available: https://

patrickleet.medium.com/mono-repo-or-multi-repo-why-choose-

one-when-you-can-have-both-e9c77bd0c668. Accessed: Oct. 4, 2021.

[8] Multi/Mono Repository Database, Github 2021. [Online]. Avail-
able: https://github.com/Shakikhanli/Mono-Multi-Repository-
Database. Accessed: Dec. 10, 2021.

[9] R. T. Ogawa and B. Malen, “Towards rigor in reviews of multi-
vocal literatures: Applying the exploratory case study method,”
Rev. Educ. Res., vol. 61, no. 3, pp. 265-286, 1991.

[10] C. Jaspan, M. Jorde, A. Knight, C. Sadowski, E. K. Smith, C.
Winter, and E. Murphy-Hill, “Advantages and disadvantages of a
Monolithic Repository: A case study at Google,” in Proceedings of
the 40th International Conference on Software Engineering: Soft-
ware Engineering in Practice, Gothenburg, Sweden, May 27-June
3, 2018, pp. 225-234.

[11] T. Holmes, Terraform mono repo vs. multi repo: The great debate,
Hashi Corp. [Online]. Available: https://www.hashicorp.com/
blog/terraform-mono-repo-vs-multi-repo-the-great-debate.
Accessed: Jan. 28, 2021.

[12] D. Nagy, T. Mihdlydedk, and L. Aszalos, “Graph approximation

on similarity based rough sets,” Pollack Period., vol. 15, no. 2,

Pp. 25-36, 2020.

Open Access. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/
licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited, a link to the CC

License is provided, and changes - if any - are indicated. (SID_1)

Brought to you by MTA Konyvtar és Informaciés Kézpont olvasék | Unauthenticated | Downloaded 10/25/22 08:33 AM UTC

https://en.wikipedia.org/wiki/Comparison_of_version-control_software
https://en.wikipedia.org/wiki/Comparison_of_version-control_software
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://notes.burke.libbey.me/metarepo/
https://www.slideshare.net/reed2001/culture-1798664/2-Netflix_CultureFreedom_Responsibility2
https://www.slideshare.net/reed2001/culture-1798664/2-Netflix_CultureFreedom_Responsibility2
https://www.slideshare.net/reed2001/culture-1798664/2-Netflix_CultureFreedom_Responsibility2
https://devblogs.microsoft.com/bharry/scaling-git-and-some-back-story/
https://devblogs.microsoft.com/bharry/scaling-git-and-some-back-story/
https://patrickleet.medium.com/mono-repo-or-multi-repo-why-choose-one-when-you-can-have-both-e9c77bd0c668
https://patrickleet.medium.com/mono-repo-or-multi-repo-why-choose-one-when-you-can-have-both-e9c77bd0c668
https://patrickleet.medium.com/mono-repo-or-multi-repo-why-choose-one-when-you-can-have-both-e9c77bd0c668
https://github.com/Shakikhanli/Mono-Multi-Repository-Database
https://github.com/Shakikhanli/Mono-Multi-Repository-Database
https://www.hashicorp.com/blog/terraform-mono-repo-vs-multi-repo-the-great-debate
https://www.hashicorp.com/blog/terraform-mono-repo-vs-multi-repo-the-great-debate
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

	Outline placeholder
	Comparison between mono and multi repository structures
	Introduction
	Methodology
	Research questions
	Literature review
	Accessibility (visibility)
	Testing for security and functionality

	Identifying and collecting Mono Repository projects
	Get a list of possible users
	Check each repository of a user
	Add the newly founded project to the database

	Identifying and collecting Multi Repository projects
	Collect properties of each repository
	Match the repositories

	A comparison of the mono and multi repository approaches
	An intensity comparison of the repository structure
	A comparison of the developer countries and the structure type
	A comparison of the team size in Mono/Multi Repository structures
	A comparison of the development period

	Conclusion
	References

