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Vehicle stability is a critical factor while riding a motorcycle. Due to the complexity of the spatial 

mechanical model and the related governing equations, the investigations are limited to linear 

stability analysis. The equations of motion are derived analytically with the help of Kane’s method. 

A control algorithm is designed in order to stabilize the motorcycle at zero longitudinal speed using 

the steering mechanism. The linear stability properties are analyzed numerically, namely, we use 

semi-discretization and the Multidimensional Bisection Method to construct the stability charts of 

the delayed feedback controller. The optimal control gains are selected. The stable and unstable 

oscillations of the lean and the steering angles are plotted as a result of numerical simulations. It is 

shown that with a negative trail the stable domain of the control gains is larger and the vibrations 

decay faster. 
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1. INTRODUCTION 

The investigation of the balancing motorbike is a 

complex task, since no in-plane models can appropriately 

describe the dynamics of such vehicles. Moreover, the 

complex structure of the geometric and kinematic 

constraints of the spatial mechanical model provides a set 

of nonlinear differential equations that cannot be 

managed analytically. Therefore, semi-analytical and 

numerical analyses are generally used in the literature to 

analyze the dynamics of the motorbike [1-5], and mainly 

the validity of these studies are limited to small 

vibrations. In this study, we also focus on the linear 

stability of the motorbike. Based on the idea of Honda 

Riding Assist [6], we examine the case when the 

motorbike is balanced by its steering mechanism at zero 

longitudinal speed. 

We use a spatial mechanical model that is based on 

the Whipple bicycle model [7], [8]. The governing 

equations are derived with the help of Kane’s method [9]. 

The linear stability properties are analyzed; the linear 

stability charts are constructed by semi-discretization 

[10] and with the help of the Multidimensional Bisection 

Method [11]. The effects of several geometric parameters 

and the feedback delay in the control law are shown. The 

optimal control gains, for which the characteristic 

multiplier is the smallest, are selected. The stability 

properties are checked by means of numerical 

simulations.  

2. MECHANICAL MODEL AND GOVERNING 

EQUATIONS 

We use the mechanical model shown in panel (a) of 

Fig. 1. This bicycle model, which has also been studied 

by Meijaard et al. [8] as a benchmark model, consists of 

four rigid bodies: the front and the rear wheels, the fork 

and the frame. The parameters that are in the focus of our 

study, namely the trail e and the rake angle 𝜀, are depicted 

in panel (b) of Fig. 1.  

All four bodies have six degrees of freedom (DoF) 

without constraints, leading to 24 DoF altogether. Each 

of the three hinges between the bodies constraint three 

translational and two rotational DoFs. The front and the 

rear wheels are attached to the ground leading to two 

additional geometric constraints. Therefore, the vector of 

generalized coordinates consists of 4 ⋅ 6 − 3 ⋅ 5 − 2 ⋅
1 = 7 elements and can be composed as 

𝐪 = [𝑋 𝑌 𝜓 𝜑 𝛿 𝜑1 𝜑2]T, (1) 

where X and Y are the coordinates of the center point C2 

of the rear wheel, 𝜓 is the yaw angle, 𝜑 is the lean angle 

of the frame, 𝛿 is the steering angle, 𝜑1 and 𝜑2 are the 

rotational angles of the front and the rear wheels, 

respectively.  

Fig. 1 Spatial mechanical model of the motorcycle (a) 

and the side view for 𝜓 = 0, 𝜑 = 0 and 𝛿 = 0  with 

the relevant geometric parameters (b) 
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Four scalar kinematic constraining equations can be 

formulated for the two wheels rolling on the ground plane 

(one longitudinal and one lateral for each wheels). Since 

our goal is to stabilize the motorcycle for zero 

longitudinal speed (𝑣 = 0), the rotational speed of the 

rear wheel is considered to be constant: 𝜑̇2 = 𝑣/𝑅 = 0, 

where R is the radius of the wheels. In all, we have five 

kinematic constraints. The equations of motion are 

formulated with the help of Kane’s method [9] in which 

we define 7 − 5 = 2 pseudovelocities, summed up in a 

vector as 

𝛔 = [𝜑̇ 𝛿̇]
T

. (2) 

Since the nonlinear equations of motion do not have 

a compact formulation, we strict ourselves to the 

linearized equations. By collecting the constant 

coefficients for the lean and steering angles from the 

Kane’s equations and considering zero longitudinal 

speed, namely 𝑣 = 0, the linearized equations of motion 

can be written as 

𝐌𝐱̈ + 𝑔𝐊0𝐱 = 𝐟,  (3) 

where 𝐱 = [𝜑 𝛿]T and 𝐟 = [0 𝑀]T  with the internal 

steering torque M. In Eq. (3), 𝐌 is the mass matrix, 𝐊0 is 

the velocity-independent stiffness matrix and g is the 

gravitational acceleration. The above described 

linearized equations of motion agree with the study of 

Meijaard et al. [8].  

3. CONTROL DESIGN 

Our goal is to stabilize the motorcycle using the 

steering mechanism. As a first step, we use a simple PD 

controller with feedback delay 𝜏.  A higher level 

controller calculates the desired steering angle as  

𝛿des = −𝐾p𝜑𝜑(𝑡 − 𝜏) − 𝐾d𝜑 𝜑̇(𝑡 − 𝜏), (4) 

where 𝐾p𝜑  and 𝐾d𝜑  are proportional and derivative gains 

for the lean angle. The internal steering torque M is 

created by a lower level control as 

𝑀 = −𝐾p𝛿(𝛿(𝑡) − 𝛿des) − 𝐾d𝛿  𝛿̇(𝑡), (5) 

where 𝐾p𝛿  and 𝐾d𝛿  are the proportional and derivative 

gains for the steering angle. 

Linear stability charts are drawn in the 𝐾p𝜑 − 𝐾d𝜑 

plane considering different parameter values for the trail 

e, the rake angle 𝜀 and the feedback delay 𝜏, see Fig. 2. 

Other geometric parameters were fixed and chosen based 

on a small-scale experimental model of [12]. The control 

gains for the steering angle were fixed as 𝐾p𝛿 = 100 Nm 

and 𝐾d𝛿 = 10 Nms.  

The stability boundaries were determined with the 

help of semi-discretization [10]. In the linear stability 

charts, the linearly stable domains are shaded with 

different intensity corresponding to the value of the 

feedback delay.  

As it can be seen in the panels of Fig. 2, by 

increasing the rake angle 𝜀, the linearly stable region is 

shifted and shrunken. The greater the feedback delay 𝜏 is, 

the smaller the linearly stable domain is. Most 

importantly, the effect of the trail e can also be seen. It 

can be observed, that having a negative trail increases the 

stable domain. Namely, in contrast to the requirements of 

the high speed stability of the motorcycle, the negative 

trail is beneficial for the balancing task. This agrees with 

the concept of Honda Riding Assist [6], where they use a 

special mechanism at the front fork of the motorcycle to 

modify the trail for the balancing task.  

For fixed feedback delay 𝜏 = 0.01 s and different 

parameter values for the trail e and the rake angle 𝜀, the 

optimal points were chosen, for which the absolute value 

of the characteristic multiplier is the smallest. The 

corresponding control gains and the characteristic 

multipliers are summarized in Table 1. As can be seen, 

the characteristic multipliers only differ in the fourth 

digit. However, larger control gains are needed for the 

same rake angle but a negative trail, which can also be 

seen in the linear stability charts of Fig. 2.  

𝑒 [m] 𝜀 [°] 𝐾p𝜑
opt [1] 𝐾d𝜑

opt [s] Multipl. [1] 

-0.005 15 -41.507 -6.1807 0.998289 

0 15 -24.294 -3.0496 0.998047 

0.005 15 -17.528 -2.0721 0.997919 

-0.005 20 -25.656 -3.5315 0.998198 

0 20 -18.168 -2.2703 0.998084 

0.005 20 -14.284 -1.7117 0.998071 

-0.005 25 -18.368 -2.4099 0.998177 

0 25 -14.404 -1.7793 0.998113 

0.005 25 -11.962 -1.4324 0.998094 

Fig. 2 Linear stability charts considering different 

parameter values for the trail e, the rake angle 𝜀 and 

the feedback delay 𝜏  

Table 1 The control gains and the characteristic 

multipliers for the optimal points in case of 

feedback delay 𝜏 = 0.01 s 
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The optimal points are marked in the stability chart 

of Fig. 3 for trail 𝑒 = −0.005 m and rake angle 𝜀 = 25°. 

For decreasing feedback delay values, the optimal point 

goes near the stability boundary. On the one hand, this 

may be against our physical sense. On the other hand, the 

characteristic multipliers are nearly the same in a large 

part of the stable domain, so the location of the optimal 

point is not significant.  

4. NUMERICAL SIMULATIONS 

The stability properties are verified with numerical 

simulations, for which the governing equations are 

rewritten in first order form: 

𝐲̇(𝑡) = 𝐀 𝐲(𝑡) + 𝐁 𝐲(𝑡 − 𝜏) , (6) 

where 𝐲(𝑡) = [𝜑 𝛿 𝜑̇ 𝛿̇]
T

is the vector of the state 

variables, 𝐀 and 𝐁 correspond to the coefficient matrices 

of the non-delayed and the delayed terms, respectively. 

The DDE23 Matlab routine was used with initial 

condition 𝐲(𝑡) = [𝜑 𝛿 𝜑̇ 𝛿̇]
T

= 𝟎  for 𝑡 ∈ [−𝜏, 0)  and 

𝐲(0) = [0 0  𝜑̇0 0]T, where  𝜑̇0 = 𝜑̇(0) was an impact-

like perturbation.  

In Fig. 4, the stability boundaries in the plane of the 

control gains are plotted with semi-discretization [10] 

and with the help of the Multidimensional Bisection 

Method [11] for trail 𝑒 = −0.005 m,  rake angle 𝜀 =
25° and feedback delay 𝜏 = 0.01 s. The linearly stable 

domain is shaded in dark gray. A static stability boundary 

(𝜔 = 0)  can be observed approximately at 𝐾p𝜑 =

−17.2, see the vertical line. The parameter points for 

which numerical simulations are run, are also depicted in 

Fig. 4 and the corresponding control gains and the values 

of the initial perturbation are summarized in Table 2. 

point 𝐾p𝜑
opt  [1] 𝐾d𝜑

opt [s]  𝜑̇0  [
rad

s
] 

S1 -18.368 -2.4099 0.01 

U1 -16.250 -2.4099 0.001 

U2 -22.000 -2.4099 0.001 

The time histories of the lean angle 𝜑  and the 

steering angle 𝛿 can be seen in Fig. 5, 6 and 7 for trail 

𝑒 = −0.005 m, rake angle 𝜀 = 25° and feedback delay 

𝜏 = 0.01 s. For the optimal point S1, the vibrations decay 

rapidly, see Fig. 5. 

For point U1, static loss of stability can be observed, 

i.e., the motorcycle loses its stability without oscillations, 

see Fig. 6. This means that a single real characteristic 

multiplier leaves the unit circle. As can be seen in Fig. 7, 

the motorcycle loses its stability via oscillations, that is, 

dynamics loss of stability occurs for point U2 . This 

corresponds to the pair of complex-conjugate 

characteristic multipliers leaving the unit circle. 

The time histories are also plotted for fixed rake 

angle and feedback delay values, but different parameter 

Fig. 3 The linear stability charts and the optimal 

points for 𝑒 = −0.005 m, 𝜀 = 25° and for different 

values of the feedback delay 𝜏 

Fig. 5 The time histories of the lean angle 𝜑 and the 

steering angle 𝛿 for point S1 (optimal point) 

Fig. 4 The stability boundaries in the plane of the control 

gains for 𝑒 = −0.005 m, 𝜀 = 25° and 𝜏 = 0.01 s 

Fig. 6 The time histories of the lean angle 𝜑 and the 

steering angle 𝛿 for point U1 (static loss of stability) 

Table 2 The control gains for the parameter points 

depicted in Fig. 4 and the initial perturbation used 

in the numerical simulations 
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values of the trail 𝑒, see Fig. 8. The initial perturbation 

was 𝜑̇0 = 0.0075 rad/s. As can be seen, the vibrations 

decay faster for negative trail (see the black curves) than 

for zero or positive trail (see the blue and the red curves, 

respectively). Therefore, numerical simulations also 

confirm that having a negative trail is beneficial for the 

balancing task at zero longitudinal speed.  

5. CONCLUSIONS 

The spatial mechanical model and the linearized 

equations of motion are used to investigate the balancing 

of the motorcycle at zero longitudinal speed. A 

hierarchical linear feedback controller was constructed 

with feedback delay. The linear stability charts were 

drawn for some geometric parameter values and the 

feedback delay. The time histories for the lean and the 

steering angles were also shown for some control gain 

pairs. Examples of static and dynamic loss of stability 

were presented. 

It was shown, that with a positive trail, the stable 

domain is narrow and the feedback delay has to be small 

in order to balance the motorcycle successfully. It was 

confirmed by the numerical simulations that the 

vibrations decay faster when the trail is negative.  

The experimental validation of the theoretical results 

is a future task, as like as the nonlinear analysis of the 

motorcycle balancing task.  
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Fig. 7 The time histories of the lean angle 𝜑 and the 

steering angle 𝛿 for different parameter values of the 

trail 𝑒, when 𝜀 = 25° and 𝜏 = 0.01 s 

Fig. 7 The time histories of the lean angle 𝜑 and the 

steering angle 𝛿 for point U2 (dynamic loss of stability) 
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