
1 1 INTRODUCTION 
There is a heap of evidences that demands on soil 
related information have been significant worldwide 
and it is still increasing (Bullock, 1999; Mermut & 
Eswaran, 2000; Tóth et al., 2008, Sanchez, et al., 
2009; Baumgardner, 2011). Soil maps were typically 
used for long time to satisfy these requests. A soil 
map is an object specific spatial model of the soil 
cover, whose compilation is dominated by the con-
sideration of soil forming processes (Böhner et al., 
2002). The demands often do not refer to primary or 
even secondary soil properties but to various pro-
cesses, functions, services and/or systems related to 
soils (Omuto et al., 2013). Due to the relatively high 
costs of new data collection and by the spread of GI 
technology, spatial soil information systems (SSIS) 
and digital soil mapping (DSM) took the role of tra-
ditional soil maps in the field of data service. Legacy 
soil data is still heavily relied on, since they contain 
a wealth of information that can be exploited by 
proper methodology in GIS/SSIS/DSM environment. 

Not only the degree of current needs for soil in-
formation has changed but also its nature. Tradition-
ally the agricultural functions of soils were focused 
on, which was also reflected in the methodology of 
data collection and mapping. Recently the multi-
funtionality of soils is getting to gain more ground 
(Blum, 2005); consequently information related to 
additional functions of soils becomes identically im-
portant. The new types of information requirements 
however cannot be fulfilled generally with new data 
collections at least not on such a level as it was done 

in the frame of traditional soil surveys (Montanarel-
la, 2010).  

In Hungary, presently soil data requirements are 
fulfilled with the recently available datasets either by 
their direct usage or after certain specific and gener-
ally fortuitous, thematic and/or spatial inference 
(Pásztor et al. 2013). Due to the more and more fre-
quently emerging discrepancies between the availa-
ble and the expected data, there might be notable 
imperfection as for the accuracy and reliability of the 
delivered products. With a recently started project 
(DOSoReMI.hu; Digital, Optimized, Soil Related 
Maps and Information in Hungary) we would like to 
significantly extend the potential, how countrywide 
soil information requirements could be satisfied in 
Hungary. Primarily the national demands are intend-
ed to be treated, which in one hand cannot be con-
sidered independent of the GSM.net objectives and 
on the other hand similar or identical specifications 
are planned to be applied.  

In the frame of our project (Fig. 1) we plan the 
execution of spatial and thematic data mining of sig-
nificant amount of soil related information available 
in the form of legacy soil data as well as digital data-
bases and spatial soil information systems. We plan 
to compile digital soil related maps of certain pedo-
logical variables featuring the state, processes, func-
tions and services of soils, which fulfill optimally 
the national and international demands from points 
of view of thematic, spatial and temporal accuracy.  
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ABSTRACT: The main objective of the DOSoReMI.hu (Digital, Optimized, Soil Related Maps and Infor-
mation in Hungary) project is to significantly extend the potential, how demands on spatial soil related infor-
mation could be satisfied in Hungary. Although a great amount of soil information is available due to former 
mappings and surveys, there are more and more frequently emerging discrepancies between the available and 
the expected data. The gaps are planned to be filled with optimized DSM products heavily based on legacy 
soil data, which still represent a valuable treasure of soil information at the present time. Our paper presents 
the first pilot results achieved for Zala County, Hungary: the identified effects of DSM components on the ac-
curacy of a specific output map; together with some modest proposals for their applicability in the optimiza-
tion of the whole mapping process.  



Figure 1. Framework of the DOSoReMi.hu project

 
 
Due to the simultaneous richness of available 

Hungarian legacy soil data (Várallyay, 2002), spatial 
inference methods and auxiliary environmental in-
formation (Grunwald, 2009; Hengl 2009; Mulder et 
al., 2011), there is a high versatility of possible ap-
proaches for the compilation of a given soil (related) 
map. This suggests the opportunity of optimization. 
For the creation of an object specific soil (related) 
map with predefined parameters (resolution, accura-
cy, reliability etc.) one might intend to identify the 
optimum set of soil data, method and auxiliary co-
variables optimized for the resources (data costs, 
computation requirements etc.). Prior to the man-
agement of countrywide challenges we started com-
prehensive analysis of the effects of the various 
DSM components on the accuracy of the output 
maps on pilot areas. 

In the case of the mapping of a specific soil prop-
erty, various, spatial, environmental correlation 
methods have been tested with varying set of refer-
ence and training soil data, while auxiliary covaria-
bles have been also changed miscellaneously. We 
have studied the effects of changes in the compo-
nents (and in their parameters) on the output maps. 
Various test data sets and measures have been used 
for the evaluation of accuracy.  

 

2 MATERIALS AND METHODS 

2.1 The pilot area 

 
Zala County (3.784 km²) is one of the nineteen coun-
ties of Hungary, with variable physiographical con-
ditions (Fig. 2) characterized by varied landscape of 
hills and valleys. The present surface of the county 
developed through long lasting complex geological 
processes showing strongly transitional features. The 
county’s climate is moderated by the effect of the 
relative proximity to the Alps. Due to the climate 
and the great variety in the landscape, the vegetation 
cover is also diversified: the most significant ele-
ment is the continuous forests covering the hillsides. 
Due to the relatively cool and moist climate and un-
dulating terrain, the county has a dense network of 
watercourses. Its largest river is the Zala which is 
encompassed by drained swamps along its way to 
the lake Balaton, Central-Europe’ largest lake. 

Almost all Hungarian soil datasets provide infor-
mation on the county’s soil cover, so their applica-
bility can be also tested. Potentially nationwide aux-
iliary spatial datasets has been also available for the 
county. In addition to detailed DEM and vast re-
motely sensed information, thematic maps on climat-
ic factors, geology and groundwater are available for 
the area. 



 
Figure 2. The situation of Zala county in the South-Western 
part of Hungary and its topography 

2.2 Soil data 

However concerning a specific soil attribute the situ-
ation is not necessarily promising. Spatial distribu-
tion of SOM, either as a primary soil property or as 
an notable indicator of various soil related features 
(functions, services), has a great importance. Prior to 
our case study the following opportunities were 
available: 

• SMUs of the AGROTOPO countrywide spatial 
soil information system (1:100,000) with categorized 
SOM stock information given in t/ha units (Fig. 3). 

 

Figure 3. SOM map of Zala county according to the 
AGROTOPO database 

 
• There is applicable spatial information on or-

ganic matter resource provided by the 1:10,000 scale 
genetic soil maps. These maps however do not cover 

totally even the agricultural areas of the country; are 
partly processed digitally and are not managed 
properly. 

• The Hungarian Soil Information and Monitoring 
System (SIMS; Várallyay, 2009) provides up-to-date 
and reliable data on SOM, but there are only 59 pro-
files within the country. On the other hand SIMS lo-
cations were definitely not selected to be spatially 
representative. 

 • In the frame of the Soil Fertility Monitoring 
System (SFMS; Várallyay, 1994), which was estab-
lished to provide a soil and agronomy database for 
rational soil management and plant nutrition, nu-
merous soil characteristics were measured in the top-
soil (0-30cm soil layer or the ploughed horizon) of 
about 100,000 agricultural plots. At the present 
merely fragments are available of this valuable lega-
cy data set both thematically and spatially, but they 
can be suitable used for verification purposes. 

• The Digital Kreybig Soil Information System 
(DKSIS; Pásztor et al., 2010, 2012) simultaneously 
contains two types of geometrical datasets. Soil 
mapping units (SMU) are characterized by three at-
tributes: (i) combined texture and water management 
categories (TWM), (ii) overall soil chemical proper-
ties (SCP), (iii) and a so called landscape manage-
ment soil type (LMST). The SMUs were delineated 
based on overall chemical and physical soil proper-
ties of the soil root zone. Detailed soil properties 
were determined and measured in soil profiles. 
DKSIS is available for the whole area of Hungary 
with representative profile description for about 
22,000 plots. This profile information is transferred 
for further locations, which sums up in approximate-
ly 250,000 plots. Since the Kreybig survey (Kreybig, 
1937) did not regionalize SOM data, such type of in-
formation has been available only at profile level.  

2.3 Auxiliary data 

Digital elevation models are available for the whole 
area of Hungary with various spatial resolutions 
from 5 m. In the Zala pilot the performance of the 20 
m DEM was tested. In this way smaller area (roughly 
1/25 that of the country) is offset as compared the 
100 m DEM planned to be used countrywide from 
computational point of view. Altitude, slope, topo-
graphic wetness index, LS factor, mass balance in-
dex, catchment area, profile and plan curvature, 
stream power index and tpi500 derivatives were 
used in the analysis. 

Informative, low-cost remotely sensed data (RS) 
were available in the form of multitemporal MODIS 
products. Luckily, MODIS scenes entirely cover the 
county, thus no merging of neighboring images was 
necessary. 18 NDVI and EVI were selected from the 
period of 2009-2011representing different parts of 
the growing season and years with various climatic 
conditions. 



There is further thematic auxiliary spatial in-
formation available for the whole area of the coun-
try, which was tested in the Zala pilot. Two climatic 
data layers (CF; mean annual precipitation and mean 
temperature of summer months) were used in addi-
tion to the 1:100.000 Geological Map of Hungary 
(MFGI, 2011) and the map of groundwater depth 
prepared by Water Research Institute (VITUKI, 
2005).  

2.4 Spatial inference of soil related information 

Various soil related information were mapped in 
three distinct sets: (i) basic soil properties deter-
mining agri-environmental conditions (soil type ac-
cording to the Hungarian genetic classification, 
rootable depth, sand and clay content for the 1st and 
2nd soil layers, pH, OM and carbonate content for 
the plough layer); (ii) biophysical criteria of natural 
handicaps defined by common European system and 
(iii) agro-meteorologically modeled yield values for 
different crops, meteorological and management 
scenarios. The applied method(s) for the spatial in-
ference of specific themes was/were suitably select-
ed: regression and classification trees for categorical 
data, indicator kriging for probabilistic management 
of criterion information; and typically regression 
kriging for quantitative data. Due to extent limits, in 
this paper merely the detailed analysis of the elabo-
ration of SOM maps with regression kriging using 
varying set of auxiliary variables is discussed. 

2.5 Data preprocessing 

Soil organic matter content measured in the topmost 
layer of 1789 DKSIS soil profiles was regionalized. 
Calibration (80%) and validation (20%) subsets were 
randomly selected. SOM data were cleared, stand-
ardized and logit-transformed in order to better fit 
the applied geostatistical demands. Categorical data 
of DKSIS SMUs (TWM, SCP and LMST) were also 
used in the form of indicator variables. Covariables 
were unified both in spatial resolution, resampled to 
20 m raster as well as in value range, transformed to 
0-255 range according to Hengl (2009). The princi-
pal components of predictor maps were used in each 
case to reduce their multicollinearity. 

3 RESULTS AND DISCUSSION 
A series of regression kriging with variable set of 
auxiliary variables was executed. The tested models 
are listed in Table 1.  
 
 
 
 
 
 

Table 1. The composition of the tested models ______________________________________________         
     DDM RS  CF  TWM  SCP  LMST ______________________________________________         
A   x    -    -       -      -       - 
B   x    x    -       -      -       - 
C   x    -    x       -      -       - 
D   x    x    x       -      -       - 
E   x    -    x       x      -       - 
F   x    -    x       -      x      - 
G   x    -    x       x      x      - 
H   x    -    x       -      -       x 
I   x    x    x       -      x      - 
J   x    x    x       x      -       - 
K   x    x    x       x      x      - 
L   x    x    x       -      -       x _____________________________________________            

 
The first evaluation of the models was established on 
the results of the multiple regression (Table 2). The 
performance of multiple regression increased signif-
icantly by the involvement of soil layers. Spatial pat-
tern provided by SMUs improves the prediction even 
if their delineation is based on differing soil features.  
 
Table 2. Performance of the multiple regressions  ______________________________________________         
Maps  R2  Std. Error  SSR  SSE  MSE  IVM* ______________________________________________         
A   0.17   0.48   82.4  407.1 0.23  3 
B   0.11   0.50   52.2  437.3 0.25  6 
C   0.18   0.47   89.4  400.1 0.22  6 
D   0.20   0.47   98.3  391.2 0.22  8 
E   0.34   0.43   166.7 322.8 0.18  9 
F   0.26   0.45   128.7 360.8 0.20  7 
G   0.35   0.42   173.1 316.4 0.18  12 
H   0.35   0.42   170.9 318.6 0.18  10 
I   0.27   0.45   133.8 355.6 0.20  9 
J   0.35   0.42   169.8 319.7 0.18  11 
K   0.36   0.42   176.3 313.2 0.18  14 
L   0.36   0.42   173.9 315.6 0.18  12 
GEO** 0.36   0.42   173.9 315.7 0.18  13 
GW*** 0.35   0.42   170.9 318.6 0.18  12 _____________________________________________            

* Independent Variables in the Model after PCA and stepwise 

selection of the variables on 5% significance level.  

** K model supplemented with geology 

** K model supplemented with groundwater 
 
The difference in the improvement can be attributed 
to the differences in the number of categories used in 
TWM, SCP and LMST respectively. Since the inclu-
sion of geology and groundwater did not performed 
substantively better, in spite of the numerous indica-
tor variables introduced by their lots of categories, 
they were omitted from the further analysis. 

After the execution of regression kriging, the re-
sulted maps were compared along various features 
(Table 3). The range of the predicted variable gener-
ally proved to be lower than that of the calibration 
data set, that is except for the H and L model, the 
maps are significantly smoothed, which mostly evi-
dences in the case of B model, where the spatially 
highly downscaled RS data is compensated only by 
the DDM derivatives.  

 



Table 3. Statistical properties of resulted maps and 
those of the base training soil data set ______________________________________________ 
Maps   Min  Max  Range Mean Std. Dev. ______________________________________________ 
A    0.67  22.82 22.15 2.51  1.39 
B    0.79  16.14 15.35 2.50  1.33 
C    0.66  22.55 21.89 2.51  1.40 
D    0.70  21.01 20.32 2.56  1.40 
E    0.69  20.36 19.67 2.63  1.63 
F    0.70  19.42 18.72 2.59  1.56 
G    0.69  20.22 19.53 2.61  1.63 
H    0.70  32.35 31.65 2.63  1.92 
I    0.78  19.13 18.35 2.58  1.53 
J    0.71  21.57 20.86 2.67  1.62 
K    0.71  21.77 21.06 2.62  1.64 
L    0.73  34.77 34.04 2.73  1.93 
Data   0.43  29.34 28.91 2.70  2.96 _____________________________________________ 

 
Fig. 4 displays the map results. The overall spatial 

pattern of them is similar and fairly consistent with 
small scale map of AGROTOPO presented in Fig. 3. 
Their detailedness is however conspicuously differ-
ent. Map of B model is strongly smoothed. Entering 
of soil layers at model E heavily increases the con-
trasts on the maps.  

 

 
Figure 4. SOM maps created by regression kriging with vari-
able set of auxiliary variables. The letters in the upper left cor-
ner refer to the models listed in Table 1. 

 
The maps were validated by the aid of two differ-

ent data sets. According to the independently select-
ed 20% DKSIS profiles, the predicted maps consist-
ently underestimate, while validation with SFMS 

suggests overestimation with an almost double val-
ue. These differences can be attributed in one hand 
to the differing sampling and measurements methods 
applied and on the other hand the time-shift between 
the two data collection.  

 
Table 4. Validation of the resulted maps based on 
test DKSIS data set ______________________________________________  
Maps  ME  MAE  MSE  RMSE RMNSE   RI ______________________________________________  
A   -0.43  0.86  6.73  2.59  1.21     5% 
B   -0.46  0.88  7.43  2.73  1.26      - 
C   -0.43  0.87  6.70  2.59  1.21     5% 
D   -0.45  0.88  7.21  2.69  1.22     2% 
E   -0.29  0.75  4.69  2.17  1.11   21% 
F   -0.37  0.84  6.04  2.46  1.14   10% 
G   -0.29  0.75  4.69  2.17  1.11   21% 
H   -0.40  0.83  6.12  2.47  1.09     9% 
I   -0.41  0.88  6.76  2.60  1.12     5% 
J   -0.31  0.77  5.19  2.28  1.11   16% 
K   -0.31  0.78  5.20  2.28  1.11   16% 
L   -0.42  0.85  6.68  2.59  1.10     5% _____________________________________________    

 
 
Table 5.  Validation of the resulted maps based on 
the independent SFMS data set . ______________________________________________ 
Maps  ME  MAE   MSE   RMSE    RI ______________________________________________ 
A   0.75  0.96   2.24   1.50     1% 
B   0.70  0.91   2.18   1.48     2% 
C   0.75  0.96   2.27   1.51     - 
D   0.77  0.96   2.04   1.43     5% 
E   0.76  0.93   1.65   1.29   15% 
F   0.84  1.01   2.04   1.43     5% 
G   0.75  0.92   1.63   1.28   15% 
H   0.82  0.99   1.87   1.37     9% 
I   0.81  0.97   1.87   1.37     9% 
J   0.77  0.92   1.60   1.26   16% 
K   0.73  0.89   1.55   1.24   17% 
L   0.87  1.01   1.87   1.37     9% _____________________________________________ 

 
Relative improvement of the model is compared 

to the worst B and C model respectively. In the case 
of DKSIS validation E and G models provide the 
most, while for SFMS verification K and J slightly 
overcome the following E and G models. The worst 
results turn up for the "soil free” models. An inter-
esting outcome is the consistently better performance 
of TWM as compared to SCP or LMST with the 
same auxiliary variables. 

4 CONCLUSIONS 
According to our results the following conclusions 
can be drawn, which will be relied on in our coun-
trywide mapping activities: 

Inclusion of spatial soil data significantly im-
proves the performance of RK for the compilation of 
SOM maps for the topsoil as compared to the appli-
cation of pure environmental covariables. Maps 
based on models including soil layers are less 
smoothed and display stronger contrasts.  



Usage of various soil covariables, even provided 
by the same SSIS, in a model with the same auxilia-
ry variables results in remarkable differences of the 
final map. Joint involvement of more than one soil 
layer does not necessarily improves the performance.  

Various evaluations of the result maps are not 
necessarily consistent. Consequently, either a na-
tionally uniform measure should be defined (which 
still can be different for various soil parameters) to 
efficiently compare the various possible results, or 
the identification of the target soil (related) variable 
should be supplemented (on metadata level) by de-
tails of the specific expectations (e.g.: its extreme 
values should be kept/minimal smoothing is accept-
ed). 
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