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ABSTRACT

Dynamic contact and impact problems are widely applicable. An accurate solution method for these
kinds of problems can be used in many fields of mechanical engineering (e.g., cutting metalwork,
cogwheel drives, etc.). However, the proper handling of the contact is problematic, as there emerges a
substantial amount of nonlinearity in the displacement field. Therefore, a spurious high frequency
oscillation is present in the solution. These oscillations must be avoided, as divergence can easily occur
in the contact algorithm due to them. In order to eliminate this effect, the applied numerical method
must be chosen and set properly. In this study, a comprehensive guide is provided for the appropriate
selection of the proper numerical method and its parameters.
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1. INTRODUCTION

By solving contact problems, one of the main challenges is the proper handling of the
emerging nonlinearities. Historically, it was Hertz [1], who firstly dealt with these kinds of
problems in 1881. In the field of contact problems, there are only a few simple examples,
which can be treated analytically. In most cases, only an approximate solution can be ach-
ieved, which is usually provided by the Finite Element Method (FEM) [2, 3]. The Finite
Element (FE) analysis of contact problems has a very wide literature [4, 5] in which two main
approaches can be distinguished. The first technique is the penalty method [6], which is a
simpler, faster, but not so accurate way for solving mechanical contact problems using FEM.
The second approach is the Lagrange multiplier method [7] in which the contact pressure
emerges as an additional unknown variable. This technique fulfills the contact conditions
accurately, but its application is computationally more expensive. A third possibility is the
augmented Lagrangian method [8], which is a certain kind of combination of the penalty and
the Lagrange multiplier method. In this paper the contact boundary conditions are treated
with the Lagrange multiplier method.

In most cases, the solution of a dynamic contact problem requires the time integration of
the semi-discretized equation of motion, which is discretized in space, but continuous in
time. By an equation of this kind, for the integration in time both forward and backward
increment, single- and multi-stage numerical methods [9] can be used. This paper is going to
analyze the applicability of four single-stage discrete time integration methods and will
demonstrate their specific effects on the solution. The adaptation of the very commonly used
Central Difference Method (CDM) [10] to the Lagrange multiplier method was presented by
Carpenter et al. [11] in 1991. The main drawback of this method is that it possesses only
conditional stability. However, the application of it is computationally cheaper and CDM can
be applied effectively when a lumped mass matrix [12] is used instead of a consistent one.
Furthermore, the application of the Backward Euler (BE) [13], the NewMark (NM) [14, 15]
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and the Hilber-Hughes-Taylor-α (HHT-α) method [16] will
be studied, which are widely used backward increment
schemes. The main advantage of these methods is that they
are unconditionally stable. This is a major aspect; hence
these methods are often built in commercial FE software.
The Newmark method is the most common implicit
method in this kind of software. The formulation of this
method contains a parameter through which the numerical
damping of the method can be affected directly. The HHT-α
method is the improved version of the Newmark method,
where the dissipation level can be controlled with two pa-
rameters. Nevertheless, the solution produced with a backward
increment scheme is more time-consuming to achieve, as a
system of equations must be solved in every time step. There
are manymore time integration schemes, like the Houbolt, the
Wilson-θ, the generalized-α, etc. that can be found in [9].
Besides, there exist several multi stage schemes, like Kim’s
method [17] and the Kolay-Ricles-α (KR-α) method [18].
In this paper, only the above mentioned four methods are
considered, as they proved to be the most useful for contact
problems, based on our experiences.

The right choice of the applied numerical method is
crucial, as it has a significant impact on the solution char-
acteristics, the computation time and the achievable accu-
racy. There is not any universal recipe to reach an ideal
solution, many different schemes must be taken into
consideration to examine, which method gives the best so-
lution as of the user’s preferences. It is a further problem
that due to the spatial discretization a spurious high fre-
quency oscillation occurs in the resulting fields of displace-
ment and contact pressure, which distorts the correct
solution. This difficulty can be at least partially eliminated by
applying a certain amount of numerical damping by the
solution of the equation of motion. Nevertheless, it is also
substantial to filter only the disturbance out by leaving the
useful component of the signal intact. Thus, the adjustability
of the numerical damping is an important aspect to
consider, when choosing the right method. The main diffi-
culty is to find an optimal region for the dissipation
parameter to achieve a solution with acceptable accuracy,
while significantly reducing the spurious oscillations.

In this article, the effectiveness of the aforementioned
kinds of methods is going to be analyzed. The accuracy and
the practical applicability of the examined methods will be
studied from several aspects. Besides, parameter identifica-
tions are going to be made in order to determine the right
amount of numerical damping for methods with adjustable
dissipation level. The main goal of this paper is to provide a
comprehensive application analysis about how to choose the
right method with the correct parameters for a dynamic
contact problem.

2. TIME STEPPING METHODS

Let us consider a structural dynamic problem, where the
interacting bodies are linearly elastic. The semi-discretized
equation of motion after spatial discretization by finite

element method can be written as a system of linear dif-
ferential equations of second order according to

M€ut þ C _ut þ Kut ¼ f t; (1)

where M, C and K denote the mass, damping and stiffness
matrices, respectively. On the right side f t means the applied
load vector, while ut, _ut and €ut are the unknown displace-
ment, velocity and acceleration vectors at time instant t,
respectively. Moreover the solution of this differential system
of equations requires both initial and boundary conditions
from which the former can be written as

ut¼0 ¼ u0 and _ut¼0 ¼ v0; (2)

where u0 and v0 denote the initial displacement and velocity
vectors, respectively. In the following, four different nu-
merical methods will be introduced for solving numerically
the equation of motion (1), hence the deduction will be
presented for each method in the next four chapters.

2.1. Central difference method

The CDM is a commonly used forward increment method for
various mechanical applications. The main benefits of using this
scheme are that it is second order accurate, and computations
can be executed very fast due to its explicit formulation. How-
ever, the central difference method is only conditionally stable,
which reduces the applicable time step region. In this method,
the velocity and the acceleration are given using the displacement
at the current, previous and next time step the following way.

_ut ¼ utþΔt � ut−Δt
2Δt

; (3)

€ut ¼ utþΔt � 2ut þ ut−Δt
Δt2

; (4)

ðΔtCþ 2MÞutþΔt ¼
�
4M� 2Δt2K

�
ut þ ðΔtC� 2MÞut−Δt

þ 2Δt2f t:
(5)

By substituting Eqs (3) and (4) into the Eq. ofmotion (1) and
reordering it, Eq. (5) can be obtained. The main problem
with this formula is that it requires the inversion of the term
ΔtCþ 2M, which is a computationally expensive procedure,

_ut ¼ ut � ut−Δt
Δt

: (6)

Hence, it is worthwhile to combine Eq. (4) with Eq. (6), as
it results a formulation that only requires the inversion ofM.
As the inversion of a lumped mass matrix is computationally
cheap, it is rewarding to diagonalize the mass matrix by the
method described in [12]. It is important to note that
the formula applied for the _ut velocities originates from
the backward Euler method. Thus, the applied explicit
technique is a certain kind of combination of the central
difference and the backward Euler method,

MutþΔt ¼
�
2M � ΔtC� Δt2K

�
ut þ ðΔtC�MÞut−Δt þ Δt2f t: (7)

Equations (4) and (6) can be substituted into the equation
of motion (1). By ordering it the same way, as it was eval-
uated for Eqs (5) and (7) can be obtained.
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2.2. Backward Euler method

The backward Euler scheme has an implicit character, so, a
system of equations (which is often nonlinear) needs to be
solved for every time step, resulting high computational
costs. This method is unconditionally stable, first order ac-
curate and has a certain amount of numerical damping. The
main problem is, that the dissipation level is not control-
lable; hence it often leads to energy dissipation of an un-
desirable rate,

utþΔt ¼ ut þ Δt _utþΔt; (8)

_utþΔt ¼ _ut þ Δt€utþΔt; (9)

M€utþΔt þ C _utþΔt þ KutþΔt ¼ f tþΔt: (10)

The general formulation of this method according to [13]
can be written as Eqs (8) and (9). Eq. (1) of motion for time
step t þ Δt leads to formulation (10).

2.3. Newmark method

The Newmark method [14, 15] is a commonly used implicit
integration scheme, which is built in many commercial FEM
software (Ansys, Abaqus, etc.),

utþΔt ¼ ut þ Δt _ut þ Δt2

2

�
ð1� 2βÞ€ut þ 2β€utþΔt

�
; (11)

_utþΔt ¼ _ut þ Δt
�
ð1� γÞ€ut þ γ€utþΔt

�
; (12)

β ¼ 1
4
ð1þ δÞ2; and γ ¼ 1

2
þ δ; where δ≥ 0: (13)

Its basic formulation is determined by Eqs (11) and (12).
Based on [14], the optimal parameter setting can be given as
Eq. (13). By setting the δ parameter according to Eq. (13),
the integration accuracy and stability can be obtained by
only one parameter. By changing this parameter, the amount
of numerical damping also alters; hence the problematic
oscillations are fully or partially extinguishable. This method
is unconditionally stable and first order accurate (except by
γ 5 0.5 which results second order accuracy). The main
disadvantage is the lack of high-frequency damping which
limits the reduction of spurious noises.

2.4. HHT-α method

The HHT-α method [16] is another scheme, which is widely
employed for solving the equation of motion of mechanical
systems. This method is the improved version of the New-
mark method with controllable numerical dissipation
through the α parameter. The main benefit in relation to the
Newmark scheme is that by this method numerical damping
can be exerted without degrading the order of accuracy,

M€utþΔt þ ð1þ αÞC _utþΔt � αC _ut þ ð1þ αÞKutþΔt � αKut
¼ ð1þ αÞf tþΔt � αf t:

(14)

The basic Equations (11) and (12) of the Newmark
method remain valid for this scheme. However, the equation

of motion (10) must be modified using the α parameter
according to Eq. (14). In the interval of α ∈ [�0.5, 0],
the amount of numerical damping can be controlled
where the smaller value of α means the smaller amount of
dissipation,

β ¼ 1
4
ð1� αÞ2 and γ ¼ 1

2
ð1� 2αÞ: (15)

If α is treated independently, then Eq. (13) parameters
from the Newmark method remain unchanged, so the
result of the numerical computation can be influenced by
two separate parameters, δ and α. However, if β and γ are
chosen according to Eq. (15), the scheme becomes second
order accurate, although this does not cause the improve-
ment of the numerical results necessarily. In this case the
practical range α∈ ½−1=3 ; 0�. In practice, it is usually
worthwhile to try both Eq. (15) and the independent choice
of δ and α .

3. MODELING OF THE IMPACT PROBLEM

3.1. FEM model

The methods that have been described above should be
tested using an example by which it can be judged, how well
they can handle the sudden changes in characteristic in-
dicators like the velocity or the contact pressure. For this
purpose, a 1D impact problem is an ideal choice as it is a
widely used test example in the literature of contact prob-
lems [11, 17, 18]. The main benefits of this example are that
its solution can be made easily and fast and it has an exact
analytical solution, which provides a good reference to assess
the results. Besides, it challenges the achievable accuracy
of the numerical method at a sufficient level. Thus, if an
accurate solution can be produced for this test example, then
the applied method can presumably treat more complex
geometries too. Therefore, a linearly elastic rod is considered
which is moving towards a rigid wall (Fig. 1).

In order to solve this test example, a FEM model must be
constructed based on the mechanical model shown in Fig. 1.
This FEM model is built using 1D truss elements, which
possess 2 nodes with 1 Degree of Freedom (DoF) per node,
which is the longitudinal displacement. The FEM model is
shown in Fig. 2, where L ¼ 20 ½mm�; h ¼ 0:1 ½mm�; n ¼
200 ½− � ; and v0 ¼ 1000 ½mm=s�. The model contains
uniform elements with E ¼ 90 ½MPa� and ρ ¼ 7:85$10−9

½kg=mm3� material parameters. Based on the performed
calculations, above the applied element number the results
do not improve substantially.

Fig. 1. The mechanical model of the examined 1D impact problem
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3.2. Treatment of the contact

The proper handling of the contact is an important aspect by
the modeling.

As it has been mentioned earlier, by the Lagrange
multiplier method, the penetration between the contacted
bodies is completely prohibited. Because of this condition,
certain displacement constraints are prescribed the
following way:

Gðuþ XÞ ¼ 0: (16)

In the equation above, X means the initial configuration
(vector of length n þ 1 filled with the initial coordinates of
nodes), u is the displacement vector, and G is the contact
constraint matrix. This equation is a certain kind of mani-
festation of the Hertz-Signorini-Moreau (HSM) conditions
[4] in contact mechanics. The detailed description of here
applied formulation can be found in [11]. Thus, Eq. (1) must
be modified with regard to the contact force acting between
the elastic rod and the rigid wall

M€ut þ C _ut þ Kut þ GT
t λt ¼ f t: (17)

So, the equation of motion can be written in the form of
Eq. (17) where λt denotes the Lagrange multiplier at time
instant t.

In this case, that quantity is equivalent with the surface
contact pressure. Thus, the Lagrange multiplier method
proceeds at the here presented example by treating λ as
unknown and solving Eqs (16) and (17) simultaneously. The
numerical methods examined in Section 2 can easily be
deducted for the contacting case by replacing the equation of
motion (1) with (17).

4. PARAMETER IDENTIFICATION

In the case of the Newmark and the HHT-α method,
the quality of the numerical solution highly depends on the
proper choice of the alterable parameter(s). Hence, a
parameter identification is needed in order to test the
applicability for a contact problem,

εp ¼
Pn

i¼1

��pexacti � pFEMi

��
Pn

i¼1

��pexacti

�� : (18)

Thus, it is practical to define certain indicators by which it
can be quantified, how accurate the 1D example may be
solved and how efficient the elimination of the spurious
oscillations is. Firstly, relative errors are considered, which
can be calculated by Eq. (18) where pexacti denotes the var-
iable (pressure or velocity) determined by the exact solution,

while pFEMi means the variable calculated from the FEM
model at the i− th time step. On the other hand, the amount
of the spurious oscillations is reviewed by the number of
wave peaks in the time evolution of the considered variable
denoted as NoPp (Number of Peaks).

4.1. Newmark method

Based on these two indicators the practical range of δ
parameter for a contact problem may be ascertained. After
determining them for the contact pressure for multiple
values of δ inside the interval δ∈ ½0 ; 1�, these indicators can
be plotted in the function of δ according to Fig. 3a and b,
respectively. As it can be seen in these figures, NoPp is
decreasing strictly monotonic, while εp is starting to grow
after a certain value of δ is stepped over. Hence, an ideal
parameter value cannot be ascertained, by which both of the
applied indicators are reaching their minimum, so an
acceptable compromise must be made. Based on Fig. 3, a so
called “practical stage” may be assigned, inside, which both
measures remain at sufficiently low values. In accordance
with the numerical tests using the FEM model, this practical
stage can be determined as α∈ ½0:3 ; 1�.

4.2. HHT-α method

The parameter identification for this method is more
complicated, as there are two independent parameters
affecting the numerical solution. The applied indicators are
the same as by the Newmark method, but by reason of the
one more ruling parameter, a surface plot must be applied
(Fig. 4a and b). In order to establish a beneficial correlation
between α and δ, the Period Error (PE) [19] function must
be analyzed,

δminimal PE ¼ −1:5α: (19)

Based on this examination, Eq. (19) may be concluded to
reach a parameter setting that results minimum for the
period error. Considering Fig. 4, this connection proves to
be a practical compromise between the accuracy and the
elimination of the spurious oscillations. Hence, it is benefi-
cial to choose the parameter values according to Eq. (19),
especially as it makes the parameter setting much easier.
Based on Fig. 4 and in accordance with the concrete nu-
merical tests with the FEM model, the “practical stage” can
be ascertained as α∈ ½−0:5 ; − 0:3�.

Fig. 2. FEM model

Fig. 3. a) Relative error of the pressure for varying values of δ;
b) number of wave peaks in the pressure for varying values of δ
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5. APPLICATION IN A 1D EXAMPLE

In order to compare the applied methods and check the
results of the parameter identification, a concrete function
must be plotted that characterizes the 1D impact. As the
spurious oscillations are mainly problematic in the contact
pressure and the velocity functions, the methods shall be
compared using the time evolution of these quantities (Figs
5–6). The magnified area on the left side shows the oscil-
lations emerging directly after the moment of impact. The
enlarged region on the right side of Fig. 5 indicates how
steep the pressure decreases to zero which illustrates the
accuracy of the solutions. The prominence in the zoomed
plot on the right side of Fig. 6 is caused by the wave prop-
agation in the rod and must be as narrow as possible.

Besides, the indicators that have been used in section 4 are
illustrated by identical dissipation for each method in Figs 7
and 8 for the pressure and the velocity, respectively. By
studying them, it can be assessed that there cannot be found
an ideal method which to use is beneficial in all aspects.

The central difference method offers a fast and accurate
result, but the large amount of oscillations makes it prob-
lematic to apply. In contrast, the backward Euler method
offers the best performance in the elimination of oscillations,
but this feature is coupled with the highest relative error.
Based on this study, the Newmark and the HHT-α prove to
have the highest potential at this kind of application. Both of
them are controllable with one or more parameters, by
which an acceptable compromise may be made. Even from
these two methods, the HHT-α seems to possess more
beneficial damping characteristics, as by identical dissipation
it results a better solution. As the Newmark method is built
in the ANSYS mechanical APDL software, the performed
calculations were verified by that comparison. Applying the
same FEM model with identical parameters in ANSYS,

Fig. 4. a) Relative error of the pressure for varying values of δ and α;
b) number of wave peaks in the pressure for varying values of

δ and α

Fig. 5. Time evolution of the contact pressure

Fig. 6. Time evolution of the velocity at the contacting node

Fig. 7. Comparison of the applied methods (pressure function)

Fig. 8. Comparison of the applied methods (velocity function at the
contacting node)
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the results show a very precise match, proving that the
calculations made in Julia language are accurate.

6. CONCLUSION

In this study a thorough analysis was made about the appli-
cation of numerical methods in contact problems. Four
different, widely used numerical schemes were deducted and
applied for a 1D example. In the parameter identification,
different aspects were presented, through which a correct
parameter setting may be determined for numerical methods
with one or more control parameters. The minimization of
the period error proved to be a beneficial compromise by the
HHT-αmethod regarding the examined measures. The results
of the application in a concrete 1D example also confirmed
that this approach is correct. Nevertheless, a numerical
method that is ideal to solve a contact problem in all aspects
cannot be ascertained, as the right choice highly depends on
the user’s actual priorities. The main function of this paper is
to provide a comprehensive guide for the correct selection
of the numerical method for a concrete contact problem.
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